

Rust
Programming

For Beginners
Quick Start Guide

Ray Yao

Copyright © 2015 by Ray Yao

All Rights Reserved

Neither part of this book nor whole of this book may be reproduced or
transmitted in any form or by any means electronic, photographic or
mechanical, including photocopying, recording, or by any information
storage or retrieval system, without prior written permission from the author.
All rights reserved!

Ray Yao

Ray Yao’s eBooks & Books on Amazon
Advanced C++ Programming by Ray Yao
Advanced Java Programming by Ray Yao
AngularJs Programming by Ray Yao
C# Programming by Ray Yao
C# Interview & Certification Exam
C++ Programming by Ray Yao
C++ Interview & Certification Exam
Django Programming by Ray Yao
Go Programming by Ray Yao
Html Css Programming by Ray Yao
Html Css Interview & Certification Exam
Java Programming by Ray Yao
Java Interview & Certification Exam
JavaScript Programming by Ray Yao
JavaScript 50 Useful Programs
JavaScript Interview & Certification Exam
JQuery Programming by Ray Yao
JQuery Interview & Certification Exam
Kotlin Programming by Ray Yao
Linux Command Line
Linux Interview & Certification Exam
MySql Programming by Ray Yao
Node.Js Programming by Ray Yao
Php Interview & Certification Exam
Php MySql Programming by Ray Yao
PowerShell Programming by Ray Yao

Python Programming by Ray Yao
Python Interview & Certification Exam
R Programming by Ray Yao
Ruby Programming by Ray Yao
Rust Programming by Ray Yao
Scala Programming by Ray Yao
Shell Scripting Programming by Ray Yao
Visual Basic Programming by Ray Yao
Visual Basic Interview & Certification Exam
Xml Json Programming by Ray Yao

Preface
“Rust Programming” covers all essential Rust language knowledge. You can
learn complete primary skills of Rust programming fast and easily.
The book includes more than 60 practical examples for beginners and
includes tests & answers for the college exam, the engineer certification
exam, and the job interview exam.
Note:
This book is only for Rust beginners, it is not suitable for experienced Rust
programmers.

Source Code for Download
This book provides source code for download; you can download the source
code for better study, or copy the source code to your favorite editor to test
the programs.

Source Code Download Link:
https://forms.aweber.com/form/33/98967233.htm

https://forms.aweber.com/form/33/98967233.htm

Table of Content

Hour 1
What is Rust Language?
The Feature of Rust
Install Rust
The First Rust Program
Comment
Summary

Hour 2
Data Type
Variables
Output Format
Constants
Date Type Conversion
Reserved Words
Function
Return Type
Summary

Hour 3
Variable-Binding
String Assignment
Arithmetical Operators
Logical Operators
Comparison Operators

Array
Slice
Summary

Hour 4
If Statement
If-else Statement
Let-If Statement
Loop – Break Statement
For Statement
While Statement
Tuples
Match
Summary

Hour 5
Struct
Enum
Ownership
Reference
Summary

Hour 6
Module
Embedded Module
External File
Private Function

Super
Summary

Hour 7
Vector
Multiple Patterns
Range
Binding a Range
Generics
Summary

Hour 8
Method
Trait
Drop() Method
Closure
Summary

Appendix 1
Error Checking

Appendix 2
Tests
Answers

Source Code Download

Hour 1

What is Rust Language?

Rust is a programming language developed by Mozilla that focuses on
security and concurrency. The Rust language is jointly developed by the
leader of the web language, Brendan Eich, Dave Herman, and Graydon
Hoare of Mozilla.

Rust is an excellent language for security, concurrency, and utility, for multi-
core systems and absorbs important features of other dynamic languages such
as: it doesn’t need to manage memory, without Null Pointers, and so on.

The Rust's syntax is similar to that of C++.

Rust is free open source software that is freely available to anyone and
publicly shared so that people can also improve the design of the software.

The great feature of Rust language is the Security.

The Feature of Rust

1. Rust uses the abstract functionality without affecting the runtime
performance of the code

2. Rust's error messages are clear and easy to understand, appear in
a neat, color-coded format, and suggest spell checking in the
program.

3. Rust provides data-type checking functionality, which means it
can automatically determine the type of an expression.

4. Rust language can replace a copy operation with a move
operation.

5. Rust provides thread functionality without data contention.
6. Rust uses the match pattern to better manage the program's

control flow.
7. Rust guarantees memory security by using the concept of

ownership.
8. Rust language can communicate with c language easily.
9. Rust programmers can clearly control the memory allocation in

release of memory locations and time.

Install Rust

(1) Install C++ Build Tools
Before you install Rust, you must install C++ Build Tools.

1. Click the following link to download C++ Build Tools:
2. https://visualstudio.microsoft.com/downloads/#build-tools-for-

visual-studio-2017
3. You can find:

4. Click Download button on the right side, start downloading.
5. After downloading the Build Toos installer, please install Build

Tools for Visual Studio 2017……
6. During installation, select options that relate to C++ to install.
7. After the installation is complete, please restart the computer.

(2) Install Rust
If you have already installed Build Toos, then continue to install Rust.

1. Click the following link to download Rust
2. https://www.rust-lang.org/tools/install
3. Please download the Rust installer “RUSTUP-INIT.EXE”.
4. After downloading the “rustup-init.exe” installer, please double

click it to install Rust.
5. You can see the following message:

https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2017
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install

6. Type 1, press Enter key to install Rust.
7. When the installation is complete, please press Enter key to

confirm.

(3) Rust Test
Test Rust to check if the installation is successful.
The Rust working folder is C: \Users\Your_Name. For example, my Rust
working folder is C: \Users\RAY.
Rust working folder always includes three sub-folders: (1).rustup folder,
(2).multirust folder, (3).cargo folder.
Now we need to go to working folder first, and test Rust program.
Please run cmd command, open the command line editor.

1. Type cd\ to move to the root directory.
2. Type cd \Users\Your_Name to move to the working folder.
3. Run rustc --version command, you can see the output:

Congratulation! The Rust installation is successful!

Note:
In different Windows OS, the working folder is different.

For example, your working folder may be C:\Users\Admin.
Then you must find out the folder that contains three sub-folders. (.rustup
folder, .multirust folder, .cargo folder). And make sure this folder as a
working folder.

