

Swift in Depth

Tjeerd in 't Veen

Copyright

For online information and ordering of this and other Manning books, please
visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Development editor: Helen Stergius

Technical development editor: Alain Couniot

Review editor: Aleks Dragosavljević

Project editor: Deirdre Hiam

Copy editor: Darren Meiss

Proofreaders: Carol Shields and Melody Dolab

Technical proofreader: Edwin Chun Wing Kwok

Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617295188

Printed in the United States of America

2 3 4 5 6 7 8 9 10 – SP – 23 22 21 20 19

Preface

I started as an iOS developer in 2011. I loved to make iPhone apps and still do to this day.
Besides doing mobile development work, I also was involved in some web development while
learning Ruby. I loved the short powerful language, and wished I could use a compile-time
language like Objective-C, but with the elegance and expressive nature of Ruby.

Then Apple introduced Swift, and it seems like they listened. Swift was a fresh take on
programming for me, combining the elegance of a dynamic language with the speed and safety
of a static language. I never liked the Objective-C syntax. I used to say things like “Yeah,
Objective-C is verbose, but it gets the job done.” But with Swift, however, I find reading and
writing code very pleasing again, like I did with Ruby. I could finally use a static language and
keep producing work while loving the language I’m working with. It was a good combination for
me.

However, it wasn’t love at first sight. Before I truly enjoyed Swift, I struggled a lot with it. Swift
looks very friendly, but boy, was it tough sometimes. Everything needs to be safe at compile-
time, and I could not mix and match types in arrays anymore. Meanwhile, Swift was only an
early version and kept changing; it was hard to keep up. “What are generators? Oh, they are
called iterators now? And why use guard? Can’t we use an if statement instead? Pfft, optionals
are overrated; we can use simple nil checks?”, and so on. I wouldn’t even consider working with
generics.

However, I persevered and started to embrace these Swift concepts. I realized they were older
concepts from other programming languages but wearing a fresh new coat that truly helped me
become a better programmer and deliver better work. Over time, I started to love the Swift
language and its pretty syntax.

Since Swift 2, I had the luxury of working in a big company where we produced Swift code on a
large scale, starting with about 20 developers and growing to over 40. After working with Swift
with so many developers, and after being involved in hundreds of pull requests, I noticed that
other developers had the same struggles as me. Or my fellow developers delivered code just fine,
but didn’t realize that a more elegant or robust alternative was hidden, waiting to be discovered.
Even though our code was correct, sometimes it could be a bit cleaner, or more succinct, or just
a bit safer. I also noticed that we all stayed away from powerful techniques—such as generics
or flatMap—because they were hard to grasp. Or we used to love the idea of generics, but weren’t
sure why or when to apply it ourselves.

After these realizations I started to write. First, these scribbles would be notes for myself on how
to cleanly unwrap optionals, how lazy properties work, how to deal with generics, and so on.
Then, these notes matured, and before I knew it I had enough content for some chapters. It was
time to turn these notes into something more elaborate: a programming book that could help
others shorten their Swift journey.

With a few rough chapters in hand, I was wondering if I should throw an ebook online.
However, with an “impressive” 200 people following me on Twitter and lacking a popular blog

website, I figured I wouldn’t find the audience I wanted. Moreover, I thought that I had to learn
a lot of the unknowns about writing a book.

I decided to approach a publisher to help me turn these rough chapters into a great book. I
approached Manning, and we’ve been working on this book together ever since. I believe these
“small notes” have grown into something special. With the help of Manning and Swift friends, I
have spent most of my free time for over a year writing and polishing and trying to make Swift’s
tough concepts more simple to understand.

By reading this book, I hope that it helps you on your path to becoming a Swift master. Also, I
hope that you can tell I thoroughly enjoy sharing these concepts with you. I hope this book
makes your Swift journey easy and fun.

TJEERD IN ’T VEEN

Acknowledgements

Thank you, Manning, for helping me publish my first book.

I want to give special thanks to Mike Stephens for taking the chance by getting me on board.
Thank you, Helen Stergius, for working with me during the whole process. Thank you, Alain
Couniot, for the great technical reviews of my chapters; it’s not an easy job to keep pointing out
errors and possible improvements; still, I greatly appreciate it. And I also want to thank
Alexander Pawlicki for his creative cartoon illustrations used throughout the book.

Also thank you to the rest of the Manning team: Aleksandar Dragosavljević, Candace
Gillhoolley, Ana Romac, Cheryl Weisman, Deirdre Hiam, Dottie Marsico, Nichole Beard, Mary
Piergies, Carol Shields, Darren Meiss, Melody Dolab, and Marija Tudor.

I want to give special thanks to friends, coworkers, and others who have been my guinea pigs
and reviewed (parts of) the book: Bart den Hollander, Dimitar Gyurov, Dario de Rosa, Rein
Spijkerman, Janina Kutyn, Sidney de Koning, Torben Schulz, and Edwin Chun Wing Kwok.

Also, I would like to thank the other reviewers: Alessandro Campeis, Ali Naqvi, Axel Roest,
David Jacobs, Gustavo Gomes, Helmut Reiterer, Jason Pike, John Montgomery, Kent R.
Spillner, Lars Petersen, Marcelo Pires, Marco Giuseppe Salafia, Martin Philp, Monica
Guimaraes, Patrick Regan, Tyler Slater, and Weyert de Boer.

I knew writing a book was tough, but it was much harder than I imagined it to be. My fiancée
Jenika and I just had a baby daughter, and it was quite the struggle to start a new family, have
sleepless nights, maintain a full-time job, and write a programming book in a second language. I
couldn’t have done it if I didn’t love writing this book while having the support of my fiancée.
Thank you, Jenika, for being so patient with me.

About this book

Swift is a young language. At the time of writing, Swift has reached the fourth version and yet is
not ABI-stable, meaning that there will be breaking changes when Swift 5 comes out. So why is
this book in any position to tell you how to write your code?

You’d be right to be skeptical, but please bear with me. Even though Swift is relatively new, I
think it’s fair to say that some solutions work better than others, which is even more essential to
understand if you’re using Swift for real production apps.

Swift borrows a lot of important concepts from other programming languages, such as Haskell,
Ruby, Rust, Python, C#, and others. Therefore, you’d be wise to keep an eye out for these
concepts.

By mixing programming paradigms with real-world experience, this book shares some very fun
and useful best practices you can instantly apply to your work.

Having programmed for over a decade in multiple languages and teams, I would like to share
tips, tricks, and guidelines that helped my Swift career tremendously, and I want the same for
you.

WHY THIS BOOK?

Honestly, a lot of software in this world runs on “ugly” code, and that is completely normal. If
your product does what it needs to do, that is—like it or not—good enough for businesses.

As a developer, you have to make sure your product works and works well. But your users won’t
look under the hood and point out ugly if statements. Perfectionism is harmful to software
development and the cause to large numbers of unfinished projects.

Still, there’s a large gap between “It does what it needs to do” and a project where some excellent
decisions were made that pay off in the long run.

Having worked on numerous projects, one thing I highly value is writing code that your
coworkers and your future self will understand clearly—because elegant code means less chance
of bugs, higher maintainability, better understanding for developers who inherit code, increased
programmer happiness, and many other benefits.

Another aspect I value is the robustness of code, meaning how refactor-proof some pieces are.
Will it break if you sneeze on it? Or can you change code without a hassle?

In this book, I share my tips, tricks, and guidelines that have worked well for me and companies
I’ve worked for. On top of that, it fills in significant knowledge gaps that may arise while
working with Swift.

Although this is a Swift book, a lot of the principles shared here are not Swift-centric and carry
over to other programming languages as well; this is because Swift borrows a lot of ideas and
paradigms from other languages. After you finish this book, you may find it easy to apply
concepts in other languages. For instance, you’ll learn a lot about optionals, or how to use
the reduce method on arrays. Later, you may decide to learn Kotlin, where you may apply
optionals and reduce—called fold—straight away. You may also find Rust—and its similar
generics implementation—easier to learn.

Because of Swift’s multi-paradigm nature, this book switches without preference between
object-oriented programming, functional programming, and protocol-oriented programming
paradigms—although admittedly, I do favor other techniques over subclassing. Switching
between these paradigms offers you many tools and solutions to a problem, with insights as
to why a certain solution works well or not. Whether you’re stuck in a rut or open to many new
programming insights, this book challenges you to solve problems in different ways.

IS THIS BOOK FOR YOU?

This book does assume that you have made one or more applications in Swift. Do you work in a
team? Even better—this book shows you how to write good, clear code that gets appreciated in
teams, and helps you improve pull requests of others. Your code will be more robust and cause
less maintenance for you and your team.

This book fills in knowledge gaps for both beginner and seasoned Swift developers. Perhaps you
mastered protocols but still struggle with flatMapping on types or asynchronous error handling.
Or maybe you create beautiful apps but stay away from generics because they can be hard to
interpret. Or perhaps you sort-of know when to use a struct versus a class but aren’t aware that
enums are sometimes a better alternative. Either way, this book helps you with these topics. By
the end, generics should come as naturally as for loops. You’ll be confident calling flatMap on
optionals, know how to work with associated types, and you’ll gladly use reduce in your daily
routine when working with iterators.

If you’re aiming to get a programming interview for a new job in the future, you’re in for a treat.
You’re going to be able to answer a lot of relevant questions in regard to Swift development
trade-offs and decisions. This book can even help you write elegant code in your code
assignments.

If you just want an app in the app store, just keep doing what you’re doing; no need to read this
book! But if you want to write code that is more robust, easier to understand, and increases your
chances of getting a job, getting better at your job, or giving qualitative comments on pull
requests, you’re at the right place.

WHAT THIS BOOK IS NOT

This book is focused on Swift. It mostly uses framework-free examples because it isn’t about
teaching Cocoa, iOS, Kitura, or other platforms and frameworks.

What does happen in this book is I often make use of Apple’s Foundation, which is hard to avoid
if you want real-world examples. If you’re on Linux, you can use swift.org’s Foundation
alternative to get similar results.

A BIG EMPHASIS ON PRACTICAL SCENARIOS

This book is very practical, showcasing tips and tricks you can apply straight away in your daily
programming.

Don’t worry: it’s not a theory-dense book. You’ll learn a lot of theory, but only via the use of real-
world problems that any Swift developer runs into sooner or later. It doesn’t, however, reach an
academic level where it discusses Swift’s LLVM representation or machine code.

Also, I made sure to avoid a personal pet peeve of mine: I do not subclass “Animal” with “Dog”
or add a “Flyable” protocol to “Bird.” I also don’t add “Foo” to “Bar.” You’ll deal with real-world
scenarios, such as talking to APIs, loading local data, and refactoring and creating functions,
and you’ll see useful bits and pieces of code you can implement in your projects.

ROADMAP

The following sections provide an overview of the book, divided into chapters. The book is quite
modular, and you can start with any chapter that interests you.

Some chapters I consider crucial chapters. Chapter 4, “Making optionals second nature,” is key,
because optionals are so prevalent in Swift and return over and over again in chapters.

To understand the abstract side of Swift, I highly recommend reading chapter 7,
“Generics,” chapter 8, “Putting the pro in protocol-oriented programming,” and chapter 12,
“Protocol extensions.” Together, these chapters lay a solid foundation for key Swift skills. Be
sure not to skip these!

As a bonus, if you’re interested in learning functional programming techniques, direct your
attention to chapter 2, “Modeling data with enums,” chapter 10, “Understanding map, flatMap,
and compactMap,” and chapter 11, “Asynchronous error handling with Result.”

Chapter 1: Introducing Swift in depth

This warmup chapter shows the current state of Swift, what it’s good at, what it’s not so good at,
and what you’ll be doing in this book. It’s not very technical, but it sets expectations and
prepares you for what you’ll learn.

Chapter 2: Modeling data with enums

This chapter is excellent if you want to flex your brain and think differently about modeling data
and see how far enums can go to help you.

You’ll see how to model data with structs and enums, and how to reason about it so that you can
turn structs into enums and back again.

You’ll be challenged to step away from the usual class, subclass, and struct approach and see
how to model data with enums instead, and why you would want to.

You’ll also see other interesting uses for enums and how to use enums to write safer code.

By the end of this chapter, you may catch yourself writing enums a lot more.

Chapter 3: Writing cleaner properties

Swift has a rich property system with many options to pick from. You’ll learn to pick the right
type of properties for the right types of situations. You’ll also create clean computed properties
and stored properties with behavior.

Then you’ll discover when to use lazy properties, which can cause subtle bugs if they’re not
carefully handled.

Chapter 4: Making optionals second nature

This chapter leaves no stone unturned regarding optionals.

Optionals are so pervasive that this chapter takes a very thorough look at them. Both for
beginners and Swift masters, this chapter is riddled with best practices and tips and tricks that
will boost your day-to-day Swift code.

It covers optionals in many scenarios, such as when handling optional Booleans, optional
strings, optional enums, implicitly unwrapped optionals, and force unwrapping.

Chapter 5: Demystifying initializers

Life in the programming world starts with initializers. Avoiding them in Swift is impossible, and
of course, you work with them already. Still, Swift has a lot of weird rules and gotchas regarding
structs and classes and how their properties are initialized. This chapter uncovers these strange
rules to help you avoid boxing matches with the compiler.

It isn’t just theory either; you’ll see how you can write less initialization code to keep your
codebase clean, and you’re going to gain an understanding of subclassing and how the initializer
rules apply there.

Chapter 6: Effortless error handling

This book has two error handling chapters covering two different idioms: one for synchronous
error handling, and one for asynchronous error handling.

This chapter deals with synchronous error handling. You’ll discover best practices related to
throwing errors, handling errors, and maintaining a good state in your programs. But it also
touches on propagating, adding technical information, adding user-facing information, and
bridging to NSError.

You’ll also find out how to make your APIs a bit more pleasant by making them throw fewer
errors while respecting the integrity of an application.

Chapter 7: Generics

Generics are a rite of passage for Swift developers. They can be hard to understand or work with
at first. However, once you’re comfortable with them, you’ll be tempted to use them often. This
chapter makes sure you know when and how to apply them by creating generics functions and
types.

You’ll see how you can make code polymorphic with generics so that you’ll be able to write
highly reusable components and shrink down your codebase at the same time.

Generics become even more interesting when you constrain them with protocols for specialized
functionality. You’ll discover core protocols, such as Equatable, Comparable, and Hashable, and
see how to mix and match generics with them.

Generics won’t be intimidating after you have read this chapter, I promise.

Chapter 8: Putting the pro in protocol-oriented programming

Protocols—similar to typeclasses in Haskell or traits in Rust—are the holy grail of Swift. Because
Swift can be considered a protocol-oriented language, this chapter provides a look at applying
protocols in useful ways.

It covers generics and shows how they fare against using protocols as types. You’ll be able to
clearly choose (or switch) between either. Protocols with associated types can be considered
advanced protocols. This chapter makes sure that you understand why and how they work so
that you don’t have to refrain from using them. It models a piece of a program with protocols,
and keeps running into shortcomings, which it ultimately solves with associated types.

Then you’ll see how to pass protocols with associated types around in functions and types, so
that you can create extremely flexible, yet abstract code.

This chapter puts a lot of focus on how to use protocols at compile time (static dispatch) and
how to use them at runtime (dynamic dispatch) and their trade-offs. This chapter aims to
provide a strong foundation for protocols so that you can tackle more difficult patterns in later
chapters.

Chapter 9: Iterators, sequences, and collections

It’s not uncommon to create a data structure in Swift that isn’t only using the core types, such as
sets arrays and dictionaries. Perhaps you’ll need to create a special caching storage, or maybe a
pagination system when downloading a Twitter feed.

Data structures are often powered up by the Collection protocol and the Sequence protocol.
You’ll see how Sequence in turn is using the IteratorProtocol. With these combined, you’ll be
able to extend and implement core functionalities in your data types.

First, you’ll take a look at how iteration works with
the IteratorProtocol and Sequenceprotocols. You’ll discover some useful iterator patterns, such
as reduce(), reduce(into:), and zip, as well as how lazy sequences work.

You’ll create a data structure called a bag, also known as a multiset, using the Sequenceprotocol.

Then you’ll discover the Collection protocol and the landscape of all the collection protocols
Swift offers.

At the end, you’ll create another data structure and see how to make it conform to
the Collection protocol. This part is highly practical, and you can apply the same techniques to
your code straight away.

Chapter 10: Understanding map, flatMap, and compactMap

This chapter highlights key concepts commonly found not only in Swift but also other
frameworks and programming languages.

Sooner or later you’ll run into map, flatMap, and compactMap on arrays, optionals, error types,
and perhaps even functional reactive programming such as RxSwift.

You’ll get a proper look at how to clean up code by applying map and flatMap on optionals. But
you’ll also see how to map over dictionaries, arrays, and other collection types. You’ll also learn
the benefits of flatMapping over strings.

Lastly, you’ll get to review compactMap and how it elegantly handles optionals in collections.

Understanding map, flatMap, and compactMap on a deeper level is a good base for understanding
how to read and write more concise yet elegant code, and a good base for working
with Resultin chapter 11.

Chapter 11: Asynchronous error handling with Result

Swift’s error handling falls a bit short on asynchronous error handling. You’re going to take a
closer look and see how to get compile-time safety for asynchronous programming by making

use of a so-called Result type, which is unofficially offered by Apple via the Swift Package
Manager.

Perhaps you’re using some version of Result already, found in multiple frameworks. But even if
you’re acquainted with Result, I’d wager that you’ll see new and useful techniques in this
chapter.

You’ll start by learning the downsides of traditional Cocoa-style error handling and
why Result can help with that. Then you’ll see how to transform a traditional call to one that
uses Result.

Also, you’re going to take a look at transforming throwing functions to Result and back again.
You’ll be applying the special AnyError type to create more flexibility, avoiding NSError, and
making sure that you get a lot of compile-time safety.

As a cool trick, you’ll learn about the Never type, which is a unique way to tell the Swift compiler
that a Result can never succeed or fail.

Lastly, you’ll use what you learned from map and flatMap on optionals to understand how
to map over values and errors, and even how to flatMap with Result. You’ll end up with a so-
called monadic style of error handling, which gives you the power to very cleanly and elegantly
propagate an error up in the call stack with very little code while keeping a lot of safety.

Chapter 12: Protocol extensions

This chapter is all about modeling data in a decoupled way, offering default implementations via
protocols, making use of clever overrides, and seeing how to extend types in interesting ways.

As a start, you’ll learn about modeling data with protocols versus subclasses.

Then, you’re going to model data two ways: one approach entails protocol inheritance, and the
other uses protocol composition. Both have their pros and cons, which you’ll discover when you
go over the trade-offs.

Also, you’ll see how protocol extensions work when overridden by protocol inheritance and
concrete types. It’s a little theoretical, but it’s useful to understand protocols on a deeper level.

You’ll also see how you can extend in two directions. One direction is extending a class to adhere
to a protocol, and the other is extending a protocol and constraining it to a class. It’s a subtle but
important difference.

At the end of the chapter you’re going to extend Collection, and then you’ll dive deeper and
extend Sequence to create highly reusable extensions. You’ll get acquainted
with ContiguousArray and functions that have the rethrows keyword, while you create useful
methods you can directly apply in your projects.

Chapter 13: Swift patterns

This may be the hardest chapter in the book, but it’s a great mountain to climb.

This chapter’s goal is to handle common obstacles that you may run into. The patterns described
here are not a rehash of SOLID principles—plenty of books cover that! Instead, it focuses on
modern approaches for a modern language.

You’ll discover how to mock an API with protocols and associated types—something that comes
in handy frequently—so that you can create an offline version of an API and a testing version of
an API.

Then, you’ll see how conditional conformance works in accordance with generic types and
protocols with associated types. Next, you’ll create a generic type, and power it up by using the
powerful technique of conditional conformance, which is another way to deliver highly flexible
code.

After that, you’ll deal with an issue you may run into when trying to use a protocol as a concrete
type. You’ll use two techniques to combat it: one involves enums, and the other involves an
advanced technique called type erasure.

Lastly, you’re also going to examine whether protocols are a good choice. Contrary to popular
belief, protocols are not always the answer. You’ll look at an alternative way to create a flexible
type, involving a struct and higher-order functions.

Chapter 14: Delivering quality Swift code

This is the least code-centric chapter in the book, but it may be one of the most important ones.

It’s about writing clean, easy-to-understand code that creates fewer headaches for everybody on
your team (if you’re on one). It challenges you about establishing naming conventions, adding
documentation and comments, and cutting up large classes into small generic components.
You’ll also set up SwiftLint, a tool that adds style consistency and helps avoid bugs in your
projects. Also you’ll get a peek at architecture, and how to transform large classes with too many
responsibilities into smaller generic types.

This chapter is a good check to see if your code is up to standards and styles, which will help
when creating pull requests or finishing code assignments for a new job.

Chapter 15: Where to Swift from here

At this point, your Swift skills will be seriously powered-up. I share some quick pointers on
where to look next so you can continue your Swift journey.

ABOUT THE CODE

This book contains many examples of source code, both in numbered listings and in line with
normal text. In both cases, source code is formatted in a fixed-width font like this to
separate it from ordinary text. Sometimes code is also in bold to highlight code that has
changed from previous steps in the chapter, such as when a new feature adds to an existing line
of code.

In many cases, the original source code has been reformatted; we’ve added line breaks and
reworked indentation to accommodate the available page space in the book. In rare cases, even

this was not enough, and listings include line-continuation markers (➥). Additionally,
comments in the source code have often been removed from the listings when the code is
described in the text. Code annotations accompany many of the listings, highlighting important
concepts.

The source code for all listings in this book is available for download from the Manning website
at https://www.manning.com/books/swift-in-depth and from GitHub
at https://github.com/tjeerdintveen/manning-swift-in-depth. With the exception of chapters 14 and 15,
every chapter has source code included.

BOOK FORUM

Purchase of Swift in Depth includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions, and
receive help from the authors and from other users. To access the forum, go
to https://forums.manning.com/forums/swift-in-depth. You can also learn more about Manning’s
forums and the rules of conduct at https://forums.manning.com/forums/about. Manning’s
commitment to our readers is to provide a venue where a meaningful dialogue between
individual readers and between readers and the authors can take place. It is not a commitment
to any specific amount of participation on the part of the authors, whose contribution to the
forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
questions lest their interest stray! The forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

ABOUT THE AUTHOR

Tjeerd in ’t Veen is an avid Swift fan and a freelance iOS developer, having experience working
for agencies, co-founding a small startup, and at time of writing, helping ING scale up their
mobile development. Starting out as a Flash developer in 2001, his career progressed to iOS
development with Objective-C, web development with Ruby, and some tinkering in other
programming languages.

When he’s not developing in Swift, he’s busy spending time with his two daughters, making
cringy dad jokes, and dabbling on an acoustic guitar.

You can find him on Twitter via @tjeerdintveen.

ABOUT THE COVER ILLUSTRATION

The figure on the cover of Swift in Depth is captioned “Man from Omišalj, island Krk, Croatia.”
The illustration is taken from the reproduction, published in 2006, of a nineteenth-century
collection of costumes and ethnographic descriptions entitled Dalmatia by Professor Frane
Carrara (1812–1854), an archaeologist and historian, and the first director of the Museum of
Antiquity in Split, Croatia. The illustrations were obtained from a helpful librarian at the
Ethnographic Museum (formerly the Museum of Antiquity), itself situated in the Roman core of
the medieval center of Split: the ruins of Emperor Diocletian’s retirement palace from around
AD 304. The book includes finely colored illustrations of figures from different regions of
Dalmatia, accompanied by descriptions of the costumes and of everyday life.