The First Rust Program

Please open the Notepad, and write the following code:
Example 1.1
fn main() {

println!("Hello, world!");
}

Save the file as “hello.rs” in the working folder, using .rs as extension name.
Run “cmd” command, open the command line editor. Enter the following
commands.

Output:
Hello, world!

Explanation:
fn main() defines a function named “main”.
println!() is a command used to output content.
The extension name of Rust file is “.rs”.
Each statement ends with a semicolon “;”
“cd\” moves to root directory.

“C: \>cd \Users\RAY” moves to my working folder.
“rustc hello.rs” compiles the Rust file “hello.rs”
“C:\Users\RAY>hello.exe” runs the hello.exe program.

Comment

// Single line comment
/* */ Multi line comment

The comments are always ignored by the compiler.
Example 1.2
fn main() { // define a function named main

println!("Hello, world!");
/* println!() is a command used to output contents or text.
The comments are always ignored by the compiler.
*/
}
Output:
Hello, world!
Explanation:
“//” is used in a single line comment.
“/* */” is used in multi line comments.
The comments are always ignored by the compiler.

Summary

fn main() defines a function named “main”.
println!() is a command used to output content.
The extension name of Rust file is “.rs”.
Each statement ends with a semicolon “;”
“//” is used in a single line comment.
“/* */” is used in multi line comments.
The comments are always ignored by the compiler.

Hour 2

Data Type

Rust is a language with strong data type, and all variables and constants must
have an explicit data type declaration;
Rust has data structures of integer, floating point, Boolean, string, array,
tuple, enumeration, and struct. For example
Integer: i8, i16, i32, i64, isize, u8, u16, u32, u64, usize
Floating-point: f32, f64,
Boolean: true or false
String: “C# in 8 hours”
Array: a = [1,2,3]
Slices: &a[element1…element2]
Tuple: t = (1, 2, 3)
Char: ‘c’
"u" means unsigned data and "i" means signed data.
"u32" represents an unsigned 32-bit integer, and "i64" represents a signed

64-bit integer.
“isize” and “usize” are types that can vary in size.

Variables

The syntax to define a variable is as follows:

let variable_name = value

Example 2.1
fn main(){
let var = "OK";
println!("The value of var is: { }", var);
}

Output:
The value of var is OK.

Explanation:
let var = "OK"; assigns a value “OK” to the variable “var”.
println!("{ }", var); is a typical output format in Rust. “{ }” cannot be
omitted.

Initialization with Data Type
Using a “:” to define a variable with a data type.

let variable_name : type = value;

Example 2.2
fn main(){

let var: i32 = 100;
let str: String = "Good".to_string();
println!("The value of var is: { }", var);
println!("The value of str is: { }", str);
}

Output:
The value of var is 100
The value of str is Good

Explanation:
“let var: i32 = 100;” defines the type of var as i32.
“let str: String = "Good".to_string();” defines the type of str as String.
“.to_string()” converts the value to String type.

Output Format

println!(“{ }, variable”); // print content and then change line
print!(“{ } { }”, variable1, variable2); // print in the same line

Example 2.3
fn main(){
let x = 100;
let y = 200;
let z = 300;
println!("{ }", x);
print!("{ } { }", y, z);
}
Output:
100
200 300
Explanation:
“println!(“{ }, variable”);” print content and then the change line
“print!(“{ } { }”, variable1, variable2);” print text in the same line

Constants

The syntax to define a constant is as follows:

const identifier : type = value

Example 2.4
const NUM: i32 = 100;
fn main() {
println!("The value of NUM is {}", NUM);
}

Output:
The value of NUM is 100

Explanation:
“const NUM: i32 = 100;” defines a constant NUM, its value is 100.

Date Type Conversion

as new_type

“as” is a keyword which is used to convert data type.

Example 2.5
fn main(){
let var1: f32 = 100.88;
let var2: i32 = var1 as i32; // var1 becomes i32
println!("{}", var1);
println!("{}", var2);
}

Output:
100.88
100

Explanation:
“var1 as i32;” means that the type of var1 is converted to i32.

Reserved Words

abstract alignof as become box

break const continue crate do

else enum extern false final

fn for if impl in

let loop macro match mod

move mut
offsetof override priv

proc pub pure ref return

Self self sizeof static struct

super trait true type typeof

unsafe unsized use virtual where

while yield

Rust reserved words cannot be used when choosing identifier names for
variables, functions, properties.

Function
(1) The syntax to define a function is as follows:

fn function_name(parameters) {
}

(2) The syntax to call a function is as follows:

function(parameters);

Example 2.6
fn main() {

funt(100, 200); // calls the function
}
fn funt(x: i32, y: i32) { // define a function

println!("The sum is: { }", x + y);
}
Output:
The sum is 300
Explanation:
“funt(100, 200)” calls the function named funt(){…}, and pass the
parameters 100 and 200 to the funt(){…}.
(x: i32, y: i32) declares the data type of parameters are i32.

Return Type
The syntax to specify a return type for a function is as follows:

fn function_name(parameters) -> return_type {
}

Example 2.7
fn main() {

let num = funt(100); // calls the function
println!("The value of num is: { }", num);

}
fn funt(num: i32) -> i32 { // specify a return type

num + 200 // return a value to the caller
}
Output:
The value of num is 300
Explanation:
“funt(100);” is a caller with a parameter 100.
“ -> i32” specifies the return type is i32
“num+200” returns a value to the caller.
Note:
The body of the function ends without a semicolon “;”;
In here, “num+200” is the last statement of function, so it has no semicolon
“;”.

Example 2.8
fn foo() -> bool { // specify a return type

return true // return a value to the caller

}
fn main() {

let b = foo(); // foo() is a caller
println!("The result is: { }", b);

}
Output:
The result is true
Explanation:
“ -> bool” specifies a return type as Boolean.
“return true” returns a value to the caller.
“foo();” calls the function “foo(){}”.

Summary
The syntax to define a variable is as follows:
let variable_name = value;
let variable_name : type = value;
“println!(“{ }, variable”);” print content and then the change line
“print!(“{ } { }”, variable1, variable2);” print text in the same line
The syntax to define a constant is as follows:
const identifier : type = value
The syntax of date type conversion: as new_type
Rust reserved words cannot be used when choosing identifier names for
variables, functions, properties.
(1) The syntax to define a function is as follows:
fn function_name(parameters) {
}
(2) The syntax to call a function is as follows:
function(parameters);
The syntax to specify a return type for a function is as follows:
fn function_name(parameters) -> return_type {
}

Hour 3

Variable-Binding

(1) For the sake of security, the value of a bound variable is immutable by
default.

let (var1, var2) = (value1, value2);

After a variable binding, the var1 is equal to value1, var2 is equal to value2.
The values are unchangeable.