Dress codes have changed since the nineteenth century, and the diversity by region, so rich at
the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let
alone different towns or regions. Perhaps we have traded cultural diversity for a more varied
personal life—certainly for a more varied and fast-paced technological life.

At a time when it’s hard to tell one computer book from another, Manning celebrates the
inventiveness and initiative of the computer business with book covers based on the rich
diversity of regional life of two centuries ago, brought back to life by illustrations from
collections such as this one.

Chapter 1. Introducing Swift in depth

In this chapter

• A brief overview of Swift’s popularity and supported platforms
• The benefits of Swift
• A closer look at Swift’s subtle downsides
• What we will learn in this book

It is no secret that Swift is supported on many platforms, such as Apple’s iOS, macOS, watchOS,
and tvOS. Swift is open source and also runs on Linux, and it’s gaining popularity on the server
side with web frameworks such as Vapor, Perfect, Zewo, and IBM’s Kitura.

On top of that, Swift is slowly not only encompassing application programming (software for
users) but also starting to enter systems programming (software for systems), such as SwiftNIO
or command-line tools. Swift is maturing into a multi-platform language. By learning Swift,
many doors open to you.

Swift was the most popular language on Stack overflow in 2015 and remains in the top five
most-loved languages in 2017. In 2018, Swift bumped to number 6
(https://insights.stackoverflow.com/survey/2018).

Swift is clearly here to stay, and whether you love to create apps, web services, or other
programs, I aim for you to get as much value as possible out of this book for both yourself and
any team you’re on.

What I love about Swift is that it’s easy to learn, yet hard to master. There’s always more to
learn! One of the reasons is that Swift embraces many programming paradigms, allowing you to
pick a suitable solution to a programming problem, which you’re going to explore in this book.

1.1. THE SWEET SPOT OF SWIFT

One thing I love about a dynamic language—such as Ruby—is its expressive nature. Your code
tells you what you want to achieve without getting too much in the way of memory management
and low-level technology. Writing in Ruby one day, and Objective-C the other, made me believe
that I either had to pick between a compiled language that performed well or an expressive,
dynamic language at the cost of lower performance.

Then Swift came out and broke this fallacy. Swift finds the right balance where it shares many
benefits of dynamic languages—such as Ruby or Python—by offering a friendly syntax and
strong polymorphism. Still, Swift avoids some of the downsides of dynamic languages, most
notably the performance, because Swift compiles to native machine code via the LLVM
compiler. Because Swift is compiled via LLVM, you get not only high performance, but also tons
of safety checks, optimizations, and the guarantee that your code is okay before even running it.
At the same time, Swift reads like an expressive dynamic language, making it pleasant to work
with and effortless to express your intent.

Swift can’t stop you from writing bugs or poor code, but it does help reduce program errors at
compile time using various techniques, including, but not limited to, static typing and strong
support for algebraic data types (enums, structs, and tuples). Swift also prevents null errors
thanks to optionals.

A downside of some static languages is that you always need to define the types. Swift makes
this easier via type inference and can deduce concrete types when it makes sense. This way, you
don’t need to explicitly spell out every single variable, constant, and generic.

Swift is a mixtape of different programming paradigms, because whether you take an object-
oriented approach, functional programming approach, or are used to working with abstract
code, Swift offers it all. As the major selling point, Swift has a robust system when it comes
down to polymorphism, in the shape of generics and protocol-oriented programming, which
gets pushed hard as a marketing tool, both by Apple and developers (see figure 1.1).

Figure 1.1. The sweet spot of Swift

1.2. BELOW THE SURFACE

Even though Swift reels you in with its friendly syntax and promises to build amazing apps, it’s
merely the tip of the iceberg. An enticing entry to learning Swift is to start with iOS
development, because not only will you learn about Swift, you will also learn how to create
beautiful apps that are composed of crucial components from Apple frameworks.

But as soon as you need to deliver components yourself and start building more elaborate
systems and frameworks, you will learn that Swift works hard to hide many complexities—and
does so successfully. When you need to learn these complexities, and you will, Swift’s difficulty
curve goes up exponentially. Even the most experienced developers are still learning new Swift
tricks and tidbits every day!

Once Swift has you hooked, you’ll likely hit speed bumps in the shape of generics and associated
types, and something as “simple” as handling strings may cause more trouble than you might
expect (see figure 1.2).

Figure 1.2. The tip of Swift’s iceberg

This book shines in helping you handle the most common complexities. You will cover and
tackle any issues and shortcomings with Swift, and you’ll be able to wield the powers that these
complexities bring while having fun doing so.

1.3. SWIFT’S DOWNSIDES

Swift is my favorite programming language, but let’s not look at it through rose-tinted glasses.
Once you acknowledge both Swift’s strong and weak points, you can adequately decide when
and how you’d like to use it.

1.3.1. ABI stability

Swift is still moving fast and is not ABI-stable, which means that code written in Swift 4 will not
be compatible with Swift 5, and vice versa. Imagine writing a framework for your application. As
soon as Swift 5 comes out, an application written in Swift 5 can’t use your framework until
you’ve updated your framework to Swift 5. Luckily, Xcode offers plenty of help to migrate, so I
expect that this migration won’t be as painful.

1.3.2. Strictness

Swift is a strict and rigid language, which is a common criticism of static languages but even
more so when working with Swift. Before getting comfortable with Swift, you may feel like

you’re typing with handcuffs on. In practice, you have to resolve many types at compile-time,
such as using optionals, mixing values in collections, or handling enums.

I would argue that Swift’s strict nature is one of its strong selling points. As soon as you try to
compile, you learn of code that isn’t working as opposed to having a customer run into a runtime
error. Once you’ve made the initial investment to get comfortable with Swift, it will come
naturally, and its restrictiveness will stop you less. This book helps you get over the hump, so
that Swift becomes second nature.

1.3.3. Protocols are tricky

Protocols are the big selling point of Swift. But once you start working with protocols, you will
hit sharp edges and cut yourself from time to time. Things that “should just work” somehow
don’t. Protocols are great in their current state and already good enough for creating quality
software, but sometimes you hit a wall, and you’ll have to use workarounds—of which this book
shares plenty.

A common source of frustration: if you’d like to pass Equatable types to a function to see if they
are equal, you get stopped. For instance, you might naively try checking if one value is equal to
everything inside an array, as shown in the next listing. You will learn that this won’t fly in Swift.

Listing 1.1. Trying to equate to types

areAllEqual(value: 2, values: [3,3,3,3])

func areAllEqual(value: Equatable, values: [Equatable]) -> Bool {

 guard !values.isEmpty else { return false }

 for element in values {

 if element != value {

 return false

 }

 }

 return true

}

Swift returns a cryptic error with a vague suggestion on what to do:

error: protocol 'Equatable' can only be used as a generic constraint

because it has Self or associated type requirements

You’ll see why this happens and how to avoid these issues in chapters 7 and 8.

Swift’s protocol extensions are another of its major selling points and are one of the most
powerful features it has to offer. Protocols can act like interfaces; protocol extensions offer
default implementations to types, helping you avoid rigid subclassing trees.

Protocols, however, are trickier than they may seem and may surprise even the seasoned
developer. For instance, let’s say you have a protocol called FlavorType representing a food or
drink item that you can improve with flavor, such as coffee. If you extend this protocol with a
default implementation that is not found inside the protocol declaration, you may get surprising
results! Notice in the next listing how you have two Coffee types, yet they both yield different
results when calling addFlavor on them. It’s a subtle but significant detail.

Listing 1.2. Protocols can surprise us

protocol FlavorType{

// func addFlavor() // You get different results if this method doesn't exist.

}

extension FlavorType {

 func addFlavor() { // Create a default implementation.

 print("Adding salt!")

 }

}

struct Coffee: FlavorType {

 func addFlavor() { // Coffee supplies its own implementation.

 print("Adding cocoa powder")

 }

}

let tastyCoffee: Coffee = Coffee() // tastyCoffee is of type 'Coffee'

tastyCoffee.addFlavor() // Adding cocoa powder

let grossCoffee: FlavorType = tastyCoffee // grossCoffee is of type FlavorType

grossCoffee.addFlavor() // Adding salt!

Even though you’re dealing with the same coffee type, first you add cocoa powder, and then you
accidentally add salt, which doesn’t help anyone get up in the morning. As powerful as protocols
are, they can introduce subtle bugs sometimes.

1.3.4. Concurrency

Our computers and devices are concurrent machines, utilizing multiple CPUs simultaneously.
When working in Swift you are already able to express concurrent code via Apple’s Grand
Central Dispatch (GCD). But concurrency doesn’t exist in Swift as a language feature.

Because you can already use GCD, it’s not that big of a problem to wait a bit longer on a fitting
concurrency model. Still, GCD in combination with Swift is not spotless.

First, working with GCD can create a so-called pyramid of doom—also known as deeply nested
code—as showcased by a bit of unfinished code in the following listing.

Listing 1.3. A pyramid of doom

func loadMessages(completion: (result: [Message], error: Error?) -> Void) {

 loadResource("/user") { user, error in

 guard let data = data else {

 completion(nil, error)

 return

 }

 loadResource("/messages/", user.id) { messages, error in

 guard let messages = messages else {

 completion(nil, error)

 return

 }

 storeMessages(messages) { didSucceed, error in

 guard let error != nil else

{

 completion(nil, error)

 return

 }

 DispatchQueue.main.async { // Move code back to main queue

 completion(messages)

 }

 }

 }

 }

}

Second, you don’t know on which queue asynchronous code gets called. If you were to
call loadMessages, you could be in trouble if a small change moves the completion block to a
background queue. You may be extra cautious and complete the callback on the main queue at
the call site, but either way, there is a compromise.

Third, the error handling is suboptimal and doesn’t fit the Swift model. Both the returned data
and error can theoretically be filled or nil. The code doesn’t express that it can only be one or the
other. We cover this in chapter 11.

You can expect an async/await model in Swift later, perhaps version 7 or 8, which means a wait
until these issues get solved. Luckily, GCD is more than enough for most of your needs, and you
may find yourself turning to RxSwift as a reactive programming alternative.

1.3.5. Venturing away from Apple’s platforms

Swift is breaking into new territory for the web and as a systems language, most notably with its
support of IBM in the shape of the web server Kitura and in bringing Swift to the cloud. Moving
away from Apple’s platforms offers exciting opportunities, but be aware that you may find a lack
of packages to help you out. For the xOS frameworks, such as iOS, watchOS, tvOS, and macOS,
you can use CocoaPods or Carthage to handle your dependencies; outside of the xOS family, you
can use the Swift Package Manager, offered by Apple. Many Swift developers are focused on iOS,
however, and you may run into an alluring package with a lack of support for the Swift Package
Manager.

Although it’s hard to match existing ecosystems, such as thousands of Python’s packages, npm
from Node.js, and Ruby gems, it also depends on your perspective. A lack of packages can also
be a signal that you can contribute to the community and ecosystem while learning Swift along
the way.

Even though Swift is open source, Apple is holding the wheel. You don’t have to worry about
Apple stopping support of Swift, but you may not always agree with the direction or speed of
Swift’s updates. You still have to depend on third-party tools to get dependencies working for
iOS and macOS, and Xcode doesn’t yet integrate well with the Swift Package Manager;
unfortunately, both issues appear to be a low priority for Apple.

1.3.6. Compile times

Swift is a high-performing language. But the compilation process can be quite slow and suck up
plenty of developer time. Swift is compiled into multiple steps via the LLVM compiler. Although
this gives you optimizations when you run your code, in day-to-day programming you may run

into slow build times, which can be a bit tedious if you’re trying to quickly test a running piece of
code. Not every Swift project is a single project, either; as soon as you incorporate multiple
frameworks, you’ll be compiling a lot of code to create a build, slowing down your process.

In the end, every programming language has pros and cons—it’s a matter of picking the right
tool for the job. I believe that Swift has a bright future ahead to help you create beautiful
software with clean, succinct, and high-performing code!

1.4. WHAT YOU WILL LEARN IN THIS BOOK

This book aims to show you how to solve problems in elegant ways while applying best practices.

Even though this book has Swift on the cover, I think one of its strong points is that you’ll learn
concepts that seamlessly transfer to other languages.

You’ll learn

• Functional programming concepts, such as reduce, flatMap, Optional, and Result, but
also how to think in algebraic data types with structs, tuples, and enums

• Many real-world scenarios that you approach from different angles while considering the
pros and cons of each approach

• Generics, covering compile-time polymorphism
• How to write more robust, concise, easy-to-read code
• Protocol-oriented programming, including thoroughly understanding associated types,

which are considered the hardest part of protocols
• How Swift works at runtime and compile-time via the use of generics, enums, and

protocols
• How to make trade-offs in functional programming, object-oriented programming, and

protocol-oriented programming

At the end of this book, your tool belt will be heavy from all the options you have to tackle
programming problems. After you internalize these concepts, you may find that learning other
languages—such as Kotlin, Rust, and others that share similar ideas and functionality—is much
easier.

1.5. HOW TO MAKE THE MOST OF THIS BOOK

An excellent way to learn a programming language is to do exercises before reading a chapter.
Be honest and see if you can truly finish them, as opposed to glancing over them and thinking
you already know the answer. Some exercises may have some tricky situations hidden in there,
and you will see it once you start working on them.

After doing the exercises for a chapter, decide if you want to read the chapter to learn new
matter.

This book does have a flow that amps up the difficulty the further you read. Still, the book is set
up in a modular way. Reading the chapters out of order is okay.

1.6. MINIMUM QUALIFICATIONS

This is not an absolute beginner’s book; it assumes that you have worked a bit with Swift before.

If you consider yourself an advanced beginner or at intermediate level, most chapters will be
valuable to you. If you consider yourself an experienced developer, I still believe many chapters
are good to fill in your knowledge gaps. Because of this book’s modularity, you can pick and
choose the chapters you’d like to read without having to read earlier chapters.

1.7. SWIFT VERSION

This book is written for Swift version 4.2. All the examples will run on that version either in the
command line, or in combination with Xcode 10.

SUMMARY

• Swift is supported on many platforms.
• Swift is frequently used for iOS, watchOS, tvOS, and macOS development and more and

more every day for web development, systems programming, command-line tools, and
even machine learning.

• Swift walks a fine line between high performance, readability, and compile-time safety.
• Swift is easy to learn but hard to master.
• Swift is a safe and high-performing language.
• Swift does not have built-in concurrency support.
• Swift’s Package Manager doesn’t work yet for iOS, watchOS, tvOS, or macOS.
• Swift entails multiple programming styles, such as functional programming, object-

oriented programming, and protocol programming.

Chapter 2. Modeling data with enums

This chapter covers

• How enums are an alternative to subclassing
• Using enums for polymorphism
• Learning how enums are “or” types
• Modeling data with enums instead of structs
• How enums and structs are algebraic types
• Converting structs to enums
• Safely handling enums with raw values
• Converting strings to enums to create robust code

Enumerations, or enums for short, are a core tool used by Swift developers. Enums allow you to
define a type by enumerating over its values, such as whether an HTTP method is
a get, put, post, or delete action, or denoting if an IP-address is either in IPv4 or IPv6 format.

Many languages have an implementation of enums, with a different type of implementation per
language. Enums in Swift, unlike in C and Objective-C, aren’t only representations of integer
values. Instead, Swift borrows many concepts from the functional programming world, which
bring plenty of benefits that you’ll explore in this chapter.

In fact, I would argue that enums are a little underused in Swift-land. I hope to change that and
help you see how enums can be surprisingly useful in many ways. My goal is to expand your
enum-vocabulary so that you can directly use these techniques in your projects.

First, you’ll see multiple ways to model your data with enums and how they fare against structs
and classes.

Enums are a way to offer polymorphism, meaning that you can work with a single type,
representing more types. We shed some light on how we can store multiple types into a single
collection, such as an array.

Then, you’ll see how enums are a suitable alternative to subclassing.

We dive a little into some algebraic theory to understand enums on a deeper level; then you’ll
see how you can apply this theory and convert structs to enums and back again.

As a cherry on top, we explore raw value enums and how you can use them to handle strings
cleanly.

After reading this chapter, you may find that you’re modeling data better, writing enums just a
bit more often, and ending up with safer and cleaner code in your projects.

2.1. OR VS. AND

Enums can be thought of as an “or” type. Enums can only be one thing at once—for example, a
traffic light can either be green or yellow or red. Alternatively, a die can either be six-
sided or twenty-sided, but not both at the same time.

Join me!

All code from this chapter is online. It’s more educational and fun if you follow along. You can
download the source code at https://mng.bz/gNre.

2.1.1. Modeling data with a struct

Let’s start off with an example that shows how to think about “or” and “and” types when
modeling data.

In the upcoming example, you’re modeling message data in a chat application. A message could
be text that a user may send, but it could also be a join message or leave message. A message
could even be a signal to send balloons across the screen (see figure 2.1). Because why not? Apple
does it, too, in their Messages app.

Figure 2.1. A chat application

Here are some types of messages that your application might support:

• Join messages, such as “Mother in law has joined the chat”
• Text messages that someone can write, such as “Hello everybody!”

• Send balloons messages, which include some animations and annoying sounds that
others can see and hear

• Leave messages, such as “Mother in law has left the chat”
• Draft messages, such as “Mike is writing a message”

Let’s create a data model to represent messages. Your first idea might be to use a struct to model
your Message. You’ll start by doing that and showcase the problems that come with it. Then
you’ll solve these problems by using an enum.

You can create multiple types of messages in code, such as a join message when someone enters
a chatroom.

Listing 2.1. A join chatroom message

import Foundation // Needed for the Date type.

let joinMessage = Message(userId: "1",

 contents: nil,

 date: Date(),

 hasJoined: true, // Set the joined Boolean

 hasLeft: false,

 isBeingDrafted: false,

 isSendingBalloons: false)

You can also create a regular text message.

Listing 2.2. A text message

let textMessage = Message(userId: "2",

 contents: "Hey everyone!", // Pass a message

 date: Date(),

 hasJoined: false,

 hasLeft: false,

 isBeingDrafted: false,

 isSendingBalloons: false)

In your hypothetical messaging app, you can pass this message data around to other users.

The Message struct looks as follows.

Listing 2.3. The Message struct

import Foundation

struct Message {

 let userId: String

 let contents: String?

 let date: Date

 let hasJoined: Bool

 let hasLeft: Bool

 let isBeingDrafted: Bool

 let isSendingBalloons: Bool

}

Although this is one small example, it highlights a problem. Because a struct can contain
multiple values, you can run into bugs where the Message struct can be a text message,
a hasLeft command, and an isSendingBalloons command. An invalid message state doesn’t
bode well because a message can only be one or another in the business rules of the application.
The visuals won’t support an invalid message either.

To illustrate, you can have a message in an invalid state. It represents a text message, but also a
join and a leave message.

Listing 2.4. An invalid message with conflicting properties

let brokenMessage = Message(userId: "1",

 contents: "Hi there", // Have text to show

 date: Date(),

 hasJoined: true, // But this message also signals

 a joining state

 hasLeft: true, // ... and a leaving state

 isBeingDrafted: false,

 isSendingBalloons: false)

In a small example, running into invalid data is harder, but it inevitably happens often enough
in real-world projects. Imagine parsing a local file to a Message, or some function that combines

two messages into one. You don’t have any compile-time guarantees that a message is in the
right state.

You can think about validating a Message and throwing errors, but then you’re catching invalid
messages at runtime (if at all). Instead, you can enforce correctness at compile time if you model
the Message using an enum.

2.1.2. Turning a struct into an enum

Whenever you’re modeling data, see if you can find mutually exclusive properties. A message
can’t be both a join and a leave message at the same time. A message can’t also send balloons
and be a draft at the same time.

But a message can be a join message or a leave message. A message can also be a draft, or it can
represent the sending of balloons. When you detect “or” statements in a model, an enum could
be a more fitting choice for your data model.

Using an enum to group the properties into cases makes the data much clearer to grasp.

Let’s improve the model by turning it into an enum.

Listing 2.5. Message as an enum (lacking values)

import Foundation

enum Message {

 case text

 case draft

 case join

 case leave

 case balloon

}

But you’re not done yet because the cases have no values. You can add values by adding a tuple
to each case. A tuple is an ordered set of values, such as (userId: String, contents: String,
date: Date).

By combining an enum with tuples, you can build more complex data structures. Let’s add
tuples to the enum’s cases now.

Listing 2.6. Message as an enum (with values)

import Foundation

enum Message {

 case text(userId: String, contents: String, date: Date)

 case draft(userId: String, date: Date)

 case join(userId: String, date: Date)

 case leave(userId: String, date: Date)

 case balloon(userId: String, date: Date)

}

By adding tuples to cases, these cases now have so-called associated values in Swift terms. Also,
you can clearly see which properties belong together and which properties don’t.

Whenever you want to create a Message as an enum, you can pick the proper case with related
properties, without worrying about mixing and matching the wrong values.

Listing 2.7. Creating enum messages

let textMessage = Message.text(userId: "2", contents: "Bonjour!", date: Date())

let joinMessage = Message.join(userId: "2", date: Date())

When you want to work with the messages, you can use a switch case on them and unwrap its
inner values.

Let’s say that you want to log the sent messages.

Listing 2.8. Logging messages

logMessage(message: joinMessage) // User 2 has joined the chatroom

logMessage(message: textMessage) // User 2 sends message: Bonjour!

func logMessage(message: Message) {

 switch message {

 case let .text(userId: id, contents: contents, date: date):

 print("[\(date)] User \(id) sends message: \(contents)")

 case let .draft(userId: id, date: date):

 print("[\(date)] User \(id) is drafting a message")

 case let .join(userId: id, date: date):

 print("[\(date)] User \(id) has joined the chatroom")

 case let .leave(userId: id, date: date):

 print("[\(date)] User \(id) has left the chatroom")

 case let .balloon(userId: id, date: date):

 print("[\(date)] User \(id) is sending balloons")

 }

}

Having to switch on all cases in your entire application just to read a value from a single
message may be a deterrent. You can save yourself some typing by using the if case
letcombination to match on a single type of Message.

Listing 2.9. Matching on a single case

if case let Message.text(userId: id, contents: contents, date: date) =

 textMessage {

 print("Received: \(contents)") // Received: Bonjour!

}

If you’re not interested in specific properties when matching on an enum, you can match on
these properties with an underscore, called a wild card, or as I like to call it, the “I don’t care”
operator.

Listing 2.10. Matching on a single case with the “I don’t care” underscore

if case let Message.text(_, contents: contents, _) = textMessage {

 print("Received: \(contents)") // Received: Bonjour!

}

2.1.3. Deciding between structs and enums

Getting compiler benefits with enums is a significant benefit. But if you catch yourself pattern
matching often on a single case, a struct might be a better approach.

Also, keep in mind that the associated values of an enum are containers without additional logic.
You don’t get free initializers of properties; with enums, you’d have to manually add these.

Next time you write a struct, try to group properties. Your data model might be a good candidate
for an enum!

2.2. ENUMS FOR POLYMORPHISM

Sometimes you need some flexibility in the shape of polymorphism. Polymorphism means that
a single function, method, array, dictionary—you name it—can work with different types.

If you mix types in an array, however, you end up with an array of type [Any] (as shown in the
following listing), such as when you put a Date, String, and Int into one array.

Listing 2.11. Filling an array with multiple values

let arr: [Any] = [Date(), "Why was six afraid of seven?", "Because...", 789]

Arrays explicitly want to be filled with the same type. In Swift, what these mixed types have in
common is that they are an Any type.