Example 3.1
fn main(){
let (x, y) = (100, 200); // variable-binding
println!("The value of x is {}", x);
println!("The value of y is {}", y);
}

Output:
The value of x is 100
The value of y is 200

(2) If you want the value of the bound variable to be mutable, you can use the
“mut” keyword. But it is the lack of security.

let mut variable = value;

Example 3.2
fn main(){
let mut a = 100;

let mut b = 200;
a = a + 300;
b = b + 400;
println!("Finally a is {}", a);
println!("Finally b is {}", b);
}

Output:
Finally a is 400
Finally b is 600

String Assignment

There are three methods to define strings

let x = “hello”.to_string(); // convert text to a string
let y = String::from("hello"); // get text directly
let z:&str = "hello"; // reference a text

Example 3.3
fn main(){
let x = "hello".to_string();
let y = String::from("hello");
let z:&str = "hello";
print!("{} {} {} ", x, y, z);
}

Output:
hello hello hello

Explanation:
There three methods to assign a value to a string variable.

Arithmetical Operators

Operators Running

+ add

- subtract

* multiply

/ divide

% get modulus

% modulus operator divides the first number by the second number and
returns the remainder. e.g. 9%2=1.

Example 3.4
fn main() {

println!("10 + 2 = {}", 10 + 2);
println!("10 - 2 = {}", 10 - 2);
println!("10 * 2 = {}", 10 * 2);
println!("10 / 2 = {}", 10 / 2);
println!("10 % 2 = {}", 10 % 2);

}

Output:
10 + 2 = 12
10 – 2 = 8
10 * 2 = 20
10 / 2 =5
10 % 2 = 0

Explanation:
In “10 % 2 = 0”, % modulus operator divides the first number by the second
number and returns the remainder. e.g. 9%2=1.

Logical Operators

Operators Equivalent

&& and

|| or

! not
After using logical operators, the result will be true or false.

Example 3.5
fn main() {
println!("true AND false is {}", true && false);
println!("true OR false is {}", true || false);
println!("NOT true is {}", ! true);
}

Output:
true AND false is false
true OR false is true
NOT true is false

Explanation:

true && true;
returns true;

true && false;
returns false;

false &&false;
returns false;

true II true;
returns true;

true II false;
returns true;

false II false;
return false;

! false;
returns true;

! true;
returns false;

Comparison Operators

Operators Running

> greater than

< less than

>= greater than or equal

<= less than or equal

== equal

!= not equal

After using comparison operators, the result will be true or false.

Example 3.6
fn main() {
let x:i32 = 100;
let y:i32 = 200;
println!("x is greater than y : {}", x > y);
println!("x is less than y : {}", x < y);
println!("x is unequal to y : {}", x != y);
println!("x is greater/equal to y : {}", x >= y);
println!("x is less/equal to y : {}", x <= y);
println!("x is completely equal to y : {}", x == y);
}

Output:
x is greater than y : false
x is less than y : true

x is unequal to y : true
x is greater/equal to y false
x is less/equal to y : true
x is completely equal to y : false

Explanation:
After using comparison operators, the result will be true or false.

Array

An array is a kind of variable that includes multiple values.

(1) The first way to create an array:

let mut array: [type; length] = [default; length];

Example 3.7
fn main() {
let mut a: [i32; 4] = [8; 4]; // create an array
a[1] = 10;
a[2] = 20;
println!("{} {} {} {}",a[0], a[1], a[2], a[3]);
}

Output:
8 10 20 8

Explanation:
“let mut a: [i32; 4] = [8; 4];” creates an array
The array type is i32, Array length is 4 elements. The default value is 8.
“a[1]=10” assigns the value 10 to the element a[1].
“println!(“{}”, a[0])” prints the first element.

(2) The second way to create an array:

let array: [type; length] = [val1, val2, val3……];

Example 3.8
fn main(){
let a:[f32; 4] = [0.1, 0.2, 0.3, 0.4]; // create an array
println!("{} {} {} {}",a[0],a[1],a[2],a[3])
}

Output:
0.1 0.2 0.3 0.4

Explanation:
The array is assigned four values when defining.

Slice

The slice is a part of an array. Extracting a portion of an array can create a
slice.
The syntax to create a slice is as follows:

let slice = &array[start..last-1];

Extracting the element from start element to last element-1 can create a slice.

For example:
let a = [0, 10, 20, 30, 40, 50, 60]; // create an array
let slice = &a[2..5]; /* extract three elements from a[2] to a[4], now the slice
contains three elements */

Example 3.9
fn main(){
let a = [0, 10, 20, 30, 40, 50, 60]; // create an array
let slice = &a[2..5]; // extract from a[2] to a[4]
println!("{}",slice[0]); // show slice’s elements
println!("{}",slice[1]);
println!("{}",slice[2]);
}

Output:
20
30
40

Explanation:

“let slice = &a[2..5];” extracts the array “a” from a[2] to a[4], and creates a
slice with three elements.

Summary

The syntax of the variable-binding:
let (var1, var2) = (value1, value2);
let mut variable = value;
let x = “hello”.to_string(); // convert text to a string
let y = String::from("hello"); // get text directly
let z:&str = "hello"; // reference a text
Rust has operators such as: arithmetical operators, logical operators,
comparison operators,
The syntax to create an array:
let mut array: [type; length] = [default; length];
let array: [type; length] = [val1, val2, val3……];
The syntax to create a slice is as follows:
let slice = &array[start..last-1];

Hour 4

If Statement

if condiction { // if true do this; }

“if statement” executes codes inside { … } only if a specified condition is
true.

Example 4.1
fn main(){
let num=10;
if num==10{
println!("num is equal to 10");
}
}

Output:
num is equal to 10

Explanation:
“num==10” is true, so if statement can be executed.