Handling Any types are often not ideal. Since you don’t know what Any represents at compile
time, you have to check against the Any type at runtime to see what it presents. For instance, you
could match on any types via pattern matching, using a switch statement.

Listing 2.12. Matching on Any values at runtime

let arr: [Any] = [Date(), "Why was six afraid of seven?", "Because...", 789]

for element: Any in arr {

 // element is "Any" type

 switch element {

 case let stringValue as String: "received a string: \(stringValue)"

 case let intValue as Int: "received an Int: \(intValue)"

 case let dateValue as Date: "received a date: \(dateValue)"

 default: print("I am not interested in this value")

 }

}

You can still figure out what Any is at runtime. But you don’t know what to expect when
matching on an Any type; therefore, you must also implement a default case to catch the values
in which you’re not interested.

Working with Any types is sometimes needed when you can’t know what something is at compile
time, such as when you’re receiving unknown data from a server. But if you know beforehand
the types that you’re dealing with, you can get compile-time safety by using an enum.

2.2.1. Compile-time polymorphism

Imagine that you’d like to store two different types in an array, such as a Date and a range of two
dates of type Range<Date>.

What are these <Date> brackets?

Range is a type that represents a lower and upper bound. The <Date> notation indicates
that Range is storing a generic type, which you’ll explore deeply in chapter 7.

The Range<Date> notation tells you that you’re working with a range of two Date types.

You can create a DateType representing either a single date or a range of dates. Then you can fill
up an array of both a Date and Range<Date>, as shown next.

Listing 2.13. Adding multiple types to an array via an enum

let now = Date()

let hourFromNow = Date(timeIntervalSinceNow: 3600)

let dates: [DateType] = [

 DateType.singleDate(now),

 DateType.dateRange(now..<hourFromNow)

]

The enum itself merely contains two cases, each with its associated value.

Listing 2.14. Introducing a DateType enum

enum DateType {

 case singleDate(Date)

 case dateRange(Range<Date>)

}

The array itself consists only of DateType instances. In turn, each DateType harbors one of the
multiple types (see figure 2.2).

Figure 2.2. Array enums

Thanks to the enum, you end up with an array containing multiple types, while maintaining
compile-time safety. If you were to read values from the array, you could switch on each value.

Listing 2.15. Matching on the dateType enum

for dateType in dates {

 switch dateType {

 case .singleDate(let date): print("Date is \(date)")

 case .dateRange(let range): print("Range is \(range)")

 }

}

The compiler also helps if you modify the enum. By way of illustration, if you add a year case to
the enum, the compiler tells you that you forgot to handle a case.

Listing 2.16. Adding a year case to DateType

enum DateType {

 case singleDate(Date)

 case dateRange(Range<Date>)

 case year(Int) ❶

 }

• ❶ Year is newly added.

The compiler is now throwing the following.

Listing 2.17. Compiler notifies you of an error

error: switch must be exhaustive

 switch dateType {

 ^

add missing case: '.year(_)'

 switch dateType {

Thanks to enums, you can bring back compile-time safety when mixing types inside arrays and
other structures such as dictionaries.

Of course, you must know beforehand what kind of cases you expect. When you know what
you’re working with, the added compile-time safety is a nice bonus.

2.3. ENUMS INSTEAD OF SUBCLASSING

Subclassing allows you to build a hierarchy of your data. For example, you could have a fast food
restaurant selling burgers, fries, the usual. For that, you’d create a superclass of FastFood, with
subclasses like Burger, Fries, and Soda.

One of the limitations of modeling your software with hierarchies (subclassing) is that doing so
constrains you in a specific direction that won’t always match your needs.

For example, the aforementioned restaurant has been getting complaints from customers
wanting authentic Japanese sushi with their fries. They intend to accommodate the customers,
but their subclassing model doesn’t fit this new requirement.

In an ideal world, modeling your data hierarchically makes sense. But in practice, you’ll
sometimes hit edge cases and exceptions that may not fit your model.

In this section, we explore these limitations of modeling your data via subclassing in more of a
real-world scenario and solve these with the help of enums.

2.3.1. Forming a model for a workout app

Next up, you’re building a model layer for a workout app, which tracks running and cycling
sessions for someone. A workout includes the start time, end time, and a distance.

You’ll create both a Run and a Cycle struct that represent the data you’re modeling.

Listing 2.18. The Run struct

import Foundation ❶

struct Run {

 let id: String

 let startTime: Date

 let endTime: Date

 let distance: Float

 let onRunningTrack: Bool

}

• ❶ Need Foundation for the Date type

Listing 2.19. The Cycle struct

struct Cycle {

 enum CycleType {

 case regular

 case mountainBike

 case racetrack

 }

 let id: String

 let startTime: Date

 let endTime: Date

 let distance: Float

 let incline: Int

 let type: CycleType

}

These structs are a good starting point for your data layer.

Admittedly, having to create separate logic in your application for both the Run and Cycletypes
can be cumbersome. Let’s try to solve this via subclassing. Then you’ll quickly learn which
problems accompany subclassing, after which you’ll see how enums can solve some of these
problems.

2.3.2. Creating a superclass

Many similarities exist between Run and Cycle, which at first look make a good candidate for a
superclass. The benefit of a superclass is that you can pass the superclass around, such as in
your methods and arrays. A superclass saves you from creating specific methods and arrays for
each workout subclass.

You could create a superclass called Workout; then you can turn Run and Cycle into classes and
make them subclass Workout, which inherits from Workout (see figure 2.3). Hierarchically, the
subclassing structure makes a lot of sense because workouts share so many values.

Figure 2.3. A subclassing hierarchy

The new Workout superclass contains the properties that both Run and Cycle share,
specifically id, startTime, endTime, and distance.

2.3.3. The downsides of subclassing

Here we quickly touch upon issues related to subclassing. First of all, you’re forced to use
classes. Classes can be favorable, but having the choice between classes, structs, or other enums
disappears when you use subclassing.

Being forced to use classes, however, isn’t the biggest problem. Let’s showcase another
limitation by adding a new type of workout, called Pushups, which stores multiple repetitions
and a single date.

Listing 2.20. The Pushups class

class Pushups: Workout { ❶

 let repetitions: [Int]

 let date: Date

}

• ❶ Pushups subclasses Workout

Subclassing Workout doesn’t work properly because some properties of Workout don’t apply
to Pushups. Workout requires a startTime, endTime, and distance value, none of
which Pushups needs.

To allow Pushups to subclass Workout, you’d have to refactor the superclass and all its subclasses.
You would do this by moving startTime, endTime, and distance from Workout to
the Cycle and Run classes because these properties aren’t part of a Pushups class (see figure 2.4).

Figure 2.4. A refactored subclassing hierarchy

Refactoring an entire data model shows the issue when subclassing. As soon as you introduce a
new subclass, you risk needing to refactor the superclass and all its subclasses, which is a
significant impact on existing architecture.

Let’s consider another approach involving enums.

2.3.4. Refactoring a data model with enums

By using enums, you stay away from a hierarchical structure, yet you can still keep the option of
passing a single Workout around in your application. You’ll also be able to add new workouts
without needing to refactor the existing workouts.

You do this by creating a Workout enum instead of a superclass. You can contain different
workouts inside the Workout enum.

Listing 2.21. Workout as an enum

enum Workout {

 case run(Run)

 case cycle(Cycle)

 case pushups(Pushups)

}

Now Run, Cycle, and Pushups won’t subclass Workout anymore. In fact, all the workouts can be
any type, such as a struct, class, or even another enum.

You can create a Workout by passing it a Run, Cycle, or Pushups workout. For example, you can
convert Pushups to a struct, initialize it, and pass it to the pushups case inside the Workout enum.

Listing 2.22. Creating a workout

let pushups = Pushups(repetitions: [22,20,10], date: Date())

let workout = Workout.pushups(pushups)

Now you can pass a Workout around in your application. Whenever you want to extract the
workout, you can pattern match on it.

Listing 2.23. Pattern matching on a workout

switch workout {

case .run(let run):

 print("Run: \(run)")

case .cycle(let cycle):

 print("Cycle: \(cycle)")

case .pushups(let pushups):

 print("Pushups: \(pushups)")

}

The benefit of this solution is that you can add new workouts without refactoring existing ones.
For example, if you introduce an Abs workout, you can add it to Workout without
touching Run, Cycle, or Pushups.

Listing 2.24. Adding a new workout to the Workout enum

enum Workout {

 case run(Run)

 case cycle(Cycle)

 case pushups(Pushups)

 case abs(Abs) ❶

 }

• ❶ New workout is introduced

Not having to refactor other workouts to add a new one is a significant benefit and worth
considering using enums over subclassing.

2.3.5. Deciding on subclassing or enums

Trying to determine when enums or subclasses fit your data model isn’t always easy.

When types share many properties, and you predict that won’t change in the future, you can get
very far with classic subclassing. But subclassing steers you into a more rigid hierarchy. On top
of that, you’re forced to use classes.

When similar types start to diverge, or if you want to keep using enums and structs (as opposed
to classes only), creating an encompassing enum offers more flexibility and could be the better
choice.

The downside of enums is that now your code needs to match all cases in your entire
application. Although this may require extra work when adding new cases, it also is a safety net
where the compiler makes sure you haven’t forgotten to handle a case somewhere in your
application.

Another downside of enums is that at the time of writing, enums can’t be extended with new
cases. Enums lock down a model to a fixed number of cases, and unless you own the code, you
can’t change this rigid structure. For example, perhaps you’re offering an enum via a third-party
library, and now its implementers can’t expand on it.

These are trade-offs you’ll have to make. If you can lock down your data model to a fixed,
manageable number of cases, enums can be a good choice.

2.3.6. Exercises

1

Can you name two benefits of using subclassing instead of enums with associated types?

2

Can you name two benefits of using enums with associated types instead of subclassing?

2.4. ALGEBRAIC DATA TYPES

Enums are based on something called algebraic data types, which is a term that comes from
functional programming. Algebraic data types commonly express composed data via something
called sum types and product types.

Enums are sum types; an enum can be only one thing at once, hence the “or” way of thinking
covered earlier.

On the other end of the spectrum are product types, types that contains multiple values, such as
a tuple or struct. You can think of a product type as an “and” type—for example, a Userstruct can
have both a name and an id. Alternatively, an address class can have a street and a house
number and a zip code.

Let’s use this section to cover a bit of theory so that you can reason about enums better. Then we
move on to some practical examples where you’ll turn an enum into a struct and vice versa.

2.4.1. Sum types

Enums are sum types, which have a fixed number of values they can represent. For instance, the
following enum called Day represents any day in the week. There are seven possible values
that Day can represent.

Listing 2.25. The Day enum

enum Day {

 case sunday

 case monday

 case tuesday

 case wednesday

 case thursday

 case friday

 case saturday

}

To know the number of possible values of an enum, you add (sum) the possible values of the
types inside. In the case of the Day enum, the total sum is seven.

Another way to reason about possible values is the UInt8 type. Ranging from 0 to 255, the total
number of possible values is 256. It isn’t modeled this way, but you can think of an UInt8as if it’s
an enum with 256 cases.

If you were to write an enum with two cases, and you added an UInt8 to one of the cases, this
enum’s possible variations jump from 2 to 257.

For instance, you can have an Age enum—representing someone’s age—where the age can be
unknown, but if it is known, it contains an UInt8.

Listing 2.26. The Age enum

enum Age {

 case known(UInt8)

 case unknown

}

Age now represents 257 possible values, namely, the unknown case(1) + known case(256).

2.4.2. Product types

On the other end of the spectrum are product types. A product type multiplies the possible
values it contains. As an example, if you were to store two Booleans inside a struct, the total
number of variations is the product (multiplication) of these two enums.

Listing 2.27. A struct containing two Booleans

struct BooleanContainer {

 let first: Bool

 let second: Bool

}

The first Boolean (two possible values) times the second Boolean (two possible values) is four
possible states that this struct may have.

In code, you can prove this by revealing all the variations.

Listing 2.28. BooleanContainer has four possible variations

BooleanContainer(first: true, second: true)

BooleanContainer(first: true, second: false)

BooleanContainer(first: false, second: true)

BooleanContainer(first: false, second: false)

When you’re modeling data, the number of variations is good to keep in mind. The higher the
number of possible values a type has, the harder it is to reason about a type’s possible states.

As hyperbole, having a struct with 1,000 strings for properties has a lot more possible states
than a struct with a single Boolean property.

2.4.3. Distributing a sum over an enum

I won’t focus only on theory regarding sum and product types, either. You’re not here to write a
dry, theoretically based graduate paper, but to produce beautiful work.

Imagine that you have a PaymentType enum containing three cases, which represent the three
ways a customer can pay.

Listing 2.29. Introducing PaymentType

enum PaymentType {

 case invoice

 case creditcard

 case cash

}

Next, you’re going to represent the status of a payment. A struct is a suitable candidate to store
some auxiliary properties besides the PaymentType enum, such as when a payment is completed
and whether or not it concerns a recurring payment.

Listing 2.30. A PaymentStatus struct

struct PaymentStatus {

 let paymentDate: Date?

 let isRecurring: Bool

 let paymentType: PaymentType

}

The product of all the variations would be all possible dates times 2 (Boolean) times 3 (enum
with three cases). You’d have a high number of variations because the struct can store many date
variations.

Like cream cheese on a bagel, you’re smearing the properties of the struct out over the cases of
the enum by following the rules of algebraic data types (see figure 2.5).

Figure 2.5. Turning a struct into an enum

You end up with an enum taking the same name as the struct. Each case represents the original
enum’s cases with the struct’s properties inside.

Listing 2.31. PaymentStatus containing cases

enum PaymentStatus {

 case invoice(paymentDate: Date?, isRecurring: Bool)

 case creditcard(paymentDate: Date?, isRecurring: Bool)

 case cash(paymentDate: Date?, isRecurring: Bool)

}

All the information is still there, and the number of possible variations is still the same. Except
this time you flipped the types inside out!

As a benefit, you’re only dealing with a single type; the price is that you have some repetition
inside each case. There’s no right or wrong; it is merely a different approach to model the same
data while leaving the same number of possible variations intact. It’s a neat trick that displays
the algebraic nature of types and helps you model enums in multiple ways. Depending on your
needs, an enum might be a fitting alternative to a struct containing an enum, or vice versa.

2.4.4. Exercise

Given this data structure

enum Topping {

 case creamCheese

 case peanutButter

 case jam

}

enum BagelType {

 case cinnamonRaisin

 case glutenFree

 case oatMeal

 case blueberry

}

struct Bagel {

 let topping: Topping

 let type: BagelType

}

3

What is the number of possible variations of Bagel?

4

Turn Bagel into an enum while keeping the same amount of possible variations.

5

Given the following enum representing a puzzle game for a specific age range (such as baby,
toddler, or teenager) and containing some puzzle pieces

enum Puzzle {

 case baby(numberOfPieces: Int)

 case toddler(numberOfPieces: Int)

 case preschooler(numberOfPieces: Int)

 case gradeschooler(numberOfPieces: Int)

 case teenager(numberOfPieces: Int)

}

How would this enum be represented as a struct instead?

2.5. A SAFER USE OF STRINGS

Dealing with strings and enums is quite common. Let’s go ahead and pay some extra attention
to them so that you’ll do it correctly. This section highlights some dangers when dealing with
enums that hold a String raw value.

When an enum is defined as a raw value type, all cases of that enum carry some value inside
them.

Enums with raw values are defined by having a type added to an enum’s declaration.

Listing 2.32. Enums with raw values and string values

enum Currency: String { ❶

 case euro = "euro" ❷

 case usd = "usd"

 case gbp = "gbp"

}

• ❶ String is the raw value type.
• ❷ All cases contain string values.

The raw values that an enum can store are only reserved for String, Character, and integer and
floating-point number types.

An enum with raw values means each case has a value that’s defined at compile-time. In
contrast, enums with associated types—which you’ve used in the previous sections—store their
values at runtime.

When creating an enum with a String raw type, each raw value takes on the name of the case.
You don’t need to add a string value if the rawValue is the same as the case name, as shown here.

Listing 2.33. Enum with raw values, with string values omitted

enum Currency: String {

 case euro

 case usd

 case gbp

}

Since the enum still has a raw value type, such as String, each case still carries the raw values
inside them.

2.5.1. Dangers of raw values

Use some caution when working with raw values, because once you read an enum’s raw values,
you lose some help from the compiler.

For instance, you’re going to set up parameters for a hypothetical API call. You’d use these
parameters to request transactions in the currency you supply.

You’ll use the Currency enum to construct parameters for your API call. You can read the enum’s
raw value by accessing the raw value property, and set up your API parameters that way.

Listing 2.34. Setting a raw value inside parameters

let currency = Currency.euro

print(currency.rawValue) // "euro"

let parameters = ["filter": currency.rawValue]

print(parameters) // ["filter": "euro"]

To introduce a bug, change the rawValue of the euro case, from “euro” to “eur” (dropping the
“o”), since eur is the currency notation of the euro.

Listing 2.35. Renaming a string

enum Currency: String {

 case euro = "eur"

 case usd

 case gbp

}

Because the API call relied on the rawValue to create your parameters, the parameters are now
affected for the API call.

The compiler won’t notify you, because the raw value is still valid code.

Listing 2.36. Unexpected parameters

let parameters = ["filter": currency.rawValue]

// Expected "euro" but got "eur"

print(parameters) // ["filter": "eur"]

Everything still compiles. Unfortunately, you silently introduced a bug in part of your
application.

Always make sure to update a string everywhere, which may sound obvious. But imagine that
you’re working on a big project where this enum was created in a completely different part of the
application, or perhaps offered from a framework. An innocuous change on the enum may be
damaging elsewhere in your application. These issues can sneak up on you, and they’re easy to
miss because you don’t get notified at compile time.

You can play it safe and ignore an enum’s raw values and match on the enum cases. As shown in
the following code, when you set the parameters this way, you’ll know at compile time when a
case changes.

Listing 2.37. Explicit raw values

let parameters: [String: String]

switch currency {

 case .euro: parameters = ["filter": "euro"]

 case .usd: parameters = ["filter": "usd"]

 case .gbp: parameters = ["filter": "gbp"]

}

// Back to using "euro" again

print(parameters) // ["filter": "euro"]

You’re recreating strings and ignoring the enum’s raw values. It may be redundant code, but at
least you’ll have precisely the values you need. Any changes to the raw values won’t catch you off
guard because the compiler will now help you. You could even consider dropping the raw values
altogether if your application allows.

Perhaps even better is that you do use the raw values, but you add safety by writing unit tests to
make sure that nothing breaks. This way you’ll have a safety net and the benefits of using raw
values.

These are all trade-offs you’ll have to make. But it’s good to be aware that you lose help from the
compiler once you start using raw values from an enum.

2.5.2. Matching on strings

Whenever you pattern match on a string, you open the door to missed cases. This section covers
the downsides of matching on strings and showcases how to make an enum out of it for added
safety.

In the next example, you’re modeling a user-facing image management system in which
customers can store and group their favorite photos, images, and gifs. Depending on the file
type, you need to know whether or not to show a particular icon, indicating it’s a jpeg, bitmap,
gif, or an unknown type.

In a real-world application, you’d also check real metadata of an image; but for a quick and dirty
approach, you’ll look only at the extension.

The iconName function gives your application the name of the icon to display over an image,
based on the file extension. For example, a jpeg image has a little icon shown on it; this icon’s
name is "assetIconJpeg".

Listing 2.38. Matching on strings

func iconName(for fileExtension: String) -> String {

 switch fileExtension {

 case "jpg": return "assetIconJpeg"

 case "bmp": return "assetIconBitmap"

 case "gif": return "assetIconGif"

 default: return "assetIconUnknown"

 }

}

iconName(for: "jpg") // "assetIconJpeg"

Matching on strings works, but a couple of problems arise with this approach (versus matching
on enums). Making a typo is easy, and thus harder to make it match—for example, expecting
“jpg” but getting “jpeg” or “JPG” from an outside source.

The function returns an unknown icon as soon as you deviate only a little—for example, by
passing it a capitalized string.

Listing 2.39. Unknown icon

iconName(for: "JPG") // "assetIconUnknown", not favorable

Sure, an enum doesn’t solve all problems right away, but if you repeatedly match on the same
string, the chances of typos increase.

Also, if any bugs are introduced by matching on strings, you’ll know it at runtime. But switching
on enums are exhaustive. If you were to switch on an enum instead, you’d know about bugs
(such as forgetting to handle a case) at compile time.

Let’s create an enum out of it! You do this by introducing an enum with a String raw type.

Listing 2.40. Creating an enum with a String raw value

enum ImageType: String { ❶

 case jpg

 case bmp

 case gif

}

• ❶ Introducing the enum

This time when you match in the iconName function, you turn the string into an enum first by
passing a rawValue. This way you’ll know if ImageType gets another case added to it. The
compiler will tell you that iconName needs to be updated and handle a new case.

Listing 2.41. iconName creates an enum

func iconName(for fileExtension: String) -> String {

 guard let imageType = ImageType(rawValue: fileExtension) else {

 return "assetIconUnknown" ❶

 }

 switch imageType { ❷

 case .jpg: return "assetIconJpeg"

 case .bmp: return "assetIconBitmap"

 case .gif: return "assetIconGif"

 }

}

• ❶ The function tries to convert the string to ImageType; it returns “assetIconUnknown”
if this fails.

• ❷ iconName now matches on the enum, giving you compiler benefits if you missed a
case.

But you still haven’t solved the issue of slightly differing values, such as “jpeg” or “JPEG.” If you
were to capitalize “jpg,” the iconName function would return "assetIconUnknown".

Let’s take care of that now by matching on multiple strings at once. You can implement your
initializer, which accepts a raw value string.

Listing 2.42. Adding a custom initializer to ImageType

enum ImageType: String {

 case jpg

 case bmp

 case gif

 init?(rawValue: String) {

 switch rawValue.lowercased() { ❶

 case "jpg", "jpeg": self = .jpg ❷

 case "bmp", "bitmap": self = .bmp

 case "gif", "gifv": self = .gif

 default: return nil

 }

 }

}

• ❶ The string matching is now case-insensitive, making it more forgiving.
• ❷ The initializer matches on multiple strings at once, such as “jpg” and “jpeg.”

Optional init?

The initializer from ImageType returns an optional. An optional initializer indicates that it can
fail. When the initializer does fail—when you give it an unusable string—the initializer returns a
nil value. Don’t worry if this isn’t clear yet; you’ll handle optionals in depth in chapter 4.

Note a couple of things here. You set the ImageType case depending on its passed rawValue, but
not before turning it into a lowercased string so you make the pattern matching case-insensitive.
Next, you give each case multiple options to match on—such as case "jpg", "jpeg"—so that it
can catch more cases. You could have written it out by using more cases, but this is a clean way
to group pattern matching.

Now your string matching is more robust, and you can match on variants of the strings.

Listing 2.43. Passing different strings

iconName(for: "jpg") // "Received jpg"

iconName(for: "jpeg") // "Received jpg"

iconName(for: "JPG") // "Received a jpg"

iconName(for: "JPEG") // "Received a jpg"

iconName(for: "gif") // "Received a gif"

If you do have a bug in the conversion, you can write a test case for it and only have to fix the
enum in one location, instead of fixing multiple string-matching sprinkled around in the
application.

Working with strings this way is now more idiomatic; the code has been made safer and more
expressive. The trade-off is that a new enum has to be created, which may be redundant if you
pattern-match on a string only once.