If-else Statement
if (test-expression) { // if true do this;
} else { // if false do this;
}

“if-else statement” runs some code if a condition is true, and runs another
code if the condition is false
Example 4.2
fn main(){
let x=100;
let y=200;
if x>y{
println!("x is greater than y");
} else {
println!("x is smaller than y");
}
}
Output:
x is smaller than y
Explanation:
“x>y” is false, so the else statement has been executed.

Let-If Statement
Let variable = if condition{
// if true do this
} else {
// if false do this

}

The value of the if expression will be assigned to the let statement.
Example 4.3
fn main(){
let num = if true{ // let-if statement
100
} else {
200
};
println!("The value of num is {}", num)
}
Output:
The value of num is 100
Explanation:
“let num = if true{…}” is a let-if statement.

Loop – Break Statement

The loop statement executes the code repeatedly until the break statement
stops it.

fn main(){
loop{
……
break;
}
}

Example 4.4
fn main(){
let mut num=5;
loop{ // loop statement
println!("C# in {} Hours", num);
if num == 8 {
break; // break statement
}
num=num+1;
}
}

Output:
C# in 5 Hours
C# in 6 Hours
C# in 7 Hours

C# in 8 Hours

Explanation:
Loop statement run repeatedly until num is equal to 8, it will stop.

For Statement
A for loop is a conditional loop, running a specified number of times until the
condition is false.

for var in condition {
}

Example 4.5
fn main(){
for num in 5..9 { // “5..9” contains numbers from 5 to 8
println!("Java in {} Hours", num);
}
}
Output:
Java in 5 Hours
Java in 6 Hours
Java in 7 Hours
Java in 8 Hours
Explanation:
“num1..num2” is a range expression, which contains numbers from num1 to
num2-1. Note that “num1.. num2” does not include num2.
“5..9” is a range expression, which contains numbers from 5 to 8. Note that
“5..9” does not include 9.

While Statement
The while statement is a conditional loop, and when the condition is true, it
executes the loop, otherwise it terminates the loop.

while condition{
// if true do this;
}

Example 4.6
fn main(){
let mut num=0;
while num<=8 { // while statement
print!("{} ", num);
num=num+1;
}
}
Output:
0 1 2 3 4 5 6 7 8
Explanation:
When num is less than or equal to 8, the while loop will run repeatedly.

Tuples

A tuple is a collection with different type elements.

(1) The syntax to create a tuple is as follows:

let tuple = (val1, val2, val3…);

Note: In Tuple, the type of the values can be different, using () parentheses.

(2) Access the elements of the tuple

tuple.index

For example: “tuple.0” accesses the first element of the tuple.

Example 4.7
fn main(){
let t = ("Python in", 8, "Hours", true); // create a tuple
print!("{} {} {} {}", t.0, t.1, t.2, t.3); // access the elements
}

Output:
Python in 8 Hours true

Explanation:
“let t = ("Python in", 8, "Hours", true);” creates a tuple with different type
elements.
“t.0, t.1, t.2, t.3” accesses four elements of the tuple “t”.
Note: In Tuple, the type of the values can be different, using () parentheses.

Match

The Match statement valuates the given expression first, and compares the
each value, and runs the code when the value matches.

match variable {
value1 => code1,

value2 => code2,
……
_default => code, // if don't match above values, run this.
}

Example 4.8
fn main(){
let num:i32 = 3; // given expression
match num {
1 => println!("one"),
2 => println!("two"),
3 => println!("three"), // match this
4 => println!("four"),
_ => println!("something else"),
}
}

Output:
three

Explanation:

The given expression is 3, which matches the value 3.
“_ => println!("something else"),” means that if don't match above values,
run this.

Summary
“if statement” executes codes inside { … } only if a specified condition is
true.
The syntax of Let-If Statement
Let variable = if condition{
} else {
}
The loop statement executes the code repeatedly until the break statement
stops it.
The syntax of For statement:
for var in condition {……}
The syntax of While statement:
while condition{……}
(1) The syntax to create a tuple is as follows:
let tuple = (val1, val2, val3…);
(2) Access the elements of the tuple
tuple.index
The Match statement valuates the given expression first, and compares the
each value, and runs the code when the value matches.

Hour 5

Struct
Struct is a user-defined data type that is defined by using the struct keyword.
The members of the struct contain members’ names and types which are
enclosed in braces. The struct members are called fields.
There are three steps to use struct.
(1) Create a struct

struct Struct_Name {
member1: type,
member2: type,
......
}

(2) Initialize the struct

let object = Struct_Name {
member1: value1,
member2: value2,
……
}

(3) Access the member

object. member

Example 5.1
struct Member { // create a struct
id: i32, // member: type
name: String,

working: bool,
}
fn main() {
let clerk = Member { // initialize the struct
id: 016320, // member: value
name: "Smith".to_string(),
working: true,
};
println!("ID is {}", clerk.id); // access the members
println!("Name is {}", clerk.name);
println!("Working is {}", clerk.working);
}

Output:
ID is 016320
Name is Smith
Working is true

Explanation:
“struct Member {…}” creates a struct
“let clerk = Member” {…} initializes the struct
“clerk.id” accesses the members.

Example 5.2
struct Square { // create a struct
len: i32,
wid: i32,
}

fn main() {
let table = Square { len: 10, wid: 8 }; // initialization
println!("The area is {}", table.len * table.wid); // access
}

Output:
The area is 80

Explanation:
“struct Square{…}” creates a struct.
“let table = Square { len: 10, wid: 8 };” initializes the struct.
“table.len*table.wid” accesses the members of the struct.

Enum

Enumeration is a custom data type that contains certain values. Use the enum
keyword to define.

(1) Define an enum

enum Enum_Name{
member 1,

member 2,
……

}

(2) Access to member

Enum_Name::member

Example 5.3
enum Language{ // define an enum
JS, // member
GO,
VB,
}
fn program(var:Language){
match var{ // using match statement
Language::JS=> println!("JS in 8 Hours"),
Language::GO=> println!("GO in 8 Hours"),
Language::VB=> println!("VB in 8 Hours"),
}

}
fn main(){
program(Language::JS); // access the member
program(Language::GO);
program(Language::VB);
}

Output:
JS in 8 Hours
GO in 8 Hours
VB in 8 hours

Explanation:
“enum Language{…}” defines an enum
“Language::JS” accesses the member.

Ownership

When a variable binding owns a resource, it is called ownership. But when a
variable binding goes out of scope, it releases the resource, and loses
ownership.

Example 5.4
fn main(){
let x = String::from("try"); // x owns “try”
let y = x; // Warning! The ownership of x moves to y
println!("{}", x); // Error! x is no longer available
}

Output:
Error message……

Explanation:
“let x = String::from("try");” means that “x” owns the value “try”, “x” is an
owner.
“let y = x” moves the ownership to y. Then x has no ownership.
“println!(“{}”, x)” print an error message. x is no longer available.

Example 5.5
fn main() {
let s=String::from("R in 8 Hours"); // s owns “R in 8 Hours”
let n=cal(s); // Warning! s will lose the ownership after used
println!("Value of the string is: {}",s); // s is no longer available

println!("Length of the string is: {}",n);
}
fn cal(s:String) -> usize {
s.len() // get the length of the string
}

Output:
Error message……
Explanation:
“let s=String::from("R in 8 Hours");” means that “s” owns the “R in 8
Hours”. “s” is an owner.
“let n=cal(s);” calls the function “cal”, and passes the parameter “s”. After
“s” is used, “s” will lose the ownership of the “R in 8 Hours”.
“println!("Value of the string is: {}",s);” will print error messages, because
“s” is no longer available.

Reference

After a variable is referenced by other variables, the ownership of its value
remains and will not be lost.

(1) Reference a variable.

&variable

(2) Reference a parameter

parameter: &type

Example 5.6
fn main() {
let s=String::from("R in 8 Hours");
let n=cal(&s); // reference
println!("Value of the string is: {}",s);
println!("Length of the string is: {}",n);
}
fn cal(s:&String) -> usize { // reference
s.len() // get the length of the string
}

Output:
Value of the string is: R in 8 Hours
Length of the string is: 12

Explanation:

“let n=cal(&s);” calls the function “cal”. After “s” is referenced, “s” still
owns the value of “R in 8 Hours”.
“fn cal(s:&String) -> usize” means that “s” is a referenced string type.
“usize” is the type whose size can vary.

Summary
(1) Create a struct
struct Struct_Name {
member1: type,
member2: type,
......
}
(2) Initialize the struct
let object = Struct_Name {
member1: value1,
member2: value2,
……
}
(3) Access the member
object. member

(1) Define an enum
enum Enum_Name{

member 1,
member 2,
……
}
(2) Access to member
Enum_Name::member

About Ownership:
When a variable binding owns a resource, it is called ownership. But when a
variable binding goes out of scope, it releases the resource, and loses

ownership.

(1) Reference a variable.
&variable

(2) Reference a parameter
parameter: &type

Hour 6

Module

A module is a namespace that contains functions, structures, traits, and impl
projects. By default, the module modifier is private, but the public attributes
can be set using the “pub” keyword.

The module is defined by the “mod” keyword.

(1) Define a module

mod module_name{
pub function(){ }

}

(2) Run the module

module_name::function();

Example 6.1
mod my_module{ // define a module
pub fn test(){ // pub means public attribute
println!("Hello My Friends!");
}
}
fn main(){
my_module::test(); // run the module
}

Output:

Hello My Friends!

Explanation:
“mod my_module{…}” defines a module.
“my_module::test();” runs the module and function.

Embedded Module

(1) Define an embedded module

mod m1{
mod m2{

pub function(){ }
}

}

(2) Run the embedded module

m1::m2::function();

Example 6.2
mod m1{

pub fn a(){
println!("m1 module");
}

pub mod m2{ // embedded module
pub fn b(){
println!("m2 module");
}

}
}
fn main(){
m1::a();
m1::m2::b(); // runs the embedded module & function
}

Output:
m1 module
m2 module

Explanation:
“pub mod m2{ }” defines an embedded module.
“m1::m2::b();” runs the embedded module & function.

External File

Typically, if you want to reference an external file, you can apply the “mod”
keyword to load that file as a module, and “use” keyword to load the external
function.

(1) First step, create an external file named “ex_file.rs” .
Example 6.3
pub fn ex_fun() {
println!("{}", "External Text");
}
Save the file as “ex_file.rs”.

The syntax to Load the external file and function:

mod extern_file; // “mod “ loads an external file
use extern_file::extern_fun; // “use” loads an external function

(2) Second step, create a main file named “prime.rs”.
Example 6.4
mod ex_file; // loads an external file
use ex_file::ex_fun; // loads an external function
fn main () {

ex_fun(); // calls the external function
}
Save the file as “prime.rs” in the same folder with “ex_file.rs” file, then

compile the prime.rs and run the prime.exe.

Output:
External Text

Explanation:
“mod ex_file;” loads an external file “ex_file.rs”
“use ex_file::ex_fun;” loads an external function “ex_fun(){ }”.

Private Function

In Rust language, all function is private by default.
If any function or module is private, it can be accessed through its direct
parent module or the module itself.

Example 6.5
mod my_module {

pub fn a() { // function is public
println!("function a");
}
fn b(){ // function b is private
println!("function b");
}

}
fn main() {
my_module::a();
my_module::b(); // call a private function
}

Output:
Error message……

Explanation:
“fn b(){ }” is a private function.
“my_module::b()” calls function b from outside the module. Therefore an
error occurred.

Example 6.6
mod my_module {

pub fn a() {
println!("function a");

b(); // call a private function b
}

fn b() { // function b is private
println! ("function b");
}

}
fn main() {
my_module::a();
}

Output:
function a
function b

Explanation:
“b();” calls a private “function b(){}” in the same module my_module,
therefore no error occurred.

Super

The super keyword is used to access the parent module from the current
module, even access to the parent module's private functions.

use:: super:: parent_function;

Example 6.7
mod sup_module{ // parent module

fn a() -> i32 {
100
}
pub mod sub_module { // child module

use super::a; // access parent function a
pub fn b() {
println!("{}",a()); // calls parent function a
}

}
}
fn main() {
sup_module::sub_module::b(); // call function b
}

Output:
100

Explanation:
“mod sup_module{ }” is a parent module
“pub mod sub_module { }” is a child module
“use super::a;” enable to access parent function a.
“println!("{}",a());” calls parent function a.

“sup_module::sub_module::b();” calls function b.