But as soon as you see code matching on a string repeatedly, converting it to an enum is a good
choice.

2.5.3. Exercises

6

Which raw types are supported by enums?

7

Are an enum’s raw values set at compile time or runtime?

8

Are an enum’s associated values set at compile time or runtime?

9

Which types can go inside an associated value?

2.6. CLOSING THOUGHTS

As you can see, enums are more than a list of values. Once you start “thinking in enums,” you’ll
get a lot of safety and robustness in return, and you can turn structs to enums and back again.

I hope that this chapter inspired you to use enums in surprisingly fun and useful ways. Perhaps
you’ll use enums more often to combine them with, or substitute for, structs and classes.

In fact, perhaps next time as a pet project, see how far you can get by using only enums and
structs. Limiting yourself to enums and structs is an excellent workout to help you think in sum
and product types!

SUMMARY

• Enums are sometimes an alternative to subclassing, allowing for a flexible architecture.
• Enums give you the ability to catch problems at compile time instead of runtime.
• You can use enums to group properties together.
• Enums are sometimes called sum types, based on algebraic data types.
• Structs can be distributed over enums.
• When working with enum’s raw values, you forego catching problems at compile time.
• Handling strings can be made safer by converting them to enums.
• When converting a string to an enum, grouping cases and using a lowercased string

makes conversion easier.

ANSWERS

1

Can you name two benefits of using subclassing instead of enums with associated types?

A superclass prevents duplication; no need to declare the same property twice. With subclassing,
you can also override existing functionality.

2

Can you name two benefits of using enums with associated types instead of subclassing?

No need to refactor anything if you add another type, whereas with subclassing you risk refactoring
a superclass and its existing subclasses. Second, you’re not forced to use classes.

3

Given the data structure, what is the number of possible variations of Bagel?

Twelve (3 toppings times 4 bagel types)

4

Given the data structure, turn Bagel into an enum while keeping the same amount of possible
variations.

Two ways, because Bagel contains two enums. You can store the data in either enum:

// Use the Topping enum as the enum's cases.

enum Bagel {

 case creamCheese(BagelType)

 case peanutButter(BagelType)

 case jam(BagelType)

}

// Alternatively, use the BagelType enum as the enum's cases.

enum Bagel {

 case cinnamonRaisin(Topping)

 case glutenFree(Topping)

 case oatMeal(Topping)

 case blueberry(Topping)

}

5

Given the enum representing a puzzle game for a specific age range, how would this enum be
represented as a struct instead?

enum AgeRange {

 case baby

 case toddler

 case preschooler

 case gradeschooler

 case teenager

}

struct Puzzle {

 let ageRange: AgeRange

 let numberOfPieces: Int

}

6

Which raw types are supported by enums?

String, character, and integer and floating-point types

7

Are an enum’s raw values set at compile time or runtime?

Raw type values are determined at compile time.

8

Are an enum’s associated values set at compile time or runtime?

Associated values are set at runtime.

9

Which types can go inside an associated value?

All types fit inside an associated value.

Chapter 3. Writing cleaner properties

This chapter covers

• How to create getter and setter computed properties
• When (not) to use computed properties
• Improving performance with lazy properties
• How lazy properties behave with structs and mutability
• Handling stored properties with behavior

Cleanly using properties can thoroughly simplify the interface of your structs, classes, and
enums, making your code safer and easier to read and use for others (and your future self).
Because properties are a core part of Swift, following the pointers in this chapter can help the
readability of your code straight away.

First, we cover computed properties, which are functions that look like properties. Computed
properties can clean up the interface of your structs and classes. You’ll see how and when to
create them, but also when it’s better to avoid them.

Then we explore lazy properties, which are properties that you can initialize at a later time or
not at all. Lazy properties are convenient for some reasons, such as when you want to optimize
expensive computations. You’ll also witness the different behaviors lazy properties have in
structs versus classes.

Moreover, you’ll see how you can trigger custom behavior on properties via so-called property
observers and the rules and quirks that come with them.

By the end of this chapter, you’ll be able to accurately choose between lazy properties, stored
properties, and computed properties so that you can create clean interfaces for your structs and
classes.

3.1. COMPUTED PROPERTIES

Computed properties are functions masquerading as properties. They do not store any values,
but on the outside, they look the same as stored properties.

For instance, you could have a countdown timer in a cooking app and you could check this timer
to see if your eggs are boiled, as shown in the following listing.

Listing 3.1. A countdown timer

cookingTimer.secondsRemaining // 411

However, this value changes over time as shown here.

Listing 3.2. Value changes over time with computed properties

cookingTimer.secondsRemaining // 409

// wait a bit

cookingTimer.secondsRemaining // 404

// wait a bit

cookingTimer.secondsRemaining // 392

Secretly, this property is a function because the value keeps dynamically changing.

The remainder of this section explores the benefits of computed properties. You’ll see how they
can clean up the interface of your types. You’ll also see how computed properties run code each
time a property is accessed, giving your properties a dynamic “always up to date” nature.

Then section 3.2 highlights when not to use computed properties and how lazy properties are
sometimes the better choice.

3.1.1. Modeling an exercise

Let’s examine a running exercise for a workout app. Users would be able to start a run and keep
track of their current progress over time, such as the elapsed time in seconds.

Join me!

It’s more educational and fun if you check out the code and follow along with the chapter. You
can download the source code at http://mng.bz/5N4q.

The type that represents an exercise is called Run, which benefits from computed properties. A
run has an elapsedTime() function that shows how much time has passed since the start of a
run. Once a run is finished, you can call the setFinished() function to round up the exercise.
You check to confirm a running exercise is completed by checking that
the isFinished()function returns true. The lifecycle of a running exercise is shown in the
following example.

Listing 3.3. The lifecycle of a running exercise

var run = Run(id: "10", startTime: Date())

// Check the elapsed time.

print(run.elapsedTime()) // 0.00532001256942749

// Check the elapsed time again.

print(run.elapsedTime()) // 14.00762099027634

run.setFinished() // Finish the exercise.

print(run.isFinished()) // true

After introducing Run, you’ll see how to clean it up by transforming its function into computed
properties.

3.1.2. Converting functions to computed properties

Let’s take a peek at the Run type in the following listing to see how it is composed; then, you’ll
determine how to refactor it so that it uses computed properties.

Listing 3.4. The Run struct

import Foundation

struct Run {

 let id: String

 let startTime: Date

 var endTime: Date?

 func elapsedTime() -> TimeInterval { ❶

 return Date().timeIntervalSince(startTime)

 }

 func isFinished() -> Bool { ❷

 return endTime != nil

 }

 mutating func setFinished() {

 endTime = Date()

 }

 init(id: String, startTime: Date) {

 self.id = id

 self.startTime = startTime

 self.endTime = nil

 }

}

• ❶ elapsedTime calculates the duration of the exercise, measured in seconds.
• ❷ Check if the endTime is nil to determine if the exercise is finished.

By looking at the signatures of the elapsedTime() and isFinished() functions shown in the
following listing, you can see that both functions are not accepting a parameter but are returning
a value.

Listing 3.5. Candidates for computed properties

func isFinished() -> Bool { ... }

func elapsedTime() -> TimeInterval { ... }

The lack of parameters and the fact that the functions return a value show that these functions
are candidates for computed properties.

Next, let’s convert isFinished() and elapsedTime() into computed properties.

Listing 3.6. Run with computed properties

struct Run {

 let id: String

 let startTime: Date

 var endTime: Date?

 var elapsedTime: TimeInterval { ❶

 return Date().timeIntervalSince(startTime)

 }

 var isFinished: Bool { ❷

 return endTime != nil

 }

 mutating func setFinished() {

 endTime = Date()

 }

 init(id: String, startTime: Date) {

 self.id = id

 self.startTime = startTime

 self.endTime = nil

 }

}

• ❶ elapsedTime is now a computed property.
• ❷ isFinished is now a computed property as well.

You converted the functions into properties by giving a property a closure that returns a value.

This time, when you want to read the value, you can call the computed properties, as shown in
the following example.

Listing 3.7. Calling computed properties

var run = Run(id: "10", startTime: Date())

print(run.elapsedTime) // 30.00532001256942749

print(run.elapsedTime) // 34.00822001332744283

print(run.isFinished) // false

Computed properties can change value dynamically and are thus calculated; this is in contrast
to stored properties, which are fixed and have to be updated explicitly.

As a check before delivering a struct or class, do a quick scan to see if you can convert any
functions to computed properties for added readability.

3.1.3. Rounding up

By turning functions into properties, you can clean up a struct or class interface. To outsiders,
some values communicate better as properties to broadcast their intention. Your coworkers, for
instance, don’t always need to know that some properties can secretly be a function.

Converting lightweight functions to properties hides implementation details to users of your
type, which is a small win, but it can add up in large codebases.

Let’s continue and see how computed properties may not be the best choice and how lazy
properties can help.

3.2. LAZY PROPERTIES

Computed properties are not always the best choice to add a dynamic nature to your types.
When a computed property becomes computationally expensive, you’ll have to resort to other
means, such as lazy properties.

In a nutshell, lazy properties make sure properties are calculated at a later time (if at all) and
only once.

In this section, you’ll discover how lazy properties can help when you’re dealing with expensive
computations or when a user has to wait for a long time.

3.2.1. Creating a learning plan

Let’s go over an example where computed properties are not always the best choice and see how
lazy properties are a better fit.

Imagine that you’re creating an API that can serve as a mentor to learn new languages. Using a
fancy algorithm, it gives customers a tailor-made daily routine for studying a
language. LearningPlan will base its schedule on each customer’s level, first language, and the
language a customer wants to learn. The higher the level, the more effort is required of a
customer. For simplicity, you’ll focus on a learning plan that produces plans related to learning
English.

This section won’t implement an actual algorithm, but what is important to note is that this
hypothetical algorithm takes a few seconds to process, which keeps customers waiting. A few
seconds may not sound like much for a single occurrence, but it doesn’t scale well when creating
many schedules, especially if these schedules are expected to load quickly on a mobile device.

Because this algorithm is expensive, you only want to call it once when you need to.

3.2.2. When computed properties don’t cut it

Let’s discover why computed properties are not the best choice for expensive computations.

You can initialize a LearningPlan with a description and a level parameter, as shown in the
following listing. Via the contents property, you can read the plan that the fancy algorithm
generates.

Listing 3.8. Creating a LearningPlan

var plan = LearningPlan(level: 18, description: "A special plan for today!")

print(Date()) // 2018-09-30 18:04:43 +0000

print(plan.contents) // "Watch an English documentary."

print(Date()) // 2018-09-30 18:04:45 +0000

Notice how calling contents takes two seconds to perform, which is because of your expensive
algorithm.

In the next listing, let’s take a look at the LearningPlan struct; you can see how it’s built with
computed properties. This is a naïve approach that you’ll improve with a lazy property.

Listing 3.9. A LearningPlan struct

struct LearningPlan {

 let level: Int

 var description: String

 // contents is a computed property.

 var contents: String { ❶

 // Smart algorithm calculation simulated here

 print("I'm taking my sweet time to calculate.")

 sleep(2) ❷

 switch level { ❸

 case ..<25: return "Watch an English documentary."

 case ..<50: return "Translate a newspaper article to English and

 transcribe one song."

 case 100...: return "Read two academic papers and translate them

 into your native language."

 default: return "Try to read English for 30 minutes."

 }

 }

}

• ❶ The contents are where the algorithm calculates a custom plan.
• ❷ Simulate a two-second delay for the algorithm.
• ❸ After the calculation is performed, you return a custom-made learning plan for the

customer, depending on the level.

Pattern matching

You can pattern match on so-called one-sided ranges, meaning there is no start range. For
example, ..<25 means “anything below 25, and 100... means “100 and higher.”

Notice how every time contents is called it takes two seconds to calculate.

As shown next, if you were to call it only five times (such as in a loop, shown in the following
listing), the application would take ten seconds to perform—not very fast!

Listing 3.10. Calling contents five times

var plan = LearningPlan(level: 18, description: "A special plan for today!")

print(Date()) // A start marker

for _ in 0..<5 {

 plan.contents

}

print(Date()) // An end marker

This prints the following listing.

Listing 3.11. Taking ten seconds

2018-10-01 06:39:37 +0000

I'm taking my sweet time to calculate.

I'm taking my sweet time to calculate.

I'm taking my sweet time to calculate.

I'm taking my sweet time to calculate.

I'm taking my sweet time to calculate.

2018-10-01 06:39:47 +0000

Notice how the start and end date markers are ten seconds apart. Because a computed property
runs whenever it’s called, using computed properties for expensive operations is highly
discouraged.

Next you’ll replace the computed property with a lazy property to make your code more efficient.

3.2.3. Using lazy properties

You can use lazy properties to make sure a computationally expensive or slow property is
performed only once, and only when you call it (if at all). Refactor the computed property into a
lazy property in the following listing.

Listing 3.12. LearningPlan with a lazy property

struct LearningPlan {

 let level: Int

 var description: String

 lazy var contents: String = { ❶

 // Smart algorithm calculation simulated here

 print("I'm taking my sweet time to calculate.")

 sleep(2)

 switch level {

 case ..<25: return "Watch an English documentary."

 case ..<50: return "Translate a newspaper article to English and

 transcribe one song."

 case 100...: return "Read two academic papers and translate them

 into your native language."

 default: return "Try to read English for 30 minutes."

 }

 }() ❷

}

• ❶ contents is now a lazy property.
• ❷ The property closure now needs parentheses, “()”.

Referring to properties

You can refer to other properties from inside a lazy property closure. Notice how contents can
refer to the level property.

Still, this isn’t enough; a lazy property is considered a regular property that the compiler wants
to be initialized. You can circumvent this by adding a custom initializer, as shown in the
following listing, where you elide contents, satisfying the compiler.

Listing 3.13. Adding a custom initializer

struct LearningPlan {

 // ... snip

 init(level: Int, description: String) { // no contents to be found here!

 self.level = level

 self.description = description

 }

}

Everything compiles again. Moreover, the best part is that when you repeatedly call contents,
the expensive algorithm is used only once! Once a value is computed, it’s stored. Notice in the
following listing that even though contents is accessed five times, the lazy property is only
initialized once.

Listing 3.14. Contents loaded only once

print(Date())

for _ in 0..<5 {

 plan.contents

}

print(Date())

// Will print:

2018-10-01 06:43:24 +0000

I'm taking my sweet time to calculate.

2018-10-01 06:43:26 +0000

Reading the contents takes two seconds the first time you access it, but the second
time contents returns instantly. The total time spent by the algorithm is now two seconds
instead of ten!

3.2.4. Making a lazy property robust

A lazy property on its own is not particularly robust; you can easily break it. Witness the
following scenario where you set the contents property of LearningPlan to a less desirable plan.

Listing 3.15. Overriding the contents of LearningPlan

var plan = LearningPlan(level: 18, description: "A special plan for today!")

plan.contents = "Let's eat pizza and watch Netflix all day."

print(plan.contents) // "Let's eat pizza and watch Netflix all day."

As you can see, you can bypass the algorithm by setting a lazy property, which makes the
property a bit brittle.

But not to worry—you can limit the access level of properties. By adding
the private(set)keyword to a property, as shown in the following listing, you can indicate that
your property is readable, but can only be set (mutated) by its owner, which
is LearningPlan itself.

Listing 3.16. Making contents a private(set) property

struct LearningPlan {

 lazy private(set) var contents: String = {

 // ... snip

}

Now the property can’t be mutated from outside the struct; contents is read-only to the outside
world. The error, given by the compiler, confirms this, as the following listing shows.