Summary
(1) Define a module
mod module_name{

pub function(){ }
}
(2) Run the module
module_name::function();
(1) Define an embedded module
mod m1{

mod m2{
pub function(){ }

}
}
(2) Run the embedded module
m1::m2::function();
mod extern_file; // “mod “ loads an external file
use extern_file::extern_fun; // “use” loads an external function
In Rust language, all function is private by default.
If any function or module is private, it can be accessed through its direct
parent module or the module itself.
use:: super:: parent_function; // accese parent function

Hour 7

Vector
A vector is actually a dynamic or mutable array. It is a single data structure
that can store multiple values in memory.

(1) The first method to create a vector

let vecter_name = vec! [val1, val2, val3……];

Example 7.1
fn main() {
let v =vec![100, 200, 300, 400]; // create a vector
println!("First element is :{}",v[0]); // access the first element
println!("Second element is :{}",v[1]);
println!("Third element is :{}",v[2]);
println!("Fourth element is :{}",v[3]);
}
Output:
First element is: 100
Second element is: 200
Third element is: 300
Fourth element is: 400
Explanation:
v[0] accesses the first element of the vector
v[1] accesses the second element of the vector.

(2) The second method to create a vector

let v = vec![val; repeat];

Example 7.2
fn main() {
let v =vec![8; 3]; // repeat three times
println!("First element is :{}",v[0]);
println!("Second element is :{}",v[1]);
println!("Third element is :{}",v[2]);
}
Output:
First element is: 8
Second element is: 8
Third element is: 8
Explanation:
“let v =vec![8; 3];” repeats three times to set the values 8.

(3) The third method to create a vector

let mut v=Vec::new(); // use “new” keyword
v.push('value') // set value to vector

Example 7.3
fn main() {
let mut v=Vec::new(); // create a vector
v.push('R'); // set R as the first element of vector
v.push('U');
v.push('B');

v.push('Y');
for n in v{
print!("{}",n);
}

}
Output:
RUBY
Explanation:
“let mut v=Vec::new();” creates a vector
“v.push('R');” sets R as the first element of vector

Multiple Patterns

You can use | to match multiple patterns.

pattern1 | pattern2

Example 7.4
fn main(){
let num = 3;
match num {
1 => println!("one"),
2 | 3 => println!("two or three"), // multiple patterns
_ => println!("others"),
}
}
Output:
two or three
Explanation:
“2 | 3” gets the value two or three.

Range

The symbol “…” can match the values within the specified range.

number1 … number2

Example 7.5
fn main(){
let x = 3;
match x {
2 ... 6 => println!("from 2 to 6"), // match from 2 to 6
_ => println!("others"),
}
}

Output:
from 2 to 6

Explanation:
“2…6” matches the number from 2 to 6.

Binding a Range

@ can bind a variable to a range

variable @ range

Example 7.6
fn main(){
let x = 5;
match x {
var @ 2 ... 6 => println!("{}",var), // binding
_ => println!("others"),
}
}

Output:
5

Explanation:
“var @ 2…6” binds var to the range 2…6.

Generics

The arguments in a function can accept multiple types of data.
This can be done with generics. Generics are also known as parametric
polymorphism.
The Rust standard library provides Options for generics.

enum Option<T> {
Some(T),
None,
}

'T' is a generic data type. It provides a type of generics.

For example:
let x : Option<i32> = Some(100); // 'T' type is i32.
let x : Option<bool> = Some(true); // 'T' type is bool.
let x : Option<f64> = Some(100.5); // 'T' type is f64.
let x : Option<char> = Some('A'); // 'T' type is char.

Example 7.7
fn main(){

let x: Option<bool> = Some(true); // generic parameters
let y: Option<i32> = Some(10);
let z: Option<f64> = Some(20.88);
let n: Option<i32> = None;
match x {

Some(x) => { println!("x = {}", x) },

None => { println!("x = None") },
}
match y {

Some(y) => { println!("y = {}", y) },
None => { println!("y = None") },

}
match z {

Some(z) => { println!("z = {}", z) },
None => { println!("z = None") },

}
match n {

Some(n) => { println!("n = {}", n) },
None => { println!("n = None") },

}
}

Output:
x = true
y = 10
z = 20.88
n = None

Explanation:
<T> can be one of the <bool>, <i32>, <f64> types.

Summary
(1) The first method to create a vector
let vecter_name = vec! [val1, val2, val3……];
(2) The second method to create a vector
let v = vec![val; repeat];
(3) The third method to create a vector
let mut v=Vec::new(); // use “new” keyword
v.push('value') // set value to vector
You can use | to match multiple patterns.
pattern1 | pattern2
The symbol “…” can match the values within the specified range:
number1 … number2
@ can bind a variable to a range:
variable @ range
The Rust standard library provides Options for generics:
enum Option<T> {
Some(T),
None,
}

Hour 8

Method

A function in struct, enum, trait is called as a method.

impl Struct/Enum { // implement Struct or Enum
fn method_name(&self) -> type { // define a method
self.member // access the member variable
}
}

The &self indicates that the caller's reference is taken as a parameter.
The first parameter of the method is &self.

Example 8.1
struct Circle{ // create a struct type
radius: f32, // struct member
}
impl Circle{ // implement the struct
fn area(&self) -> f32{ // define a method
std::f32::consts::PI * self.radius * self.radius
} // method body
}
fn main(){
let obj = Circle { radius : 2000.00}; // create a struct object
println!("The Circle area is: {}", obj.area()); // call the method
}

Output:
The Circle area is: 12566371

Explanation:
“impl Circle{ }” implements the struct
“fn area(&self) -> f32{ }” defines a method
“std::f32::consts::PI” imports PI from Rust library.
“self.radius” accesses the struct member “radius”.
Method can also be used in Trait, which will be discussed next.

Trait
Trait is an interface in Rust, it defines a train method without the body and is
implemented by an “impl” method which provides various usages .
(1) Define a trait method

trait Trait_Name{ // define a trait
fn trait_method(&self); // define a trait method

}

The first letter of the trait name should be capitalized.
The trait method has no the body, just like an interface in Java.