Listing 3.17. contents property can’t be set

error: cannot assign to property: 'contents' setter is inaccessible

plan.contents = "Let's eat pizza and watch Netflix all day."

~~~~~~~~~~~~~ ^ 

This way you can expose a property as read-only to the outside and mutable to the owner only, 
making the lazy property a bit more robust. 

3.2.5. Mutable properties and lazy properties 

Once you initialize a lazy property, you cannot change it. You need to use extra caution when 
you use mutable properties—also known as var properties—in combination with lazy properties. 
This holds even truer when working with structs. 

Let’s go over a scenario where a seemingly innocent chance can introduce subtle bugs. 

To demonstrate, in the following listing, level turns from a let to a var property so it can be 
mutated. 

Listing 3.18. LearningPlan level now mutable 

struct LearningPlan { 

  // ... snip 

  var level: Int 

} 

You create a copy by referring to a struct. Structs have so-called value semantics, which means 
that when you refer to a struct, it gets copied. 



You can, as an example, create an intense learning plan, copy it, and lower the level, leaving the 
original learning plan intact, as the following listing shows. 

Listing 3.19. Copying a struct 

var intensePlan = LearningPlan(level: 138, description: "A special plan for 

     today!") 

intensePlan.contents                ❶ 

var easyPlan = intensePlan          ❷ 

easyPlan.level = 0                  ❸ 

 // Quiz: What does this print? 

print(easyPlan.contents) 

• ❶ Populate the lazy property. 
• ❷ A copy is made. 
• ❸ Lower the copy’s level. 

Now you’ve got a copy, but here’s a little quiz: What do you get when you 
print easyPlan.contents? 

The answer is the intense plan: “Read two academic papers and translate them into your 
native language.” 

When easyPlan was created, the contents were already loaded before you made a copy, which is 
why easyPlan is copying the intense plan (see figure 3.1). 

Figure 3.1. Copying after initializing a lazy description 

 



Alternatively, you can call contents after making a copy, in which case both plans can 
individually lazy load their contents (see figure 3.2). 

Figure 3.2. Copying before initializing a lazy description 

 

In the next listing you see how both learning plans calculate their plans because the copy 
happens before the lazy properties are initialized. 

Listing 3.20. Copying before lazy loading 

var intensePlan = LearningPlan(level: 138, description: "A special plan for 

     today!") 

var easyPlan = intensePlan                ❶ 

 easyPlan.level = 0                       ❷ 

 

// Now both plans have proper contents. 

print(intensePlan.contents) // Read two academic papers and translate them 

     into your native language. 

print(easyPlan.contents) // Watch an English documentary. 

• ❶ A copy is made. 
• ❷ easyPlan gets a lower level. 

The previous examples highlight that complexity surges as soon as you start mutating variables, 
used by lazy loading properties. Once a property changes, it’s out of sync with a lazy-loaded 
property. 



Therefore, make sure you keep properties immutable when a lazy property depends on it. Since 
structs are copied when you reference them, it becomes even more important to take extra care 
when mixing structs and lazy properties. 

3.2.6. Exercises 

In this exercise, you’re modeling a music library (think Apple Music or Spotify): 

//: Decodable allows you to turn raw data (such as plist files) into songs 

struct Song: Decodable { 

    let duration: Int 

    let track: String 

    let year: Int 

} 

 

struct Artist { 

 

    var name: String 

    var birthDate: Date 

    var songsFileName: String 

 

    init(name: String, birthDate: Date, songsFileName: String) { 

        self.name = name 

        self.birthDate = birthDate 

        self.songsFileName = songsFileName 

    } 

 

    func getAge() -> Int? { 

        let years = Calendar.current 

            .dateComponents([.year], from: Date(), to: birthDate) 

            .day 

 

        return years 

    } 

 



    func loadSongs() -> [Song] { 

        guard 

            let fileURL = Bundle.main.url(forResource: songsFileName, 

     withExtension: "plist"), 

            let data = try? Data(contentsOf: fileURL), 

            let songs = try? PropertyListDecoder().decode([Song].self, from: 

     data) else { 

                return [] 

        } 

        return songs 

    } 

 

    mutating func songsReleasedAfter(year: Int) -> [Song] { 

        return loadSongs().filter { (song: Song) -> Bool in 

            return song.year > year 

        } 

    } 

 

} 

1 

See if you can clean up the Artist type by using lazy and/or computed properties. 

2 

Assuming loadSongs is turned into a lazy property called songs, make sure the following code 
doesn’t break it by trying to override the property data: 

// billWithers.songs = [] 

3 

Assuming loadSongs is turned into a lazy property called songs, how can you make sure that the 
following lines won’t break the lazily loaded property? Point out two ways to prevent a lazy 
property from breaking: 

billWithers.songs // load songs 

billWithers.songsFileName = "oldsongs" // change file name 



billWithers.songs.count // Should be 0 after renaming songsFileName, 

  but is 2 

3.3. PROPERTY OBSERVERS 

Sometimes you want the best of both worlds: you want to store a property, but you’d still like 
custom behavior on it. In this section, you’ll explore the combination of storage and behavior via 
the help of property observers. It wouldn’t be Swift if it didn’t come with its own unique rules, 
so let’s see how you can best navigate property observers. 

Property observers are actions triggered when a stored property changes value, which is an ideal 
candidate for when you want to do some cleanup work after setting a property, or when you 
want to notify other parts of your application of property changes. 

3.3.1. Trimming whitespace 

Imagine a scenario where a player can join an online multiplayer game; the only thing a player 
needs to enter is a name containing a minimum number of characters. However, people who 
want short names may fill up the remaining characters with spaces to meet the requirements. 

You’re going to see how you can clean up a name automatically after you set it. The property 
observer removes unnecessary whitespace from a name. 

In the following example, you can see how the name automatically gets rid of trailing whitespace 
after a property is updated. Note that the initializer doesn’t trigger the property observer. 

Listing 3.21. Trimming whitespace 

let jeff = Player(id: "1", name: "SuperJeff    ") 

print(jeff.name) // "SuperJeff    "                ❶ 

print(jeff.name.count) // 13 

 

jeff.name = "SuperJeff    " 

print(jeff.name) // "SuperJeff"                    ❷ 

print(jeff.name.count) // 9 

• ❶ The whitespace in a player’s name isn’t trimmed when you initialize a Player type. 
• ❷ The whitespace does get trimmed when you update the player’s name again. 

The name property automatically trims its whitespace, but only when updated, not when you 
initially set it. Before you solve this issue, look at the Player class to see how the property 
observer works, as shown in the following listing. 



Listing 3.22. The Player class 

import Foundation 

 

class Player { 

 

    let id: String 

 

    var name: String {                                            ❶ 

         didSet {                                                 ❷ 

               print("My previous name was \(oldValue)")          ❸ 

               name = name.trimmingCharacters(in: .whitespaces)   ❹ 

         } 

    } 

 

    init(id: String, name: String) { 

        self.id = id 

        self.name = name 

    } 

} 

• ❶ Make sure the name is a var because it mutates itself. 
• ❷ A didSet property observer, which is triggered after a property is set 
• ❸ Refer to the previous value via the oldValue constant. 
• ❹ The name property is trimmed when it’s set; this won’t cause an infinite loop—you are 

modifying the stored name in this scope. 

 

didSet willSet 

Besides didSet, you can also use willSet observers, which are triggered right before a property 
is changed. If you use willSet, you can use the newValue constant. 

 

3.3.2. Trigger property observers from initializers 

The name property got cleaned up after you updated the property, but initially name still 
contained its whitespace, as shown in the next listing. 



Listing 3.23. Property observer isn’t triggered from initializer 

let jeff = Player(id: "1", name: "SuperJeff    ") 

print(jeff.name) // "SuperJeff    "                  ❶ 

print(jeff.name.count) // 13 

• ❶ Create a defer closure, which will be called right after initialization. 

Property observers are unfortunately not triggered from initializers, which is intentional, but 
you have to be aware of this Swift gotcha. Luckily, there’s a workaround. 

Officially, the recommended technique is to separate the didSet closure into a function, then 
you can call this function from an initializer. However, another trick is to add a defer closure to 
the initializer method. 

When a function finishes, the defer closure is called. You can put the defer closure anywhere in 
the initializer, but it will only be called after a function reaches the end, which is handy when 
you want to run cleanup code at the end of functions. 

Add a defer closure to the initializer that sets the title in the next listing. 

Listing 3.24. Adding a defer closure to the initializer 

class Player { 

 

     // ... snip 

 

    init(id: String, name: String) { 

        defer { self.name = name }      ❶ 

        self.id = id 

        self.name = name                ❷ 

     } 

} 

• ❶ Create a defer closure, which will be called right after initialization. 
• ❷ Because the title is ultimately set by defer, it doesn’t really matter what you set it to 

here. 

The defer closure is called right after Player is initialized, triggering the property observer as 
shown in the following listing. 



Listing 3.25. Trimming whitespace 

let jeff = Player(id: "1", name: "SuperJeff    ") 

print(jeff.name) // "SuperJeff" 

print(jeff.name.count) // 9 

 

jeff.name = "SuperJeff    " 

print(jeff.name) // "SuperJeff" 

print(jeff.name.count) // 9 

You get the best of both worlds. You can store a property, you can trigger actions on it, andthere 
is no distinction between setting the property from the initializer or property accessor. 

One caveat is that the defer trick isn’t officially intended to be used this way, which means that 
the defer method may not work in the future. However, until then, this solution is a neat trick 
you can apply. 

3.3.3. Exercises 

4 

If you need a property with both behavior and storage, what kind of property would you use? 

5 

If you need a property with only behavior and no storage, what kind of property would you use? 

6 

Can you spot the bug in the following code? 

struct Tweet { 

    let date: Date 

    let author: String 

    var message: String { 

        didSet { 

            message = message.trimmingCharacters(in: .whitespaces) 

        } 

    } 

} 

 



let tweet = Tweet(date: Date(), 

                  author: "@tjeerdintveen", 

                  message: "This has a lot of unnecessary whitespace   ") 

7 

How can you fix the bug? 

3.4. CLOSING THOUGHTS 

Even though you have been using properties already, I hope that taking a moment to 
understand them on a deeper level was worthwhile. 

You saw how to choose between a computed property, lazy property, and stored properties with 
behaviors. Making the right choices makes your code more predictable, and it cleans up the 
interface and behaviors of your classes and structs. 

SUMMARY 

• You can use computed properties for properties with specific behavior 
but withoutstorage. 

• Computed properties are functions masquerading as properties. 
• You can use computed properties when a value can be different each time you call it. 
• Only lightweight functions should be made into computed properties. 
• Lazy properties are excellent for expensive or time-consuming computations. 
• Use lazy properties to delay a computation or if it may not even run at all. 
• Lazy properties allow you to refer to other properties inside classes and structs. 
• You can use the private(set) annotation to make properties read-only to outsiders of a 

class or struct. 
• When a lazy property refers to another property, make sure to keep this other property 

immutable to keep complexity low. 
• You can use property observers such as willSet and didSet to add behavior on stored 

properties. 
• You can use defer to trigger property observers from an initializer. 

ANSWERS 

1 

See if you can clean up the Artist type by using lazy and/or computed properties: 

struct Artist { 

 

    var name: String 

    var birthDate: Date 



    let songsFileName: String 

 

    init(name: String, birthDate: Date, songsFileName: String) { 

        self.name = name 

        self.birthDate = birthDate 

        self.songsFileName = songsFileName 

    } 

 

    // Age is now computed (calculated each time) 

    var age: Int? { 

        let years = Calendar.current 

            .dateComponents([.year], from: Date(), to: birthDate) 

            .day 

 

        return years 

    } 

 

    // loadSongs() is now a lazy property, because it's expensive to 

  load a file on each call. 

    lazy private(set) var songs: [Song] = { 

        guard 

            let fileURL = Bundle.main.url(forResource: songsFileName, 

  withExtension: "plist"), 

            let data = try? Data(contentsOf: fileURL), 

            let songs = try? PropertyListDecoder().decode([Song].self, 

  from: data) else { 

                return [] 

        } 

        return songs 

    }() 

 

    mutating func songsReleasedAfter(year: Int) -> [Song] { 



        return songs.filter { (song: Song) -> Bool in 

            return song.year > year 

        } 

    } 

 

} 

2 

Assuming loadSongs is turned into a lazy property called songs, make sure the following code 
doesn’t break it by overriding the property data: 

// billWithers.songs = [] 

You can achieve this by making songs a private(set) property. 

3 

Assuming loadSongs is turned into a lazy property called songs, how can you make sure that the 
following lines won’t break the lazily loaded property? Point out two ways: 

billWithers.songs 

billWithers.songsFileName = "oldsongs" 

billWithers.songs.count // Should be 0 after renaming songsFileName, 

  but is 2 

The lazy property songs points to a var called songsFileName. To prevent mutation after lazily 
loading songs, you can make songsFileName a constant with let. Alternatively, you can 
make Artist a class to prevent this bug. 

4 

If you need a property with both behavior and storage, what kind of property would you use? 

A stored property with a property observer 

5 

If you need a property with only behavior and no storage, what kind of property would you use? 

A computed property, or lazy property if the computation is expensive 

6 



Can you spot the bug in the code? 

The whitespace isn’t trimmed from the initializer. 

7 

How can you fix the bug? 

By adding an initializer to the struct with a defer clause 

struct Tweet { 

    let date: Date 

    let author: String 

    var message: String { 

        didSet { 

            message = message.trimmingCharacters(in: .whitespaces) 

        } 

    } 

 

    init(date: Date, author: String, message: String) { 

        defer { self.message = message } 

        self.date = date 

        self.author = author 

        self.message = message 

    } 

} 

 

let tweet = Tweet(date: Date(), 

                  author: "@tjeerdintveen", 

                  message: "This has a lot of unnecessary whitespace   ") 

 

tweet.message.count 

 

 

 



Chapter 4. Making optionals second nature 

This chapter covers 

• Best practices related to optionals 
• Handling multiple optionals with guards 
• Properly dealing with optional strings versus empty strings 
• Juggling various optionals at once 
• Falling back to default values using the nil-coalescing operator 
• Simplifying optional enums 
• Dealing with optional Booleans in multiple ways 
• Digging deep into values with optional chaining 
• Force unwrapping guidelines 
• Taming implicitly unwrapped optionals 

This chapter helps you acquire many tools to take you from optional frustration to optional 
nirvana while applying best practices along the way. Optionals are so pervasive in Swift that we 
spend some extra pages on them to leave no stone unturned. Even if you are adept at handling 
optionals, go through this chapter and fill in any knowledge gaps. 

The chapter starts with what optionals are and how Swift helps you by adding syntactic sugar. 
Then we go over style tips paired with bite-sized examples that you regularly encounter in Swift. 
After that, you’ll see how to stop optionals from propagating inside a method via a guard. We 
also cover how to decide on returning empty strings versus optional strings. Next, we show how 
to get more granular control over multiple optionals by pattern matching on them. Then, you’ll 
see that you can fall back on default values with the help of the nil-coalescing operator. 

Once you encounter optionals containing other optionals, you’ll see how optional chaining can 
be used to dig deeper to reach nested values. Then we show how to pattern match on optional 
enums. You’ll be able to shed some weight off your switch statements after reading this section. 
You’ll also see how optional Booleans can be a bit awkward; we show how to correctly handle 
them, depending on your needs. 

Force unwrapping, a technique to bypass the safety that optionals offer, gets some personal 
attention. This section shares when it is acceptable to force unwrap optionals. You’ll also see 
how you can supply more information if your application unfortunately crashes. This section has 
plenty of heuristics that you can use to improve your code. Following force unwrapping, we 
cover implicitly unwrapped optionals, which are optionals that have different behavior 
depending on their context. You’ll explicitly see how to handle them properly. 

This chapter is definitely “big-boned.” On top of that, optionals keep returning to other chapters 
with nifty tips and tricks, such as applying map and flatMap on optionals, and compactMap on 
arrays with optionals. The goal is that at the end of this chapter you’ll feel adept and confident in 
being able to handle any scenario involving optionals. 



4.1. THE PURPOSE OF OPTIONALS 

 

Simply put, an optional is a “box” that does or does not have a value. You may have heard of 
optionals, such as the Option type in Rust or Scala, or the Maybe type in Haskell. 

Optionals help you prevent crashes when a value is empty; they do so by asking you to explicitly 
handle each case where a variable or constant could be nil. An optional value needs to 
be unwrapped to get the value out. If there is a value, a particular piece of code can run. If there 
isn’t a value present, the code takes a different path. 

Thanks to optionals you’ll always know at compile time if a value can be nil, which is a luxury 
not found in specific other languages. As a case in point, if you obtain a nil value in Ruby and 
don’t check for it, you may get a runtime error. The downside of handling optionals is that it 
may slow you down and cause some frustration up front because Swift makes you explicitly 
handle each optional when you want its value. But as a reward, you gain safer code in return. 

With this book’s help, you’ll become so accustomed to optionals that you’ll be able to handle 
them quickly and comfortably. With enough tools under your belt, you may find optionals are 
pleasant to work with, so let’s get started! 

4.2. CLEAN OPTIONAL UNWRAPPING 

In this section, you’ll see how optionals are represented in code and how to unwrap them in 
multiple ways. 

You’ll start by modeling a customer model for the backend of a fictional web store called The 
Mayonnaise Depot, catering to all your mayonnaise needs. 

 



Join me! 

It’s more educational and fun if you can check out the code and follow along with the chapter. 
You can download the source code at http://mng.bz/6jO5. 

 

This Customer struct holds a customer’s ID, email, name, and current balance, which the web 
store can use to do business with a customer. For demonstration purposes, we left out some 
other important properties, such as an address and payment information. 

The web store is quite lenient and allows for a customer to leave out their first and last name 
when ordering delicious mayonnaise; this makes it easier for customers to order mayonnaise. 
You represent these values as optional firstName and lastName inside the struct as shown in the 
following. 

Listing 4.1. The Customer struct 

struct Customer { 

    let id: String                         ❶ 

    let email: String 

    let balance: Int // amount in cents 

    let firstName: String?                 ❷ 

    let lastName: String? 

} 

• ❶ The id, email, and balance properties are mandatory. 
• ❷ Customer has two optional properties: firstName, and lastName. 

Optionals are variables or constants denoted by a ?. But if you take a closer look, you’ll see that 
an optional is an enum that may or may not contain a value. Let’s look at the Optionaltype 
inside the Swift source code. 

Listing 4.2. Optionals are an enum 

// Details omitted from Swift source. 

public enum Optional<Wrapped> { 

  case none 

  case some(Wrapped) 

} 

The Wrapped type is a generic type that represents the value inside an optional. If it has a value, 
it is wrapped inside the some case; if no value is present, the optional has a none case for that. 



Swift adds some syntactic sugar to the optional syntax because without this sugar you would be 
writing your Customer struct as follows. 

Listing 4.3. Optionals without syntactic sugar 

struct Customer { 

    let id: String 

    let email: String 

    let balance: Int 

    let firstName: Optional<String>     ❶ 

    let lastName: Optional<String>      ❷ 

} 

• ❶ An optional notation without syntactic sugar 
• ❷ Another optional without syntactic sugar 

 

Note 

Writing an optional explicitly is still legit Swift code and compiles just fine, but it isn’t idiomatic 
Swift (so only use this knowledge to win pub quizzes). 

 

4.2.1. Matching on optionals 

In general, you unwrap an optional using if let, such as unwrapping a 
customer’s firstNameproperty. 

Listing 4.4. Unwrapping via if let 

let customer = Customer(id: "30", email: "mayolover@gmail.com", 

➥ firstName: "Jake", lastName: "Freemason", balance: 300) 

 

print(customer.firstName) // Optional("Jake")         ❶ 

if let firstName = customer.firstName { 

    print(firstName) // "Jake"                        ❷ 

} 

• ❶ The optional string 
• ❷ The unwrapped string 



But again, without Swift’s syntactic sugar you’d be matching on optionals everywhere with 
switch statements. Matching on an optional is demonstrated in figure 4.1, and it comes in handy 
later in this chapter—for example, when you want to combine unwrapping with pattern 
matching. 

Figure 4.1. Matching on an optional 

 

Swift agrees that you can pattern match on optionals; it even offers a little syntactic sugar for 
that. 

You can omit the .some and .none cases from the example below and replace them with let 
name? and nil, as shown in listing 4.5. 

Listing 4.5. Matching on optional with syntactic sugar 

switch customer.firstName { 

 case let name?: print("First name is \(name)")           ❶ 

 case nil: print("Customer didn't enter a first name")    ❷ 

} 

• ❶ When firstName has a value, bind it to name and print it. 
• ❷ You can explicitly match when firstName is nil. 

This code does the same as before, just written a bit differently. 

Luckily, Swift offers plenty of syntactic sugar to save us all some typing. Still, it’s good to know 
that optionals are enums at heart once you stumble upon more complicated or esoteric 
unwrapping techniques. 



4.2.2. Unwrapping techniques 

You can combine the unwrapping of multiple optionals. Combining them instead of indenting 
helps keep indentation lower. For instance, you can handle two optionals at once by unwrapping 
both the firstName and the lastName of a Customer, as shown here. 

Listing 4.6. Combining optional unwrapping 

if let firstName = customer.firstName, let lastName = customer.lastName { 

    print("Customer's full name is \(firstName) \(lastName)") 

} 

Unwrapping optionals doesn’t have to be the only action inside an if statement; you can 
combine if let statements with Booleans. 

For example, you can unwrap a customer’s firstName and combine it with a Boolean, such as 
the balance property, to write a customized message. 

Listing 4.7. Combining a Boolean with an optional 

if let firstName = customer.firstName, customer.balance > 0 { 

    let welcomeMessage = "Dear \(firstName), you have money on your account, 

     want to spend it on mayonnaise?" 

} 

But it doesn’t have to stop at Booleans. You can also pattern match while you unwrap an 
optional. For example, you can pattern match on balance as well. 

In the following example, you’ll create a notification for the customer when 
their balance(indicated by cents) has a value that falls inside a range between 4,500 and 5,000 
cents, which would be 45 to 50 dollars. 

Listing 4.8. Combining pattern matching with optional unwrapping 

if let firstName = customer.firstName, 4500..<5000 ~= customer.balance { 

    let notification = "Dear \(firstName), you are getting close to afford 

     our $50 tub!" 

} 

Embellishing if statements with other actions can clean up your code. You can separate Boolean 
checks and pattern matching from optional unwrapping, but then you’d usually end up with 
nested if statements and sometimes multiple else blocks. 



4.2.3. When you’re not interested in a value 

Using if let to unwrap optionals is great for when you’re interested in a value. But if you want 
to perform actions when a value is nil or not relevant, you can use a traditional nil check as other 
languages do. 

In the next example, you’d like to know whether a customer has a full name filled in, but you 
aren’t interested in what this name may be. You can again use the “don’t care” wildcard operator 
to bind the unwrapped values to nothing. 

Listing 4.9. Underscore use 

if 

  let _ = customer.firstName, 

  let _ = customer.lastName { 

  print("The customer entered his full name") 

} 

Alternatively, you can use nil checks for the same effect. 

Listing 4.10. Nil checking optionals 

if 

  customer.firstName != nil, 

  customer.lastName != nil { 

  print("The customer entered his full name") 

} 

You can also perform actions when a value is empty. 

Next, you check if a customer has a name set, without being interested in what this name may 
be. 

Listing 4.11. When an optional is nil 

if customer.firstName == nil, 

   customer.lastName == nil { 

   print("The customer has not supplied a name.") 

} 

Some may argue that nil checking isn’t “Swifty.” But you can find nil checks inside the Swift 
source code. Feel free to use nil checks if you think it helps readability. Clarity is more important 
than style. 



4.3. VARIABLE SHADOWING 

At first, you may be tempted to come up with unique names when unwrapped (for instance, 
having a constant firstName and naming the unwrapped constant unwrappedFirstName), but this 
is not necessary. 

You can give the unwrapped value the same name as the optional in a different scope; this is a 
technique called variable shadowing. Let’s see how this looks. 

4.3.1. Implementing CustomStringConvertible 

To demonstrate variable shadowing, you’ll create a method that uses the optional properties 
of Customer. Let’s make Customer conform to the CustomStringConvertible protocol so that you 
can demonstrate this. 

By making Customer adhere to the CustomStringConvertible protocol, you indicate that it prints 
a custom representation in print statements. Conforming to this protocol forces you to 
implement the description property. 

Listing 4.12. Conforming to the CustomStringConvertible protocol 

extension Customer: CustomStringConvertible {                         ❶ 

     var description: String { 

        var customDescription: String = "\(id), \(email)" 

 

        if let firstName = firstName {                                ❷ 

             customDescription += ", \(firstName)"                    ❸ 

        } 

 

        if let lastName = lastName {                                  ❹ 

             customDescription += " \(lastName)"                      ❺ 

        } 

 

        return customDescription 

    } 

} 

 

let customer = Customer(id: "30", email: "mayolover@gmail.com", 



➥ firstName: "Jake", lastName: "Freemason", balance: 300) 

 

print(customer) // 30, mayolover@gmail.com, Jake Freemason            ❻ 

• ❶ Customer implements the CustomStringConvertible protocol. 
• ❷ Unwrap the firstName optional property, binding it to a constant with the same name. 
• ❸ Inside the unwrapped if let scope, firstName is unwrapped and not optional. 
• ❹ Unwrap the lastName optional property, binding it to a constant with the same name. 
• ❺ The lastName constant is unwrapped in the if let scope. 
• ❻ A custom description is now shown when you print a customer. 

This example shows how both firstName and lastName were unwrapped using variable 
shadowing, preventing you from coming up with special names. At first, variable shadowing 
may look confusing, but once you’ve been handling optionals for a while, you can be assured 
that it is nice to read. 

4.4. WHEN OPTIONALS ARE PROHIBITED 

Let’s see how you handle multiple optionals when nil values aren’t usable. When The 
Mayonnaise Depot web store receives an order, customers get a confirmation message sent by 
email, which needs to be created by the backend. This message looks as follows. 

Listing 4.13. Confirmation message 

Dear Jeff, 

Thank you for ordering the economy size party tub! 

Your order will be delivered tomorrow. 

 

Kind regards, 

The Mayonnaise Depot 

The function helps create a confirmation message by accepting a customer’s name and the 
product that the customer ordered. 

Listing 4.14. An order confirmation message 

func createConfirmationMessage(name: String, product: String) -> String { 

    return """                                                             ❶ 

     Dear \(name),                                                         ❷ 

     Thank you for ordering the \(product)! 

     Your order will be delivered tomorrow. 

 



     Kind regards, 

     The Mayonnaise Depot 

     """ 

} 

 

let confirmationMessage = createConfirmationMessage(name: "Jeff", product: 

     "economy size party tub")                                             ❸ 

• ❶ Use Swift’s multiline string operator—denoted with ″″″—to create a multiline string. 
• ❷ Replace name and product inside the string with the one you pass into the function. 
• ❸ You can call this function with a name and a product. 

To get the customer’s name, first decide on the name to display. Because 
both firstName and lastName are optional, you want to make sure you have these values to 
display in an email. 

4.4.1. Adding a computed property 

You’re going to introduce a computed property to supply a valid customer name. You’ll call this 
property displayName. Its goal is to help display a customer’s name for use in emails, web pages, 
and so on. 

You can use a guard to make sure that all properties have a value; if not, you return an empty 
string. But you’ll quickly see a better solution than returning an empty string, as shown in this 
listing. 

Listing 4.15. The Customer struct 

struct Customer { 

    let id: String 

    let email: String 

    let firstName: String? 

    let lastName: String? 

 

    var displayName: String { 

      guard let firstName = firstName, let lastName = lastName else {   ❶ 

         return ""                                                      ❷ 

      } 

      return "\(firstName) \(lastName)"                                 ❸ 



    } 

} 

• ❶ The guard clause binds the unwrapped values of firstName and lastName to equally 
named constants. 

• ❷ If both or either firstName or lastName is nil, guard returns an empty name. You’ll 
improve this soon. 

• ❸ Underneath the guard, the optionals are unwrapped. A full name is returned. 

Guards are great for a “none shall pass” approach where optionals are not wanted. In a moment 
you’ll see how to get more granular control with multiple optionals. 

 

Guards and indentation 

Guards keep the indentation low! This makes them a good candidate for unwrapping without 
increasing indentation. 

 

Now you can use the displayName computed property to use it in any customer communication. 

Listing 4.16. displayName in action 

let customer = Customer(id: "30", email: "mayolover@gmail.com", 

➥ firstName: "Jake", lastName: "Freemason", balance: 300) 

 

customer.displayName // Jake Freemason 

4.5. RETURNING OPTIONAL STRINGS 

In real-world applications, you may be tempted to return an empty string because it saves the 
hassle of unwrapping an optional string. Empty strings often make sense, too, but in this 
scenario, they aren’t beneficial. Let’s explore why. 

The displayName computed property serves its purpose, but a problem occurs when 
the firstName and lastName properties are nil: displayName returns an empty string, such as "". 
Unless you rely on a sharp coworker to add displayName.isEmpty checks throughout the whole 
application, you may miss one case, and some customers will get an email starting 
with "Dear," where the name is missing. 

Strings are expected to be empty where they make sense, such as loading a text file that may be 
empty, but an empty string makes less sense in displayName because implementers of this code 
expect some name to display. 



In such a scenario, a better method is to be explicit and tell the implementers of the method that 
the string can be optional; you do this by making displayName return an optional string. 

The benefit of returning an optional String is that you would know at compile-time 
that displayName may not have a value, whereas with the isEmpty check you’d know it at 
runtime. This compile-time safety comes in handy when you send out a newsletter to 500,000 
people, and you don’t want it to start with "Dear,". 

Returning an optional string may sound like a strawman argument, but it happens plenty of 
times inside projects, especially when developers aren’t too keen on optionals. By not returning 
an optional, you are trading compile-time safety for a potential runtime error. 

To set the right example, displayName would return an optional String for displayName. 

Listing 4.17. Making displayName return an optional String 

struct Customer { 

   // ... snip 

 

    var displayName: String? {                                           ❶ 

       guard let firstName = firstName, let lastName = lastName else { 

         return nil                                                      ❷ 

       } 

       return "\(firstName) \(lastName)" 

    } 

} 

• ❶ displayName now returns an optional String. 
• ❷ The guard returns nil when the names are empty. 

Now that displayName returns an optional String, the caller of the method must deal with 
unwrapping the optional explicitly. Having to unwrap displayName, as shown next, may be a 
hassle, but you get more safety in return. 

Listing 4.18. Unwrapping the optional displayName 

if let displayName = customer.displayName { 

    createConfirmationMessage(name: displayName, product: "Economy size party 

     tub") 

} else { 

    createConfirmationMessage(name: "customer", product: "Economy size party 



     tub") 

} 

For peace of mind, you can add an isEmpty check for extra runtime safety to be super-duper safe 
in critical places in your application—such as sending newsletters—but at least you now get 
some help from the compiler. 

4.6. GRANULAR CONTROL OVER OPTIONALS 

Currently, displayName on a customer needs to have both a firstName and lastName value before 
it returns a proper string. Let’s loosen displayName up a little so that it can return whatever 
name it can find, making the property more lenient. If only a first name or last name is known, 
the displayName function can return either or both of those values, depending on which names 
are filled in. 

You can make displayName more flexible by replacing the guard with a switch statement. 
Essentially this means that unwrapping the two optionals becomes part of the logic of 
a displayName, whereas with guard you would block any nil values before the property’s method 
continues. 

As an improvement, you put both optionals inside a tuple, such as (firstName, lastName), and 
then match on both optionals at once. This way you can return a value depending on which 
optionals carry a value. 

 

By using the "?" operator in the cases, you bind and unwrap the optionals. This is why you end 
up with a non-optional property in the strings inside the case statements. 

Now when a customer doesn’t have a full name, you can still use part of the name, such as the 
last name only. 



Listing 4.19. displayName works with a partially filled-in name 

let customer = Customer(id: "30", email: "famthompson@gmail.com", 

➥ firstName: nil, lastName: "Thompson", balance: 300) 

 

print(customer.displayName) // "Thompson" 

Just be wary of adding too many optionals in a tuple. Usually, when you’re adding three or more 
optionals inside a tuple, you may want to use a different abstraction for readability, such as 
falling back to a combination of if let statements. 

4.6.1. Exercises 

1 

If no optionals in a function are allowed to have a value, what would be a good tactic to make sure 
that all optionals are filled? 

2 

If the functions take different paths depending on the optionals inside it, what would be a correct 
approach to handle all these paths? 

4.7. FALLING BACK WHEN AN OPTIONAL IS NIL 

Earlier you saw how you checked empty and optional strings for a 
customer’s displayNameproperty. 

When you ended up with an unusable displayName, you fell back to “customer,” so that in the 
communication, The Mayonnaise Depot starts their emails with “Dear customer.” 

When an optional is nil, it’s a typical scenario to resort to a fallback value. Because of this, Swift 
offers some syntactic sugar in the shape of the ?? operator, called the nil-coalescing operator. 

You could use the ?? operator to fall back to "customer" when a customer has no name available. 

Listing 4.20. Defaulting back on a value with the nil-coalescing operator 

let title: String = customer.displayName ?? "customer" 

createConfirmationMessage(name: title, product: "Economy size party tub") 

Just like before, any time the customer’s name isn’t filled in, the email form starts with “Dear 
customer.” This time, however, you shaved off some explicit if let unwrapping from your code. 

Not only does the nil-coalescing operator fall back to a default value, but it also unwraps the 
optional when it does have a value. 



Notice how title is a String, yet you feed it the customer.displayName optional. This means 
that title will either have the customer’s unwrapped name or fall back to the non-optional 
“customer” value. 

4.8. SIMPLIFYING OPTIONAL ENUMS 

You saw before how optionals are enums and that you can pattern match on them, such as when 
you were creating the displayName value on the Customer struct. Even though optionals are 
enums, you can run into an enum that is an optional. An optional enum is an enum inside an 
enum. In this section, you’ll see how to handle these optional enums. 

Our favorite web store, The Mayonnaise Depot, introduces two memberships, silver and gold, 
each with respectively five and ten percent discounts on their delicious products. Customers can 
pay for these memberships to get discounts on all their orders. 

A Membership enum, as shown in this example, represents these membership types; it contains 
the silver and gold cases. 

Listing 4.21. The Membership enum 

enum Membership { 

    /// 10% discount 

    case gold 

    /// 5% discount 

    case silver 

} 

Not all customers have upgraded to a membership, resulting in an optional membershipproperty 
on the Customer struct. 

Listing 4.22. Adding a membership property to Customer 

struct Customer { 

    // ... snip 

    let membership: Membership? 

} 

When you want to read this value, a first implementation tactic could be to unwrap the enum 
first and act accordingly. 

Listing 4.23. Unwrapping an optional before pattern matching 

if let membership = customer.membership { 

    switch membership { 



    case .gold: print("Customer gets 10% discount") 

    case .silver: print("Customer gets 5% discount") 

    } 

} else { 

    print("Customer pays regular price") 

} 

Even better, you can take a shorter route and match on the optional enum by using 
the ?operator. The ? operator indicates that you are unwrapping and reading the 
optional membership at the same time. 

Listing 4.24. Pattern matching on an optional 

switch customer.membership { 

case .gold?: print("Customer gets 10% discount") 

case .silver?: print("Customer gets 5% discount") 

case nil: print("Customer pays regular price") 

} 

 

Note 

If you match on nil, the compiler tells you once you add a new case to the enum. 
With defaultyou don’t get this luxury. 

 

In one fell swoop, you both pattern matched on the enum and unwrapped it in the process, 
helping you eliminate an extra if let unwrapping step from your code. 

4.8.1. Exercise 

3 

You have two enums. One enum represents the contents of a pasteboard (some data that a user cut 
or copied to the pasteboard): 

enum PasteBoardContents { 

    case url(url: String) 

    case emailAddress(emailAddress: String) 

    case other(contents: String) 

} 



The PasteBoardEvent represents the event related to PasteBoardContents. Perhaps the contents 
were added to the pasteboard, erased from the pasteboard, or pasted from the pasteboard: 

enum PasteBoardEvent { 

    case added 

    case erased 

    case pasted 

} 

The describeAction function takes on the two enums, and it returns a String describing the event, 
such as “The user added an email address to pasteboard.” The goal of this exercise is to fill the body 
of a function: 

func describeAction(event: PasteBoardEvent?, contents: 

  PasteBoardContents?) -> String { 

    // What goes here? 

} 

Given this input 

describeAction(event: .added, contents: .url(url: "www.manning.com")) 

describeAction(event: .added, contents: .emailAddress(emailAddress: 

  "info@manning.com")) 

describeAction(event: .erased, contents: .emailAddress(emailAddress: 

  "info@manning.com")) 

describeAction(event: .erased, contents: nil) 

describeAction(event: nil, contents: .other(contents: "Swift in Depth")) 

make sure that the output is as follows: 

"User added an url to pasteboard: www.manning.com." 

"User added something to pasteboard." 

"User erased an email address from the pasteboard." 

"The pasteboard is updated." 

"The pasteboard is updated." 

4.9. CHAINING OPTIONALS 

Sometimes you need a value from an optional property that can also contain another optional 
property. 



Let’s demonstrate by creating a product type that The Mayonnaise Depot offers in their store, 
such as a giant tub of mayonnaise. The following struct represents a product. 

Listing 4.25. Introducing Product 

struct Product { 

    let id: String 

    let name: String 

    let image: UIImage? 

} 

A customer can have a favorite product for special quick orders. Add it to the Customer struct. 

Listing 4.26. Adding an optional favoriteProduct to Customer 

struct Customer { 

    // ... snip 

    let favoriteProduct: Product? 

If you were to get the image from a favoriteProduct, you’d have to dig a bit to reach it from a 
customer. You can dig inside optionals by using the ? operator to perform optional chaining. 

Additionally, if you were to set an image to UIKit’s UIImageView, you could give it a customer’s 
product’s image with the help of chaining. 

Listing 4.27. Applying optional chaining 

let imageView = UIImageView() 

imageView.image = customer.favoriteProduct?.image 

Notice how you used the ? to reach for the image inside favoriteProduct, which is an optional. 

You can still perform regular unwraps on chained optionals by using if let, which is especially 
handy when you want to perform some action when a chained optional is nil. 

The following listing tries to display the image from a product and fall back on a missing default 
image if either favoriteProduct or its image property is nil. 

Listing 4.28. Unwrapping a chained optional 

if let image = customer.favoriteProduct?.image { 

  imageView.image = image 

} else { 

  imageView.image = UIImage(named: "missing_image") 



} 

For the same effect, you can also use a combination of optional chaining and nil coalescing. 

Listing 4.29. Combining nil coalescing with optional chaining 

imageView.image = customer.favoriteProduct?.image ?? UIImage(named: "missing_ 

     image") 

Optional chaining isn’t a mandatory technique, but it helps with concise optional unwrapping. 

4.10. CONSTRAINING OPTIONAL BOOLEANS 

Booleans are a value that can either be true or false, making your code nice and predictable. 
Now Swift comes around and says “Here’s a Boolean with three states: true, false, and nil.” 

Ending up with some sort of quantum Boolean that can contain three states can make things 
awkward. Is a nil Boolean the same as false? It depends on the context. You can deal with 
Booleans in three scenarios: one where a nil Boolean represents false, one where it represents a 
true value, and one where you explicitly want three states. 

Whichever approach you pick, these methods are here to make sure that nil Booleans don’t 
propagate too far into your code and cause mass confusion. 

4.10.1. Reducing a Boolean to two states 

You can end up with an optional Boolean, for example, when you’re parsing data from an API in 
which you try to read a Boolean, or when retrieving a key from a dictionary. 

For instance, a server can return some preferences a user has set for an app, such as wanting to 
log in automatically, or whether or not to use Apple’s Face ID to log in, as shown in the following 
example. 

Listing 4.30. Receiving an optional Boolean 

let preferences = ["autoLogin": true, "faceIdEnabled": true]      ❶ 

 

let isFaceIdEnabled = preferences["faceIdEnabled"]                ❷ 

print(isFaceIdEnabled) // Optional(true) 

• ❶ Received this dictionary from a server 
• ❷ Find out if Face ID is enabled. 

When you want to treat a nil as false, making it a regular Boolean straight away can be 
beneficial, so dealing with an optional Boolean doesn’t propagate far into your code. 



You can do this by using a fallback value, with help from the nil-coalescing operator ??. 

Listing 4.31. Falling back with the nil-coalescing operator 

let preferences = ["autoLogin": true, "faceIdEnabled": true] 

 

let isFaceIdEnabled = preferences["faceIdEnabled"] ?? false 

print(isFaceIdEnabled) // true, not optional any more. 

Via the use of the nil-coalescing operator, the Boolean went from three states to a regular 
Boolean again. 

4.10.2. Falling back on true 

Here’s a counterpoint: blindly falling back to false is not recommended. Depending on the 
scenario, you may want to fall back on a true value instead. 

Consider a scenario where you want to see whether a customer has Face ID enabled so that you 
can direct the user to a Face ID settings screen. In that case, you can fall back on trueinstead. 

Listing 4.32. Falling back on true 

if preferences["faceIdEnabled"] ?? true { 

    // go to Face ID settings screen. 

} else { 

    // customer has disabled Face ID 

} 

It’s a small point, but it shows that seeing an optional Boolean and thinking “Let’s make it false” 
isn’t always a good idea. 

4.10.3. A Boolean with three states 

You can give an optional Boolean more context when you do want to have three states. Consider 
an enum instead to make these states explicit. 

Following the user preference example from earlier, you’re going to convert the Boolean to an 
enum called UserPreference with three cases: .enabled, .disabled, and .notSet. You do this to 
be more explicit in your code and gain compile-time benefits. 

Listing 4.33. Converting a Boolean to an enum 

let isFaceIdEnabled = preferences["faceIdEnabled"] 

print(isFaceIdEnabled) // Optional(true) 

 



// We convert the optional Boolean to an enum here. 

let faceIdPreference = UserPreference(rawValue: isFaceIdEnabled)    ❶ 

 

// Now we can pass around the enum. 

// Implementers can match on the UserPreference enum. 

switch faceIdPreference {                                           ❷ 

case .enabled: print("Face ID is enabled") 

case .disabled: print("Face ID is disabled") 

case .notSet: print("Face ID preference is not set") 

} 

• ❶ A Boolean is passed to create a UserPreference. 
• ❷ The enum can be matched on with three explicit cases: .enabled, .disabled, or .notSet. 

A nice benefit is that now receivers of this enum have to explicitly handle all three cases, unlike 
with the optional Boolean. 

4.10.4. Implementing RawRepresentable 

You can add a regular initializer to an enum to convert it from a Boolean. Still, you can be 
“Swiftier” and implement the RawRepresentable protocol 
(https://developer.apple.com/documentation/swift/rawrepresentable) as a convention. 

Conforming to RawRepresentable is the idiomatic way of turning a type to a raw value and back 
again. Adhering to this protocol makes streamlining to Objective-C easier and simplifies 
conformance to other protocols, such as Equatable, Hashable, and Comparable—more on that 
in chapter 7. 

Once you implement the RawRepresentable protocol, a type has to implement 
a rawValueinitializer as well as a rawValue property to convert a type to the enum and back 
again. 

The UserPreference enum looks as follows. 

Listing 4.34. The UserPreference enum 

enum UserPreference: RawRepresentable {          ❶ 

    case enabled 

    case disabled 

    case notSet 

 



    init(rawValue: Bool?) {                      ❷ 

         switch rawValue {                       ❸ 

           case true?: self = .enabled           ❹ 

           case false?: self = .disabled         ❹ 

           default: self = .notSet 

         } 

    } 

 

    var rawValue: Bool? {                        ❺ 

         switch self { 

           case .enabled: return true 

           case .disabled: return false 

           case .notSet: return nil 

         } 

    } 

 

} 

• ❶ The enum conforms to RawRepresentable. 
• ❷ You can initialize UserPreference with an optional Boolean. 
• ❸ The reason you can use a switch on rawValue is that it’s an optional, and optionals are 

enums. 
• ❹ You use the question mark to match on an optional value. 
• ❺ To conform to RawRepresentable, UserPreference also has to return the original 

rawValue. 

Inside the initializer, you pattern match on the optional Boolean. By using the question mark, 
you pattern match directly on the value inside the optional; then you set the enum to the proper 
case. 

As a final step, you default to setting the enum to .notSet, which happens if the preference is nil. 

Now you constrained a Boolean to an enum and gave it more context. But it comes at a cost: you 
are introducing a new type, which may muddy up the codebase. When you want to be explicit 
and gain compile-time benefits, an enum might be worth that cost. 

4.10.5. Exercise 

4 



Given this optional Boolean 

let configuration = ["audioEnabled": true] 

create an enum called AudioSetting that can handle all three cases: 

let audioSetting = AudioSetting(rawValue: configuration["audioEnabled"]) 

 

switch audioSetting { 

case .enabled: print("Turn up the jam!") 

case .disabled: print("sshh") 

case .unknown: print("Ask the user for the audio setting") 

} 

Also, make sure you can get the value out of the enum again: 

let isEnabled = audioSetting.rawValue 

4.11. FORCE UNWRAPPING GUIDELINES 

 

Force unwrapping means you unwrap an optional without checking to see if a value exists. By 
force unwrapping an optional, you reach for its wrapped value to use it. If the optional has a 



value, that’s great. If the optional is empty, however, the application crashes, which is not so 
great. 

Take Foundation’s URL type, for example. It accepts a String parameter in its initializer. Then 
a URL is either created or not, depending on whether the passed string is a proper path—
hence URL’s initializer can return nil. 

Listing 4.35. Creating an optional URL 

let optionalUrl = URL(string: "https://www.themayonnaisedepot.com") 

➥ // Optional(http://www.themayonnaisedepot.com) 

You can force unwrap the optional by using an exclamation mark, bypassing any safe 
techniques. 

Listing 4.36. Force unwrapping an optional URL 

let forceUnwrappedUrl = URL(string: "https://www.themayonnaisedepot.com")! 

➥ // http://www.themayonnaisedepot.com. Notice how we use the ! to force 

     unwrap. 

Now you don’t need to unwrap the optional anymore. But force unwrapping causes your app to 
crash on an invalid path. 

Listing 4.37. A crashing optional URL 

let faultyUrl = URL(string: "mmm mayonnaise")!       ❶ 

• ❶ Crash—URL can’t be instantiated and is force unwrapped. 

4.11.1. When force unwrapping is “acceptable” 

Ideally, you would never use force unwrapping. But sometimes you can’t avoid force 
unwrapping because your application can end up in a bad state. Still, think about it: Is there 
truly no other way you can prevent a force unwrap? Perhaps you can return a nil instead, or 
throw an error. 

As a heuristic, only use a force unwrap as a last resort and consider the following exceptions. 

Postponing error handling 

Having error handling in place at the start can slow you down. When your functions can throw 
an error, the caller of the function must now deal with the error, which is extra work and logic 
that takes time to implement. 

One reason to apply a force unwrap is to produce some working piece of code quickly, such as 
creating a prototype or a quick and dirty Swift script. Then you can worry about error handling 
later. 



You could use force unwraps to get your application started, then consider them as markers to 
replace the force unwraps with proper error handling. But you and I both know that in 
programming “I’ll do it later” means “I’m never going to do it,” so take this advice with a grain of 
salt. 

When you know better than the compiler 

If you’re dealing with a value that’s fixed at compile-time, force unwrapping an optional can 
make sense. 

In the following listing, you know that the passed URL will parse, even though the compiler 
doesn’t know it yet. It’s safe to force unwrap here. 

Listing 4.38. Force unwrapping a valid URL 

let url = URL(string: "http://www.themayonnaisedepot.com")! // 

     http://www.themayonnaisedepot.com 

But if this URL is a runtime-loaded variable—such as user input—you can’t guarantee a safe 
value, in which case you would risk a crash if you were to force unwrap it. 

4.11.2. Crashing with style 

Sometimes you may not be able to avoid a crash. But then you may want to supply more 
information instead of performing a force unwrap. 

For example, imagine you’re creating a URL from a path you get at runtime—meaning that the 
passed path isn’t guaranteed to be usable—and the application for some reason cannot continue 
when this URL is invalid, which means that the URL type returns nil. 

Instead of force unwrapping the URL type, you can choose to crash manually and add some more 
information, which helps you with debugging in the logs. 

You can do this by manually crashing your application with the fatalError function. You can 
then supply extra information such as #line and #function, which supplies the precise 
information where an application crashed. 

In the following listing you try to unwrap the URL first using a guard. But if the unwrapping fails, 
you manually cause a fatalError with some extra information that can help you during 
debugging. 

Listing 4.39. Crashing manually 

guard let url = URL(string: path) else { 

  fatalError("Could not create url on \(#line) in \(#function)") 

} 



One big caveat though: if you’re building an iOS app, for example, your users may see sensitive 
information that you supply in the crash log. What you put in the fatalErrormessage is 
something you’ll have to decide on a case-by-case basis. 

4.12. TAMING IMPLICITLY UNWRAPPED OPTIONALS 

 

Implicitly unwrapped optionals, or IUOs, are tricky because they are unique optionals that are 
automatically unwrapped depending on their context. But if you aren’t careful, they can crash 
your application! 

This section is about bending IUOs to your will while making sure they won’t hurt you. 

4.12.1. Recognizing IUOs 

An IUO force unwraps a type, instead of an instance. 

Listing 4.40. Introducing an IUO 

let lastName: String! = "Smith"      ❶ 

 

let name: String? = 3 

let firstName = name!                ❷ 



• ❶ Implicitly unwrapped optional 
• ❷ Force unwrapped instance 

You can recognize IUOs by the bang (!) after the type, such as String!. You can think of them 
as pre-unwrapped optionals. 

Like force unwrapping, the ! indicates a danger sign in Swift. IUOs also can crash your 
application, which you’ll see shortly. 

4.12.2. IUOs in practice 

IUOs are like a power drill. You may not use them often, but they come in handy when you need 
them. But if you make a mistake, they can mess up your foundation. 

When you create an IUO, you promise that a variable or constant is populated 
shortly afterinitialization, but before you need it. When that promise is broken, people get hurt 
(well, technically, the application can crash). But disaster happens if your application controls 
nuclear power plants or helps dentists administer laughing gas to patients. 

Going back to The Mayonnaise Depot, they have decided to add a chat service to their backend 
so that customers can ask for help ordering products. 

When the backend server starts, the server initiates a process monitor before anything else. This 
process monitor makes sure that the system is ready before other services are initialized and 
started, which means that you’ll have to start the chat server after the process monitor. After the 
process monitor is ready, the chat server is passed to the process monitor (see figure 4.2). 

Figure 4.2. Starting the process monitor 

 

Since the server initiates ProcessMonitor before anything else, ProcessMonitor could have an 
optional reference to the chat service. As a result, the ChatService can be given 
to ProcessMonitor at a later time. But making the chat server optional on the process monitor is 



cumbersome because to access the chat server, you’d have to unwrap the chat service every time 