(2) Implement the trait method

impl Trait_Name for Struct/Enum{ // implement the trait
fn trait_method(&self){ // implement the trait method
self.member // access the member variable

 }

}

Example 8.2
struct Circle{ // create a struct type
radius: f32, // struct member
}
trait Calculate{ // define a trait
fn area(&self) -> f32; // define a trait method
}
impl Calculate for Circle{ // implement the trait
fn area(&self) -> f32{ // implement the trait method
std::f32::consts::PI * self.radius * self.radius

}
}
fn main(){
let obj = Circle { radius : 2000.00}; // create a struct object
println!("The Circle area is: {}", obj.area()); // call the method
}
Output:
The Circle area is: 12566371
Explanation:
“trait Calculate{ }” defines a trait.
“fn area(&self) -> f32;” defines a trait method.
“impl Calculate for Circle{ }” implements the trait.
“fn area(&self) -> f32{ }” implements the trait method.

Example 8.3
pub trait Show { // define a trait

fn show(&self); // define a trait method
}
impl<T> Show for T // implement the trait with generic
where T: ToString{ // specify the String type

fn show (&self){ // implement the trait method
print!("{}",self.to_string());
}

}
fn main(){
String::from("C# in 8 Hours").show(); // call method
}

Output:
C# in 8 Hours
Explanation:
“pub trait Show { }” defines a trait.
“fn show(&self);” defines a trait method.
“impl<T> Show for T” implements the trait with generic
“where T: ToString” specifies the String type
“fn show (&self){ }” implements the trait method

Drop() Method
When the drop () method is automatically invoked, it decrements the
reference count, and if the total number of references is zero, it cleans up the
associated excess resources.
The feature of drop() method: “Last in, First out”.

fn drop(&mut self){
}

“&mut self” is used for mutable parameters in different type.

Example 8.4
struct Game {
number: i32,
}
impl Drop for Game {
fn drop(&mut self) { // define a drop method
println!("The #{ } Winner.", self.number);
}
}
fn main() {
let _baseball = Game { number: 3 };
let _football = Game { number: 2 };
let _basketball = Game { number: 1 };
}

Output:
The #1 Winner.
The #2 Winner.
The #3 Winner.

Explanation:
“fn drop(&mut self) { }” defines a drop() method.
When running the last command, the drop() will be automatically executed,
and the sequence of output is “last in first out”.

Closure
The closure is the anonymous function of Rust Language.
(1) Create a closure

let closure_name = | parameter | { };

(2) Call the closure

closure_name(parameter);

Example 8.5
fn main(){
let my_closure = | num: i32 | { num + 200 }; // create a closure
let num = 100;
println!("{}", my_closure(num)); // call the closure
}
Output:
300
Explanation:
Closure is an anonymous function in Rust Language.
“my_closure” is a closure name.
| num: i32 | is an argument using | | rather than ().
{ num + 200 }; is the closure body.

Example 8.6
fn main() {
let mut capacity = "Hard disk capacity: 5000".to_string();
{

let mut my_closure = | c: char |{capacity.push(c)}; // closure
my_closure('G'); // call the closure
}
println!("{:?}", capacity); // {:?} is used to output a string
}
Output:
Hard disk capacity: 5000G
Explanation:
“let mut my_closure = | c: char |{capacity.push(c)};” creates a closure
“my_closure('G');” calls the closure.
“push()” adds a character.

Summary
A function in struct, enum, trait is called as a method.
impl Struct/Enum { // implement Struct or Enum
fn method_name(&self) -> type { // define a method
self.member // access the member variable
}}
(1) Define a trait method
trait Trait_Name{ // define a trait

fn trait_method(&self); // define a trait method
}
(2) Implement the trait method
impl Trait_Name for Struct/Enum{ // implement the trait

fn trait_method(&self){ // implement the trait method
self.member // access the member variable

}}
The feature of drop() method: “Last in, First out”.
fn drop(&mut self){
}
(1) Create a closure
let closure_name = | parameter | { };
(2) Call the closure
closure_name(parameter);

Appendix 1

Error Checking

“assert!” is used to check errors. Suppose you declare a variable to be true
first, and if it is false after comparison, the program stops executing.

assert! (variable == true/false)

Example A1
fn main() {
let check : bool = true; // suppose it is true
assert!(check == true); // check the error
print!("{}", check);
}

Output:
true

Explanation:
The above is a correct program without any error.

Example A2
fn main() {
let check : bool = false; // suppose it is false
assert!(check == true); // check the error
print!("{}", check);
}

Output:
Error message……

Explanation:
“let check : bool = false;” supposes that the code is false.
“assert!(check == true);” returns false, so the program terminates running
immediately, and output the error message.

Appendix 2

Tests

Please choose the correct answer.

(01)
fill in main() { // define a function

println!("Hello, world!");
}
A. function B. def C. void D. fn

(02)
fn main(){
let var: i32 = 100;
let str: String = "Good".fill in; // define string type
println!("The value of var is: { }", var);
println!("The value of str is: { }", str);
}
A. String B. toString() C. to_String() D. String()

(03)
fn main(){
fill in (x, y) = (100, 200); // variable-binding

println!("The value of x is {}", x);
println!("The value of y is {}", y);
}
A. set B. get C. pet D. let

(04)
if (test-expression) { // if true do this;
} fill in { // if false do this;
}
A. then B. else C. otherwise D. if

(05)
fill in Name { // custom type
member1: type,
member2: type,
......
}
A. struct
B. structure
C. let struct =
D. let structure =

(06)
fill in my_module{ // define a module
pub fn test(){ // pub means public attribute
println!("Hello My Friends!");
}
}
fn main(){
my_module::test(); // run the module
}
A. module B. mode C. mod D. model

(07)
fn main() {
let v = fill in [100, 200, 300, 400]; // create a vector
println!("First element is :{}",v[0]); // access the first element
println!("Second element is :{}",v[1]);
println!("Third element is :{}",v[2]);
println!("Fourth element is :{}",v[3]);
}
A. vector B. vector! C. vec D.vec!

(08)

impl Struct/Enum { // implement Struct or Enum
fn method_name(fill in) -> type { // define a method
self.member // access the member variable
}
}
A. self B.&self C.arg C. &arg

(09)
fn main(){
let var1: f32 = 100.88;
let var2: i32 = var1 fill in i32; // convert data type
println!("{}", var1);
println!("{}", var2);
}
A. as B. convert C.cast D.type

(10)
fn main(){
let x = "hello".to_string();
let y = String:: fill in ("hello"); // assign a string value
let z:&str = "hello";

print!("{} {} {} ", x, y, z);
}
A. set B. get C. let D. from

(11)
fn main(){
let mut num=5;
fill in { // loop statement
println!("C# in {} Hours", num);
if num == 8 {
break; // break statement
}
num=num+1;
}
}
A. while B. do C. loop D. for

(12)
fill in Name { // custom type
member1: type,
member2: type,
......