while knowing that the process monitor has a valid reference. 

You could also make the chat service a lazy property on ProcessMonitor, but 
then ProcessMonitor is in charge of initializing ChatService. In this 
case, ProcessMonitor doesn’t want to handle the possible dependencies of ChatService. 

This is a good scenario for an IUO. By making the chat service an IUO, you don’t have to pass 
the chat service to the process monitor’s initializer, but you don’t need to make chat service an 
optional, either. 

Creating an IUO 

The following listing shows the code for ChatService and ProcessMonitor. 
The ProcessMonitorhas a start() method to create the monitor. It has a status() method to 
check if everything is still up and running. 

Listing 4.41. Introducing ChatService and ProcessMonitor 

class ChatService { 

    var isHealthy = true 

    // Left empty for demonstration purposes. 

} 

 

class ProcessMonitor { 

 

    var chatService: ChatService!              ❶ 

 

    class func start() -> ProcessMonitor { 

        // In a real-world application: run elaborate diagnostics. 

        return ProcessMonitor() 

    } 

 

    func status() -> String { 

        if chatService.isHealthy { 

            return "Everything is up and running" 

        } else { 

            return "Chatservice is down!" 



        } 

    } 

} 

• ❶ chatService is an IUO, recognizable by the bang !. 

The initialization process starts the monitor, then the chat service, and then finally passes the 
service to the monitor. 

Listing 4.42. The initialization process 

let processMonitor = ProcessMonitor.start() 

// processMonitor runs important diagnostics here. 

// processMonitor is ready. 

 

let chat = ChatService() // Start Chatservice. 

 

processMonitor.chatService = chat 

processMonitor.status() // "Everything is up and running" 

This way you can kick off the processMonitor first, but you have the benefit of 
having chatService available to processMonitor right before you need it. 

But chatService is an IUO, and IUOs can be dangerous. If you for some reason accessed 
the chatService property before it passed to processMonitor, you’d end up with a crash. 

Listing 4.43. A crash from an IUO 

let processMonitor = ProcessMonitor.start() 

processMonitor.status() // fatal error: unexpectedly found nil 

By making chatService an IUO, you don’t have to initialize it via an initializer, but you also 
don’t have to unwrap it every time you want to read a value. It’s a win-win with some danger 
added. As you work more with Swift, you’ll find other ways to get rid of IUOs because they are a 
double-edged sword. For instance, you could pass a ChatServiceFactory to ProcessMonitorthat 
can produce a chat server for ProcessMonitor without ProcessMonitor needing to know about 
dependencies. 

4.12.3. Exercise 

5 

What are good alternatives to IUOs? 



4.13. CLOSING THOUGHTS 

This chapter covered many scenarios involving optionals. Going over all these techniques was no 
easy feat—feel free to be proud! 

Being comfortable with optionals is powerful and an essential foundation as a Swift 
programmer. Mastering optionals helps you make the right choices in a plethora of situations in 
daily Swift programming. 

Later chapters expand on the topic of optionals when you start looking at applying map, flatMap, 
and compactMap on optionals. After you’ve worked through these advanced topics, you’ll be 
optionally zen and handle every optional curveball Swift throws at you. 

SUMMARY 

• Optionals are enums with syntactic sugar sprinkled over them. 
• You can pattern match on optionals. 
• Pattern match on multiple optionals at once by putting them inside a tuple. 
• You can use nil-coalescing to fall back to default values. 
• Use optional chaining to dig deep into optional values. 
• You can use nil-coalescing to transform an optional Boolean into a regular Boolean. 
• You can transform an optional Boolean into an enum for three explicit states. 
• Return optional strings instead of empty strings when a value is expected. 
• Use force unwrapping only if your program can’t recover from a nil value. 
• Use force unwrapping when you want to delay error handling, such as when prototyping. 
• It’s safer to force unwrap optionals if you know better than the compiler. 
• Use implicitly unwrapped optionals for properties that are instantiated right after 

initialization. 

ANSWERS 

1 

If no optionals in a function are allowed to have a value, what would be a good tactic to make sure 
that all optionals are filled? 

Use a guard—this can block optionals at the top of a function. 

2 

If the functions take different paths depending on the optionals inside it, what would be a correct 
approach to handle all these paths? 

Putting multiple optionals inside a tuple allows you to pattern match on them and take different 
paths in a function. 

3 



The code looks like this: 

// Use a single switch statement inside describeAction. 

func describeAction(event: PasteBoardEvent?, contents: 

  PasteBoardContents?) -> String { 

    switch (event, contents) { 

    case let (.added?, .url(url)?): return "User added a url to 

  pasteboard: \(url)" 

    case (.added?, _): return "User added something to pasteboard" 

    case (.erased?, .emailAddress?): return "User erased an email 

  address from the pasteboard" 

    default: return "The pasteboard is updated" 

    } 

} 

4 

The code looks like this: 

enum AudioSetting: RawRepresentable { 

    case enabled 

    case disabled 

    case unknown 

 

    init(rawValue: Bool?) { 

        switch rawValue { 

        case let isEnabled? where isEnabled: self = .enabled 

        case let isEnabled? where !isEnabled: self = .disabled 

        default: self = .unknown 

        } 

    } 

 

    var rawValue: Bool? { 

        switch self { 

        case .enabled: return true 



        case .disabled: return false 

        case .unknown: return nil 

        } 

    } 

 

} 

5 

What are good alternatives to IUOs? 

Lazy properties or factories that are passed via an initializer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5. Demystifying initializers 

This chapter covers 

• Demystifying Swift’s initializer rules 
• Understanding quirks of struct initializers 
• Understanding complex initializer rules when subclassing 
• How to keep the number of initializers low when subclassing 
• When and how to work with required initializers 

As a Swift developer, initializing your classes and structs are one of the core fundamentals that 
you have been using. 

But initializers in Swift are not intuitive. Swift offers memberwise initializers, custom 
initializers, designated initializers, convenience initializers, required initializers, and I didn’t 
even mention the optional initializers, failable initializers, and throwing initializers. Frankly, it 
can get bewildering sometimes. 

This chapter sheds some light on the situation so that instead of having a boxing match with the 
compiler, you can make the most out of initializing structs, classes, and subclasses. 

In this chapter, we model a boardgame hierarchy that you’ll compose out of structs and classes. 
While building this hierarchy, you’ll experience the joy of Swift’s strange initializer rules and 
how you can deal with them. Since creating game mechanics is a topic for a book itself, we only 
focus on the initializer fundamentals in this chapter. 

First, you’ll tinker with struct initializers and learn about the quirks that come with them. After 
that, you’ll move on to class initializers and the subclassing rules that accompany them; this is 
usually where the complexity kicks in with Swift. Then you’ll see how you can reduce the 
number of initializers while you’re subclassing, to keep the number of initializers to a minimum. 
Finally, you’ll see the role that required initializers play, and when and how to use them. 

The goal of this chapter is for you to be able to write initializers in one go, versus doing an 
awkward dance of trial and error to please the compiler gods. 

5.1. STRUCT INITIALIZER RULES 

Structs can be initialized in a relatively straightforward way because you can’t subclass them. 
Nevertheless, there are still some special rules that apply to structs, which we explore in this 
section. In the next section, we model a board game, but first we model the players that can play 
the board game. You’ll create a Player struct containing the name and type of each player’s 
pawn. You’re choosing to model a Player as a struct because structs are well suited for small 
data models (amongst other things). Also, a struct can’t be subclassed, which is fine for 
modeling Player. 

 



Join me! 

It’s more educational and fun if you can check out the code and follow along with the chapter. 
You can download the source code at http://mng.bz/nQE5. 

 

The Player that you’ll model resembles a pawn on a board game. You can instantiate a Playerby 
passing it a name and a type of pawn, such as a car, shoe, or hat. 

Listing 5.1. Creating a player 

let player = Player(name: "SuperJeff", pawn: .shoe) 

You see that a Player has two properties: name and pawn. Notice how the struct has no initializer 
defined. Under the hood, you get a so-called memberwise initializer, which is a free initializer 
the compiler generates for you, as shown here. 

Listing 5.2. Introducing the Player struct 

enum Pawn { 

    case dog, car, ketchupBottle, iron, shoe, hat 

} 

 

struct Player { 

  let name: String 

  let pawn: Pawn 

} 

 

let player = Player(name: "SuperJeff", pawn: .shoe)      ❶ 

• ❶ Swift offers a free memberwise initializer. 

5.1.1. Custom initializers 

Swift is very strict about wanting all properties populated in structs and classes, which is no 
secret. If you’re coming from languages where this wasn’t the case (such as Ruby and Objective-
C), fighting the Swift compiler can be quite frustrating at first. 

To illustrate, you can’t initialize a Player with only a name, omitting a pawn. The following 
won’t compile. 

Listing 5.3. Omitting a property 

let player = Player(name: "SuperJeff") 



 

error: missing argument for parameter 'pawn' in call 

let player = Player(name: "SuperJeff") 

                                     ^ 

                                     , pawn: Pawn 

To make initialization easier, you can omit pawn from the initializer parameters. The struct 
needs all properties propagated with a value. If the struct initializes its properties, you don’t 
have to pass values. In listing 5.4 you’re going to add a custom initializer where you can onlypass 
a name of the Player. The pawn can then randomly be picked for players, making your struct 
easier to initialize. The custom initializer accepts a name and randomly selects the pawn. 

First, you make sure that the Pawn enum conforms to the CaseIterable protocol; doing so allows 
you to obtain an array of all cases via the allCases property. Then in the initializer of Player, 
you can use the randomElement() method on allCases to pick a random element. 

 

Note 

CaseIterable works only on enums without associated values, because with associated values an 
enum could theoretically have an infinite number of variations. 

 

Listing 5.4. Creating your initializer 

enum Pawn: CaseIterable {                                  ❶ 

     case dog, car, ketchupBottle, iron, shoe, hat 

} 

 

struct Player { 

    let name: String 

    let pawn: Pawn 

 

    init(name: String) {                                  ❷ 

         self.name = name 

        self.pawn = Pawn.allCases.randomElement()!        ❸ 

     } 

} 

 



// The custom initializer in action. 

let player = Player(name: "SuperJeff") 

print(player.pawn) // shoe 

• ❶ Make Pawn conform to CaseIterable, which gives you an allCases property on Pawn, 
returning an array of all cases. 

• ❷ Manually create an initializer, accepting a name String. 
• ❸ Randomize a pawn using the randomElement() method on Pawn.allCases. 

 

Note 

The randomElement() method returns an optional that you need to unwrap. You force unwrap it 
via a !. Usually, a force unwrap is considered bad practice. But in this case, you know at 
compile-time that it’s safe to unwrap. 

 

Now indecisive players can have a pawn picked for them. 

5.1.2. Struct initializer quirk 

Here is an interesting quirk. You can’t use the memberwise (free) initializer from earlier; it 
won’t work. 

Listing 5.5. Initializing a player with a custom initializer 

let secondPlayer = Player(name: "Carl", pawn: .dog) 

error: extra argument 'pawn' in call 

The reason that the memberwise initializer doesn’t work any more is to make sure that 
developers can’t circumvent the logic in the custom initializer. It’s a useful protection 
mechanism! In your case, offering both the custom and memberwise initializers would be 
favorable. You can offer both initializers by extending the struct and putting your custom 
initializer there. 

First, you restore the Player struct, so it won’t contain any custom initializers, giving you the 
memberwise initializer back. Then you extend the Player struct and put your custom initializer 
in there. 

Listing 5.6. Restoring the Player struct 

struct Player { 

    let name: String 

    let pawn: Pawn 

} 



 

extension Player {             ❶ 

     init(name: String) {      ❷ 

        self.name = name 

        self.pawn = Pawn.allCases.randomElement()! 

    } 

} 

• ❶ Extend Player, opening it up for more functionality. 
• ❷ Add your custom initializer in the extension. 

You can confirm this worked because you now can initialize a Player via both initializers. 

Listing 5.7. Initializing a player with both initializers 

// Both initializers work now. 

let player = Player(name: "SuperJeff") 

let anotherPlayer = Player(name: "Mary", pawn: .dog) 

By using an extension, you can keep the best of both worlds. You can offer the free memberwise 
and a custom initializer with specific logic. 

5.1.3. Exercises 

1 

Given the following struct 

struct Pancakes { 

 

    enum SyrupType { 

        case corn 

        case molasses 

        case maple 

    } 

 

    let syrupType: SyrupType 

    let stackSize: Int 

 



    init(syrupType: SyrupType) { 

        self.stackSize = 10 

        self.syrupType = syrupType 

    } 

} 

will the following initializers work? 

let pancakes = Pancakes(syrupType: .corn, stackSize: 8) 

let morePancakes = Pancakes(syrupType: .maple) 

2 

If these initializers didn’t work, can you make them work without adding another initializer? 

5.2. INITIALIZERS AND SUBCLASSING 

Subclassing is a way to achieve polymorphism. With polymorphism, you can offer a single 
interface, such as a function, that works on multiple types. 

But subclassing isn’t too popular in the Swift community, especially because Swift often is 
marketed as a protocol-oriented language, which is one subclassing alternative. 

You saw in chapter 2 how subclasses tend to be a rigid data structure. You also saw how enums 
are a flexible alternative to subclassing, and you’ll see more flexible approaches when you start 
working with protocols and generics. 

Nevertheless, subclassing is still a valid tool that Swift offers. You can consider overriding or 
extending behavior from classes; this includes code from frameworks you don’t even own. 
Apple’s UIKit is a recurring example of this, where you can subclass UIView to create new 
elements for the screen. 

This section will help you understand how initializers work in regard to classes and 
subclassing—also known as inheritance—so that when you’re not jumping on the protocol-
oriented programming bandwagon, you can offer clean subclassing constructions. 

5.2.1. Creating a board game superclass 

The Player model is all set up; now it’s time to start modeling the board game hierarchy. 

First, you’re going to create a class called BoardGame that serves as a superclass. Then you’ll 
subclass BoardGame to create your own board game called Mutability Land: an exciting game that 
teaches Swift developers to write immutable code. 



 

After the hierarchy is set up, you’ll discover Swift’s quirks that come with subclassing and 
approaches on how to deal with them. 

5.2.2. The initializers of BoardGame 

The BoardGame superclass has three initializers: one designated initializer and two convenience 
initializers to make initialization easier (see figure 5.1). 



Figure 5.1. BoardGame initializers 

 

Before continuing, get acquainted with the two types of initializers for classes. 

First is the designated initializer, which is the run-of-the-mill variety. Designated initializers are 
there to make sure all properties get initialized. Classes tend to have very few designated 
initializers, usually just one, but more are possible. Designated initializers point to a superclass 
if there is one. 

Second is the convenience initializer, which can help make initialization easier by supplying 
default values or create a simpler initialization syntax. Convenience initializers can call other 
convenience initializers, but they ultimately call a designated initializer from the same class. 

If you look inside BoardGame, you can confirm the use of one designated initializer and two 
convenience initializers, as shown here. 

Listing 5.8. The BoardGame superclass 

class BoardGame { 

    let players: [Player] 

    let numberOfTiles: Int 

 

    init(players: [Player], numberOfTiles: Int) {         ❶ 

        self.players = players 

        self.numberOfTiles = numberOfTiles 

    } 

 

    convenience init(players: [Player]) {                 ❷ 

        self.init(players: players, numberOfTiles: 32) 

    } 

 

    convenience init(names: [String]) {                   ❸ 

        var players = [Player]() 



        for name in names { 

            players.append(Player(name: name)) 

        } 

        self.init(players: players, numberOfTiles: 32) 

    } 

} 

• ❶ The designated initializer 
• ❷ A convenience initializer accepting players 
• ❸ A convenience initializer converting strings to players 

 

Note 

Alternatively, you could also add a default numberOfTiles value to the designated initializer, 
such as init(players: [Player], numberOfTiles: Int = 32). By doing so, you can get rid of 
one convenience initializer. For example purposes, you continue with two separate convenience 
initializers. 

 

The BoardGame contains two properties: a players array containing all players in the board 
game, and a numberOfTiles integer indicating the size of the board game. 

Here are the different ways you can initialize the BoardGame superclass. 

Listing 5.9. Initializing BoardGame 

//Convenience initializer 

let boardGame = BoardGame(names: ["Melissa", "SuperJeff", "Dave"]) 

 

let players = [ 

    Player(name: "Melissa"), 

    Player(name: "SuperJeff"), 

    Player(name: "Dave") 

] 

 

//Convenience initializer 

let boardGame = BoardGame(players: players) 

 



//Designated initializer 

let boardGame = BoardGame(players: players, numberOfTiles: 32) 

The convenience initializers accept only an array of players or an array of names, 
which BoardGame turns into players. These convenience initializers point at the designated 
initializer. 

 

Lack of memberwise initializers 

Unfortunately, classes don’t get free memberwise initializers like structs do. With classes you’ll 
have to manually type them out. So much for being lazy! 

 

5.2.3. Creating a subclass 

Now that you created BoardGame, you can start subclassing it to build board games. In this 
chapter, you’re creating only one game, which doesn’t exactly warrant a superclass setup. 
Theoretically, you can create lots of board games that subclass BoardGame. 

The subclass is called MutabilityLand, which subclasses BoardGame (see figure 

5.2). MutabilityLand inherits all the initializers from BoardGame. 

Figure 5.2. Subclassing BoardGame 

 

As shown in listing 5.10, you can initialize MutabilityLand the same way as BoardGame because it 
inherits all the initializers that BoardGame has to offer. 

Listing 5.10. MutabilityLand inherits all the BoardGame initializers 

// Convenience initializer 



let mutabilityLand = MutabilityLand(names: ["Melissa", "SuperJeff", "Dave"]) 

// Convenience initializer 

let mutabilityLand = MutabilityLand(players: players) 

// Designated initializer 

let mutabilityLand = MutabilityLand(players: players, numberOfTiles: 32) 

Looking inside MutabilityLand, you see that it has two properties of its 
own, scoreBoard and winner. The scoreboard keeps track of each player’s name and their score. 
The winner property remembers the latest winner of the game. 

Listing 5.11. The MutabilityLand class 

class MutabilityLand: BoardGame { 

    // ScoreBoard is initialized with an empty dictionary 

    var scoreBoard = [String: Int]() 

    var winner: Player? 

} 

Perhaps surprisingly these properties don’t need an initializer; this is because scoreBoard is 
already initialized outside of an initializer, and winner is an optional, which is allowed to be nil. 

5.2.4. Losing convenience initializers 

Here is where the process gets tricky: once a subclass adds unpopulated properties, consumers 
of the subclass lose ALL the superclass’s initializers. 

Let’s see how this works. First, you’ll add an instructions property to MutabilityLand, which 
tells players the rules of the game. 

Figure 5.3 shows your current hierarchy with your new setup. Notice how the inherited 
initializers are gone now that you’ve added a new property (instructions) to MutabilityLand. 



Figure 5.3. Disappearing initializers 

 

To populate the new instructions property, you’ll create the designated initializer to populate 
it. 

Let’s see how this looks in code. 

Listing 5.12. Creating a designated initializer for MutabilityLand 

class MutabilityLand: BoardGame { 

    var scoreBoard = [String: Int]() 

    var winner: Player? 

 

    let instructions: String                                             ❶ 

 

    init(players: [Player], instructions: String, numberOfTiles: Int) {  ❷ 

        self.instructions = instructions 

        super.init(players: players, numberOfTiles: numberOfTiles)       ❸ 

     } 

} 

• ❶ The new instructions property 
• ❷ A new designated initializer to instantiate instructions 
• ❸ The designated initializer calls the boardgame’s initializer. 



At this stage, MutabilityLand has lost the three inherited initializers from its 
superclass Boardgame. 

You can’t initialize MutabilityLand anymore with the inherited initializers. 

Listing 5.13. Inherited initializers don’t work any more 

// These don't work any more. 

let mutabilityLand = MutabilityLand(names: ["Melissa", "SuperJeff", "Dave"]) 

let mutabilityLand = MutabilityLand(players: players) 

let mutabilityLand = MutabilityLand(players: players, numberOfTiles: 32) 

To prove that you’ve lost the inherited initializers, try to create a MutabilityLand instance with 
an initializer from BoardGame—only this time, you get an error. 

Listing 5.14. Losing superclass initializers 

error: missing argument for parameter 'instructions' in call 

let mutabilityLand = MutabilityLand(names: ["Melissa", "SuperJeff", "Dave"]) 

                                                                           ^ 

                                                                           , 

Losing inherited initializers may seem strange, but there is a legitimate reason 
why MutabilityLand loses them. The inherited initializers are gone because BoardGame can’t 
populate the new instructions property of its subclass. Moreover, since Swift wants all 
properties populated, it can now only rely on the newly designated initializer 
on MutabilityLand. 

5.2.5. Getting the superclass initializers back 

There is a way to get all the superclass’ initializers back so that MutabilityLand can enjoy the 
free initializers from BoardGame. 

By overriding the designated initializer from a superclass, a subclass gets the superclass’s 
initializers back. In other words, MutabilityLand overrides the designated initializer 
from BoardGame to get the convenience initializers back. The designated initializer 
from MutabilityLand still points to the designated initializer from BoardGame (see figure 5.4). 



Figure 5.4. MutabilityLand regains the free initializers from BoardGame. 

 

By overriding the superclass’ designated initializer, MutabilityLand gets all the convenience 
initializers back from BoardGame. Overriding an initializer is achieved by adding 
the overridekeyword on a designated initializer in MutabilityLand. The code can be found 
in listing 5.15. 

 

Designated initializer funnels 

You can see how designated initializers are like funnels. In a class hierarchy, convenience 
initializers go horizontal, and designated initializers go vertical. 

 

Listing 5.15. MutabilityLand overrides the designated initializer 

class MutabilityLand: BoardGame { 

     // ... snip 

    override init(players: [Player], numberOfTiles: Int) { 

        self.instructions = "Read the manual"                         ❶ 

        super.init(players: players, numberOfTiles: numberOfTiles) 

    } 

} 

• ❶ You need to initialize the properties of MutabilityLand before you call super.init. 
Notice how you give instructions a default value here. 

Since you override the superclass initializer, MutabilityLand needs to come up with its 
instructions there. Now that the designated initializer from BoardGame is overridden, you have a 
lot to choose from when initializing MutabilityLand. 



Listing 5.16. All available initializers for MutabilityLand 

// MutabilityLand's initializer 

let mutabilityLand = MutabilityLand(players: players, instructions: "Just 

➥ read the manual", numberOfTiles: 40) 

 

// BoardGame initializers all work again. 

let mutabilityLand = MutabilityLand(names: ["Melissa", "SuperJeff", "Dave"]) 

let mutabilityLand = MutabilityLand(players: players) 

let mutabilityLand = MutabilityLand(players: players, numberOfTiles: 32) 

Thanks to a single override, you get all initializers back that the superclass has to offer. 

5.2.6. Exercise 

3 

The following superclass, called Device, registers devices in an office and keeps track of the rooms 
where these devices can be found. Its subclass Television is one of such devices that 
subclasses Device. 

The challenge is to initialize the Television subclass with a Device initializer. In other words, make 
the following line of code work by adding a single initializer somewhere: 

let firstTelevision = Television(room: "Lobby") 

let secondTelevision = Television(serialNumber: "abc") 

The classes are as follows: 

class Device { 

 

    var serialNumber: String 

    var room: String 

 

    init(serialNumber: String, room: String) { 

        self.serialNumber = serialNumber 

        self.room = room 

    } 

 



    convenience init() { 

        self.init(serialNumber: "Unknown", room: "Unknown") 

    } 

 

    convenience init(serialNumber: String) { 

        self.init(serialNumber: serialNumber, room: "Unknown") 

    } 

 

    convenience init(room: String) { 

        self.init(serialNumber: "Unknown", room: room) 

    } 

 

} 

 

class Television: Device { 

    enum ScreenType { 

        case led 

        case oled 

        case lcd 

        case unknown 

    } 

 

    enum Resolution { 

        case ultraHd 

        case fullHd 

        case hd 

        case sd 

        case unknown 

    } 

 

    let resolution: Resolution 

    let screenType: ScreenType 



 

    init(resolution: Resolution, screenType: ScreenType, serialNumber: 

  String, room: String) { 

        self.resolution = resolution 

        self.screenType = screenType 

        super.init(serialNumber: serialNumber, room: room) 

    } 

 

} 

5.3. MINIMIZING CLASS INITIALIZERS 

You saw that BoardGame has one designated initializer; its subclass MutabilityLand has two 
designated initializers. If you were to subclass MutabilityLand again and add a stored property, 
that subclass would have three initializers, and so on. At this rate, you’d have to override more 
initializers the more you subclass, making your hierarchy complicated. Luckily there is a 
solution to keep the number of designated initializers low so that each subclass holds only a 
single designated initializer. 

5.3.1. Convenience overrides 

In the previous section, MutabilityLand was overriding the designated initializer from 
the BoardGame class. But a neat trick is to make the overridden initializer in MutabilityLand into 
a convenience override initializer (see figure 5.5). 

Figure 5.5. MutabilityLand performs a convenience override on a designated initializer. 

 

Now the overriding initializer in MutabilityLand is a convenience override initializer that points 
sideways to the designated initializer inside MutabilityLand. This designated initializer 
from MutabilityLand still points upwards to the designated initializer inside BoardGame. 



In your class you make this happen using the convenience override keywords. 

Listing 5.17. A convenience override 

class MutabilityLand: BoardGame { 

    var scoreBoard = [String: Int]() 

    var winner: Player? 

 

    let instructions: String 

 

    convenience override init(players: [Player], numberOfTiles: Int) {   ❶ 

        self.init(players: players, instructions: "Read the manual", 

     numberOfTiles: numberOfTiles)                                       ❷ 

    } 

 

    init(players: [Player], instructions: String, numberOfTiles: Int) {  ❸ 

        self.instructions = instructions 

        super.init(players: players, numberOfTiles: numberOfTiles) 

    } 

 

} 