}
A. enum
B. enumeration
C. let enum =
D. let enumeration =

(13)
mod ex_file; // loads an external file
fill in ex_file::ex_fun; // loads an external function
fn main () {

ex_fun(); // calls the external function
}
A. load B. use C. import D. include

(14)
fn main(){
let num = 3;
match num {
1 => println!("one"),
2 fill in 3 => println!("two or three"), // multiple patterns
_ => println!("others"),
}

}
A. & B. $ C. # D. |

(15)
impl Trait_Name for Struct/Enum{ // implement the trait

fn trait_method(&self){ // implement the trait method
fill in .member // access the member variable

 }
}
A. enum B. trait C. self D. struct

(16)
fn main() {

let num = funt(100); // calls the function
println!("The value of num is: { }", num);

}
fn funt(num: i32) -> fill in { // specify a return type

num + 200 // return a value to the caller
}
A. f64 B. string C. bool D. i32

(17)
fn main(){
let a:[f32; 3] = fill in 0.1, 0.2, 0.3 fill in ; // create array
println!("{} {} {} {}",a[0],a[1],a[2])
}
A. () B. [] C. < > D. { }

(18)
fn main(){
let t = fill in "R in", 8, "Hours", true fill in ; // create tuple
print!("{} {} {} {}", t.0, t.1, t.2, t.3); // access the elements
}
A. () B. [] C. < > D. { }

(19)
fn main() {
let s=String::from("R in 8 Hours");
let n=cal(fill in); // reference
println!("Value of the string is: {}",s);
println!("Length of the string is: {}",n);
}
fn cal(s: fill in) -> usize { // reference

s.len() // get the length of the string
}
A. String s
B. s String
C. &String &s
D. &s &String

(20)
mod sup_module{ // parent module

fn a() -> i32 {
100
}
pub mod sub_module { // child module

use fill in ::a; // access parent function a
pub fn b() {
println!("{}",a()); // calls parent function a
}

}
}
fn main() {
sup_module::sub_module::b(); // call function b
}
A. parent B. sub C. super D.upper

(21)
fn main(){
let x = 5;
match x {
var fill in 2 ... 6 => println!("{}",var), // bind a variable to a range
_ => println!("others"),
}
}
A. & B. $ C. # D. @

(22)
fn main(){
let my_closure = fill in num: i32 fill in { num + 200 };
// create a closure
let num = 100;
println!("{}", my_closure(num)); // call the closure
}
A. & B. $ C. # D. |

(23)
let x : Option< fill in > = Some(100); // 'T' type is ?
let x : Option< fill in l > = Some(true); // 'T' type is ?

let x : Option< fill in > = Some(100.5); // 'T' type is ?
let x : Option< fill in > = Some('A'); // 'T' type is ?

A.boolchar i32 f64
B. i32 boolf64 char
C. f64 i32 char bool
D.char f64 booli32

(24)
fn main() {
let var : bool = false; // suppose it is false
fill in (var == true); // check the error
print!("{}", var);
}
A. check! B. check C. assert! D. assert

Answers

01. D 13. B

02. C 14. D

03. D 15. C

04. B 16. D

05. A 17. B

06. C 18. A

07. D 19. D

08. B 20. C

09. A 21. D

10. D 22. D

11. C 23. B

12. A 24. C

Note:
This book is only for beginners, it is not suitable for experienced
programmers.

Source Code Download Link:
https://forms.aweber.com/form/33/98967233.htm

https://forms.aweber.com/form/33/98967233.htm

Source Code Download
Ray Yao’s eBooks & Books on Amazon
Advanced C++ Programming by Ray Yao
Advanced Java Programming by Ray Yao
AngularJs Programming by Ray Yao
C# Programming by Ray Yao
C# Interview & Certification Exam
C++ Programming by Ray Yao
C++ Interview & Certification Exam
Django Programming by Ray Yao
Go Programming by Ray Yao
Html Css Programming by Ray Yao
Html Css Interview & Certification Exam
Java Programming by Ray Yao
Java Interview & Certification Exam
JavaScript Programming by Ray Yao
JavaScript 50 Useful Programs
JavaScript Interview & Certification Exam
JQuery Programming by Ray Yao
JQuery Interview & Certification Exam
Kotlin Programming by Ray Yao
Linux Command Line
Linux Interview & Certification Exam
MySql Programming by Ray Yao
Node.Js Programming by Ray Yao
Php Interview & Certification Exam
Php MySql Programming by Ray Yao
PowerShell Programming by Ray Yao

Python Programming by Ray Yao
Python Interview & Certification Exam
R Programming by Ray Yao
Ruby Programming by Ray Yao
Rust Programming by Ray Yao
Scala Programming by Ray Yao
Shell Scripting Programming by Ray Yao
Visual Basic Programming by Ray Yao
Visual Basic Interview & Certification Exam
Xml Json Programming by Ray Yao

Source Code Download Link:
https://forms.aweber.com/form/33/98967233.htm

https://forms.aweber.com/form/33/98967233.htm

	Hour 1
	What is Rust Language?
	The Feature of Rust
	Install Rust
	The First Rust Program
	Comment
	Summary

	Hour 2
	Data Type
	Variables
	Output Format
	Constants
	Date Type Conversion
	Reserved Words
	Function
	Return Type
	Summary

	Hour 3
	Variable-Binding
	String Assignment
	Arithmetical Operators
	Logical Operators
	Comparison Operators
	Array
	Slice
	Summary

	Hour 4
	If Statement
	If-else Statement
	Let-If Statement
	Loop – Break Statement
	For Statement
	While Statement
	Tuples
	Match
	Summary

	Hour 5
	Struct
	Enum
	Ownership
	Reference
	Summary

	Hour 6
	Module
	Embedded Module
	External File
	Private Function
	Super
	Summary

	Hour 7
	Vector
	Multiple Patterns
	Range
	Binding a Range
	Generics
	Summary

	Hour 8
	Method
	Trait
	Drop() Method
	Closure
	Summary

	Appendix 1
	Error Checking

	Appendix 2
	Tests
	Answers

	Source Code Download