• ❶ The overriding initializer is now an overriding convenience initializer. 
• ❷ The initializer now points sideways (self.init) versus upwards (super.init). 
• ❸ Leave the designated initializer as is. 

Since the overriding initializer is now a convenience initializer, it points horizontally to the 
designated initializer in the same class. This way, MutabilityLand goes from having two 
designated initializers to one convenience initializer and a single designated initializer. Any 
subclass now only has to override a single designated initializer to get all initializers from the 
superclass. 

The downside is that this approach is not as flexible. For example, the convenience initializer 
now has to figure out how to fill the instructions property. But if a convenience override works 
in your code, it reduces the number of designated initializers. 



5.3.2. Subclassing a subclass 

To prove that you can keep the number of designated initializers low, you’ll introduce a subclass 
from MutabilityLand called MutabilityLandJunior, for kids. This game is a bit easier and has 
the option to play sounds, indicated by a new soundsEnabled property. 

Because of your convenience override trick, this new subclass only has to override a single 
designated initializer. The hierarchy is shown in figure 5.6. 

Figure 5.6. MutabilityLandJunior only needs to override one initializer. 

 

You can see how this sub-subclass only needs to override a single initializer to inherit all 
initializers. Out of good habit, this initializer is a convenience override as well, in 
case MutabilityLandJunior gets subclassed again, as shown in the following listing. 

Listing 5.18. MutabilityLandJunior 

class MutabilityLandJunior: MutabilityLand { 

    let soundsEnabled: Bool 

 

    init(soundsEnabled: Bool, players: [Player], instructions: String, 

     numberOfTiles: Int) {                                               ❶ 

         self.soundsEnabled = soundsEnabled 

         super.init(players: players, instructions: instructions, 

         numberOfTiles: numberOfTiles) 

    } 

 



    convenience override init(players: [Player], instructions: String, 

     numberOfTiles: Int) {                                               ❷ 

         self.init(soundsEnabled: false, players: players, instructions: 

➥ instructions, numberOfTiles: numberOfTiles) 

    } 

} 

• ❶ MutabilityLandJunior gets its own designated initializer. 
• ❷ A single overriding init is added. 

You can now initialize this game in five ways. 

Listing 5.19. Initializing MutabilityLandJunior with all initializers 

let mutabilityLandJr = 

➥ MutabilityLandJunior(players: players, instructions: "Kids don't read 

➥ manuals", numberOfTiles: 8) 

 

let mutabilityLandJr = MutabilityLandJunior(soundsEnabled: true, players: 

➥ players, instructions: "Kids don't read manuals", numberOfTiles: 8) 

 

let mutabilityLandJr = MutabilityLandJunior(names: ["Philippe", "Alex"]) 

 

let mutabilityLandJr = MutabilityLandJunior(players: players) 

 

let mutabilityLandJr = MutabilityLandJunior(players: players, numberOfTiles: 8) 

Thanks to convenience overrides, this subclass gets many initializers for free. 

Also, no matter how many subclasses you have (hopefully not too many), subclasses only have to 
override a single initializer! 

5.3.3. Exercise 

4 

Given the following class, which subclasses Television from the previous exercise 

class HandHeldTelevision: Television { 



    let weight: Int 

 

    init(weight: Int, resolution: Resolution, screenType: ScreenType, 

➥ serialNumber: String, room: String) { 

        self.weight = weight 

        super.init(resolution: resolution, screenType: screenType, 

➥ serialNumber: serialNumber, room: room) 

    } 

 

} 

add two convenience override initializers in the subclassing hierarchy to make this initializer work 
from the top-most superclass: 

let handheldTelevision = HandHeldTelevision(serialNumber: "293nr30znNdjW") 

5.4. REQUIRED INITIALIZERS 

You may have seen required initializers pop up in the wild sometimes, such as when working 
with UIKit’s UIViewController. Required initializers play a crucial role when subclassing 
classes. You can decorate initializers with a required keyword. Adding the required keyword 
assures that subclasses implement the required initializer. You need the required keyword for 
two reasons—factory methods and protocols—which you’ll explore in this section. 

5.4.1. Factory methods 

Factory methods are the first reason why you need the required keyword. Factory methods are a 
typical design pattern that facilitates creating instances of a class. You can call these methods on 
a type, such as a class or a struct (as opposed to an instance), for easy instantiating of 
preconfigured instances. Here’s an example where you create a BoardGameinstance 
or MutabilityLand instance via the makeGame factory method. 

Listing 5.20. Factory methods in action 

let boardGame = BoardGame.makeGame(players: players) 

let mutabilityLand = MutabilityLand.makeGame(players: players) 

Now return to the BoardGame superclass where you add the makeGame class function. 

The makeGame method accepts only players and returns an instance of Self. Self refers to the 
current type that makeGame is called on; this could be BoardGame or one of its subclasses. 



In a real-world scenario, the board game could be set up with all kinds of settings, such as a time 
limit and locale, as shown in the following example, adding more benefits to creating a factory 
method. 

Listing 5.21. Introducing the makeGame factory method 

class BoardGame { 

      // ... snip 

 

    class func makeGame(players: [Player]) -> Self { 

        let boardGame = self.init(players: players, numberOfTiles: 32) 

        // Configuration goes here. 

        // E.g. 

        // boardGame.locale = Locale.current 

        // boardGame.timeLimit = 900 

        return boardGame 

    } 

} 

The reason that makeGame returns Self is that Self is different for each subclass. If the method 
were to return a BoardGame instance, makeGame wouldn’t be able to return an instance 
of MutabilityLand for example. But you’re not there yet; this gives the following error. 

Listing 5.22. required error 

constructing an object of class type 'Self' with a metatype value must use a 

     'required' initializer 

return self.init(players: players, numberOfTiles: 32) 

               ~~~~ ^ 

The initializer throws an error because makeGame can return BoardGame or any subclass instance.
Because makeGame refers to self.init, it needs a guarantee that subclasses implement this
method. Adding a required keyword to the designated initializer enforces subclasses to
implement the initializer, which satisfies this requirement.

First, you add the required keyword to the initializer referred to in makeGame.

Listing 5.23. Adding the required keyword to initializers

class BoardGame {

 // ... snip

 required init(players: [Player], numberOfTiles: Int) {

 self.players = players

 self.numberOfTiles = numberOfTiles

 }

}

Subclasses can now replace override with required in the related initializer.

Listing 5.24. Subclass required

class MutabilityLand: BoardGame {

 // ... snip

 convenience required init(players: [Player], numberOfTiles: Int) {

 self.init(players: players, instructions: "Read the manual",

 numberOfTiles: numberOfTiles)

 }

}

Now the compiler is happy, and you can reap the benefits of factory methods on superclasses
and subclasses.

5.4.2. Protocols

Protocols are the second reason the required keyword exists.

Protocols

We’ll handle protocols in depth in chapters 7, 8, 12, and 13.

When a protocol has an initializer, a class adopting that protocol must decorate that initializer
with the required keyword. Let’s see why and how this works.

First, you introduce a protocol called BoardGameType, which contains an initializer.

Listing 5.25. Introducing the BoardGameType protocol

protocol BoardGameType {

 init(players: [Player], numberOfTiles: Int)

}

Then you’ll implement this protocol on the BoardGame class so that BoardGame implements
the init method from the protocol.

Listing 5.26. Implementing the BoardGameType protocol

class BoardGame: BoardGameType {

// ... snip

At this point, the compiler still isn’t happy. Because BoardGame conforms to
the BoardGameTypeprotocol, its subclasses also have to conform to this protocol and
implement init(players: [Player], numberOfTiles: Int).

You can again use required to force your subclasses to implement this initializer, in precisely
the same way as in the previous example.

5.4.3. When classes are final

One way to avoid needing the required keyword is by adding the final keyword to a class.
Making a class final indicates that you can’t subclass it. Making classes final until you explicitly
need subclassing behavior can be a good start because adding a final keyword helps
performance.[1]

1

“Increasing Performance by Reducing Dynamic Dispatch” https://developer.apple.com/swift/blog/?id=27

If a class is final, you can drop any required keywords from the initializers. For example, let’s
say nobody likes playing the games that are subclassed, except for the BoardGame itself. Now you
can make BoardGame final and delete any subclasses. Note that you’re omitting
the requiredkeyword from the designated initializer.

Listing 5.27. BoardGame is now a final class

protocol BoardGameType {

 init(players: [Player], numberOfTiles: Int)

}

final class BoardGame: BoardGameType { ❶

 let players: [Player]

 let numberOfTiles: Int

 // No need to make this required

 init(players: [Player], numberOfTiles: Int) { ❷

 self.players = players

 self.numberOfTiles = numberOfTiles

 }

 class func makeGame(players: [Player]) -> Self {

 return self.init(players: players, numberOfTiles: 32)

 }

 // ... snip

}

• ❶ The class is now a final class.
• ❷ The designated initializer isn’t required any more.

Despite implementing the BoardGameType protocol and having a makeGame factory
method, BoardGame won’t need any required initializers because it’s a final class.

5.4.4. Exercises

5

Would required initializers make sense on structs? Why or why not?

6

Can you name two use cases for needing required initializers?

5.5. CLOSING THOUGHTS

You witnessed how Swift has many types of initializers, each one paired with its own rules and
oddities. You noticed how initializers are even more complicated when you’re subclassing.
Subclassing may not be popular, yet it can be a viable alternative depending on your
background, coding style, and the code that you may inherit when joining an exciting company.

After this chapter, I hope that you feel confident enough to write your initializers without
problems and that you’ll be able to offer clean interfaces to get your types initialized.

SUMMARY

• Structs and classes want all their non-optional properties initialized.
• Structs generate “free” memberwise initializers.
• Structs lose memberwise initializers if you add a custom initializer.
• If you extend structs with your custom initializers, you can have both memberwise and

custom initializers.
• Classes must have one or more designated initializers.
• Convenience initializers point to designated initializers.
• If a subclass has its own stored properties, it won’t directly inherit its superclass

initializers.
• If a subclass overrides designated initializers, it gets the convenience initializers from the

superclass.
• When overriding a superclass initializer with a convenience initializer, a subclass keeps

the number of designated initializers down.
• The required keyword makes sure that subclasses implement an initializer and that

factory methods work on subclasses.
• Once a protocol has an initializer, the required keyword makes sure that subclasses

conform to the protocol.
• By making a class final, initializers can drop the required keyword.

ANSWERS

1

Will the following initializers work?

let pancakes = Pancakes(syrupType: .corn, stackSize: 8)

let morePancakes = Pancakes(syrupType: .maple)

No. When you use a custom initializer, a memberwise initializer won’t be available.

2

If these initializers didn’t work, can you make them work without adding another initializer?

struct Pancakes {

 enum SyrupType {

 case corn

 case molasses

 case maple

 }

 let syrupType: SyrupType

 let stackSize: Int

}

extension Pancakes { ❶

 init(syrupType: SyrupType) { ❷

 self.stackSize = 10

 self.syrupType = syrupType

 }

}

let pancakes = Pancakes(syrupType: .corn, stackSize: 8)

let morePancakes = Pancakes(syrupType: .maple)

• ❶ Extend Pancakes.
• ❷ Put the custom initializer inside the extension.

3

The following superclass called Device registers devices in an office and keeps track of the rooms
where these devices can be found. Television is one such device that subclasses Device.

The challenge is to initialize the Television subclass with a Device initializer. In other words, make
the following line of code work by adding a single initializer somewhere:

class Television: Device {

 override init(serialNumber: String, room: String) { ❶

 self.resolution = .unknown

 self.screenType = .unknown

 super.init(serialNumber: serialNumber, room: room)

 }

 // ... snip

}

• ❶ Override a designated initializer from Device.

4

Given the following class, which subclasses Television from the previous exercise, add two
convenience override initializers in the subclassing hierarchy to make this initializer work from the
top-most superclass:

class Television {

 convenience override init(serialNumber: String, room: String) { ❶

 self.init(resolution: .unknown, screenType: .unknown,

 serialNumber: serialNumber, room: room)

 }

 // ... snip

}

class HandHeldTelevision: Television {

 convenience override init(resolution: Resolution, screenType:

➥ ScreenType, serialNumber: String, room: String) { ❷

 self.init(weight: 0, resolution: resolution, screenType:

➥ screenType, serialNumber: "Unknown", room: "UnKnown")

 }

 // ... snip

}

• ❶ Add a convenience initializer to Television which overrides a designated initializer
from Device.

• ❷ Add a convenience initializer to HandHeldTelevision which overrides a designated
initializer from Television.

5

Would required initializers make sense on structs? Why or why not?

No, required initializers enforce initializers on subclasses, and structs can’t be subclassed.

6

Can you name two use cases for required initializers?

To enforce factory methods on subclasses and to conform to a protocol defining an initializer.

Chapter 6. Effortless error handling

This chapter covers

• Error-handling best practices (and downsides)
• Keeping your application in a proper state when throwing
• How errors are propagated
• Adding information for customer-facing applications (and for troubleshooting)
• Bridging to NSError
• Making APIs easier to use without harming the integrity of an application

Error handling is an integral part of any software development and not Swift-centric. But how
Swift treats error handling does impact the way you deliver code that is pleasant to use and
respects problems that can arise in a system. In this chapter, you’ll elegantly throw and catch
errors while walking the fine line between creating a useful API instead of a tedious one.

Error handling sounds simple in theory: throw some errors and catch them, and your program
keeps running. But in reality, doing it correctly can get quite tricky. Swift also adds a unique
flavor on top where it imposes rules, offers syntactic sugar, and compile-time checks to make
sure you’re handling thrown errors.

Even though it’s a start to throw an error when something goes wrong, there are many
subtleties. Moreover, once you do end up with an error, you need to know where the
responsibility lies to handle (or ignore) the error. Do you propagate an error all the way up to
the user, or can your program prevent errors altogether? Also, when exactly do you throw
errors?

This chapter explores how Swift treats errors, but it won’t be a dry repeat of Apple’s
documentation. Included are best practices related to keeping an application in a good state, a
closer look at the downsides of error handling, and techniques on how to cleanly handle errors.

The first section goes over Swift errors and how to throw them. It also covers some best
practices to keep your code in a predictable state when your functions start throwing errors.

Then, you’ll see how functions can propagate errors through an application. You’ll learn how
you can add technical information for troubleshooting and localized information for end users,
how to bridge to NSError, and more about centralizing error handling, all while implementing
useful protocols.

To finish up the chapter, you’ll get a look at the downsides of throwing errors and how to negate
them. You’ll also see how to make your APIs more pleasant to use while making sure that the
system integrity stays intact.

6.1. ERRORS IN SWIFT

Errors can come in all shapes and sizes. If you ask three developers what constitutes an error,
you may get three different answers and will most likely hear differences between exceptions,
errors, problems at runtime, or even blaming the user for ending up with a problem.

To start this chapter right, let’s classify errors into three categories so that we are on the same
page:

• Programming errors—These errors could have been prevented by a programmer with a
good night’s sleep—for example, arrays being out of bounds, division by zero, and integer
overflows. Essentially, these are problems that you can fix on a code level. This is where
unit tests and quality assurance can save you when you drop the ball. Usually, in Swift
you can use checks such as assert to make sure your code acts as intended,
and precondition to let others know that your API is called correctly. Assertions and
preconditions are not what this chapter covers, however.

• User errors—A user error is when a user interacts with a system and fails to complete a
task correctly, such as accidentally sending drunk selfies to your boss. User errors can be
caused by not completely understanding a system, being distracted, or a clumsy user
interface. Even though faulting a customer’s intelligence may be a fun pastime, you can
blame a user error on the application itself, and you can prevent these issues with good
design, clear communication, and shaping your software in such as way that it helps
users reach their intent.

• Errors revealed at runtime—These errors could be an application being unable to create
a file because the hard drive is full, a network request that fails, certificates that expire,
JSON parsers that barf up after being fed wrong data, and many other things that can go
wrong when an application is running. This last category of errors are recoverable
(generally speaking) and are what this chapter focuses on.

In this section, you’ll see how Swift defines errors, what its weaknesses are, and how to catch
them. Besides throwing errors, functions can do some extra housekeeping to make sure an
application stays in a predictable state, which is another topic that you’ll explore in this section.

6.1.1. The Error protocol

Join me!

It’s more educational and fun if you can check out the code and follow along with the chapter.
You can download the source code at http://mng.bz/oN4j.

Swift offers an Error protocol, which you can use to indicate that something went wrong in your
application. Enums are well suited as errors because each case is mutually exclusive. You could,
for instance, have a ParseLocationError enum with three options of failure.

Listing 6.1. An enum Error

enum ParseLocationError: Error {

 case invalidData

 case locationDoesNotExist

 case middleOfTheOcean

}

The Error protocol has no requirements and therefore doesn’t enforce any implementations,
which also means that you don’t need to make every error an enum. As an example, you can also
use other types, such as structs, to indicate something went wrong. Structs are less conventional
to use but can be useful for when you want to add more rich data to an error.

You could, for instance, have an error struct that contains multiple errors and other properties.

Listing 6.2. A struct Error

struct MultipleParseLocationErrors: Error {

 let parsingErrors: [ParseLocationError]

 let isShownToUser: Bool

}

At first glance, enums are the way to go when composing errors, but know that you’re not
restricted to using them for specific cases.

6.1.2. Throwing errors

Errors exist to be thrown and handled. For instance, when a function fails to save a file, it can
throw an error with a reason, such as the hard drive being full or lacking the rights to write to
disk. When a function or method can throw an error, Swift requires the throws keyword in the
function signature behind the closing parenthesis.

You could, for instance, turn two strings into a Location type
containing latitude and longitude constants, as shown in the following code.
A parseLocation function can then convert the strings by parsing them. If the parsing fails,
the parseLocation function throws a ParseLocationError.invalidData error.

Listing 6.3. Parsing location strings

struct Location { ❶

 let latitude: Double

 let longitude: Double

}

func parseLocation(_ latitude: String, _ longitude: String) throws ->

 Location { ❷

 guard let latitude = Double(latitude), let longitude = Double(longitude)

➥ else {

 throw ParseLocationError.invalidData

 }

 return Location(latitude: latitude, longitude: longitude)

}

do { ❸

 try parseLocation("I am not a double", "4.899431") ❹

 } catch {

 print(error) // invalidData ❺

 }

• ❶ Define a Location type that parseLocation returns.
• ❷ The parseLocation function either returns a Location or throws an error, indicated by

the throws keyword.
• ❸ Catch an error with the do catch keywords.
• ❹ Call a throwing function with the try keyword.
• ❺ Swift automatically gives you an error constant to match on in a catch statement.

Because parseLocation is a throwing function, as indicated by the throws keyword, you need to
call it with the try keyword. The compiler also forces callers of throwing functions to deal with
the error somehow. Later on, you’ll get to see some techniques to make your APIs more pleasant
for implementers.

6.1.3. Swift doesn’t reveal errors

Another peculiar aspect of Swift’s error handling is that functions don’t reveal which errors they
can throw. A function that is marked as throws could theoretically throw no errors or five
million different errors, and you have no way of knowing this by looking at a function signature.
Not having to list and handle each error explicitly gives you flexibility, but a significant
shortcoming is that you can’t quickly know which errors a function can produce or propagate.

Functions don’t reveal their errors, so giving some information where possible is recommended.
Luckily your friend Quick Help can jump in and help you provide more information about the
errors you can throw. You can also use it to state when errors can be thrown, as shown in listing

6.4.

You can generate Quick Help documentation in Xcode by placing the cursor on a function and
pressing Cmd-Alt-/ to generate a Quick Help template, including possible errors (see figure 6.1).

Figure 6.1. A Quick Help informing about errors

Listing 6.4. Adding error information to a function

/// Turns two strings with a latitude and longitude value into a Location

 type

///

/// - Parameters:

/// - latitude: A string containing a latitude value

/// - longitude: A string containing a longitude value

/// - Returns: A Location struct

/// - Throws: Will throw a ParseLocationError.invalidData if lat and long

➥ can't be converted to Double. ❶

 func parseLocation(_ latitude: String, _ longitude: String) throws ->

 Location {

 guard let latitude = Double(latitude), let longitude = Double(longitude)

 else {

 throw ParseLocationError.invalidData

 }

 return Location(latitude: latitude, longitude: longitude)

}

• ❶ Add a Throws: comment to the Quick Help documentation.

It’s a bandage, but adding this Quick Help gives the developer at least some information
regarding the errors to expect.

6.1.4. Keeping the environment in a predictable state

You’ve seen how a caller of a function deals with any possible errors your functions can throw.
But throwing an error may not be enough. Sometimes a throwing function can go the extra mile
and make sure that an application’s state remains the same once an error occurs.

Tip

Generally speaking, keeping a throwing function in a predictable state after it throws an error is
a good habit to get into.

A predictable state prevents the environment from being in limbo between an error state and a
sort-of-okay state. Keeping an application in a predictable state means that when a function or
method throws an error, it should prevent, or undo, any changes that it has done to the
environment or instance.

Let’s say you own a memory cache, and you want to store a value to this cache via a method. If
this method throws an error, you probably expect your value not to be cached. If the function
keeps the value in memory on an error, however, an external retry mechanism may even cause
the system to run out of memory. The goal is to get the environment back to normal when
throwing errors so the caller can retry or continue in other ways.

The easiest way to prevent throwing functions from mutating the environment is if functions
don’t even change the environment in the first place. Making a function immutable is one way to
achieve this. Immutable functions and methods have benefits in general, but even more so when
a function is throwing.

If you look back at the parseLocation function, you see that it touches only the values that it gets
passed, and it isn’t performing any changes to external values, meaning that there are no hidden
side effects. Because parseLocation is immutable, it works predictably.

Let’s go over two more techniques to achieve a predictable state.

Mutating temporary values

A second way that you can keep your environment in a predictable state is by mutating a copy or
temporary value and then saving the new state after the mutation completed without errors.

Consider the following TodoList type, which can store an array of strings. If a string is empty
after trimming, however, the append method throws an error.

Listing 6.5. The TodoList that mutates state on errors

enum ListError: Error {

 case invalidValue

}

struct TodoList {

 private var values = [String]()

 mutating func append(strings: [String]) throws {

 for string in strings {

 let trimmedString = string.trimmingCharacters(in: .whitespacesAnd

➥ Newlines)

 if trimmedString.isEmpty {

 throw ListError.invalidValue ❶

 } else {

 values.append(trimmedString) ❷

 }

 }

 }

}

• ❶ If a string is empty, you throw an error.
• ❷ If a string is not empty, you add a value to the values array.

The problem is that after append throws an error, the type now has a half-filled state. The caller
may assume everything is back to what it was and retry again later. But in the current state,
the TodoList leaves some trailing information in its values.

Instead, you can consider mutating a temporary value, and only adding the final result to the
actual values property after every iteration was successful. If the append method throws during
an iteration, however, the new state is never saved, and the temporary value will be gone,
keeping the TodoList in the same state as before an error is thrown.

Listing 6.6. TodoList works with temporary values

struct TodoList {

 private var values = [String]()

 mutating func append(strings: [String]) throws {

 var trimmedStrings = [String]() ❶

 for string in strings {

 let trimmedString = string.trimmingCharacters(in: .whitespacesAnd

➥ Newlines)

 if trimmedString.isEmpty {

 throw ListError.invalidValue

 } else {

 trimmedStrings.append(trimmedString) ❷

 }

 }

 values.append(contentsOf: trimmedStrings) ❸

 }

}

• ❶ A temporary array is created.
• ❷ The temporary array is modified.
• ❸ If no error is thrown, the values property is updated.

Recovery code with defer

One way to recover from a throwing function is to undo mutations while being in the middle of
an operation. Undoing mutating operations halfway tends to be rarer, but can be the only option
you may have when you are writing data, such as files to a hard drive.

As an example, consider the following writeToFiles function that can write multiple files to
multiple local URLs. The caveat, however, is that this function has an all-or-nothing
requirement. If writing to one file fails, don’t write any files to disk. To keep the function in a
predictable state if an error occurs, you need to write some cleanup code that removes written
files after a function starts throwing errors.

You can use defer for a cleanup operation. A defer closure is executed after the function ends,
regardless of whether the function is finished normally or via a thrown error. You can keep track

of all saved files in the function, and then in the defer closure you can delete all saved files, but
only if the number of saved files doesn’t match the number of paths you give to the function.

Listing 6.7. Recovering writing to files with defer

import Foundation

func writeToFiles(data: [URL: String]) throws {

 var storedUrls = [URL]() ❶

 defer { ❷

 if storedUrls.count != data.count { ❸

 for url in storedUrls {

 try! FileManager.default.removeItem(at: url) ❹

 }

 }

 }

 for (url, contents) in data {

 try contents.write(to: url, atomically: true, encoding:

➥ String.Encoding.utf8) ❺

 storedUrls.append(url) ❻

 }

}

• ❶ An array is created to store the successfully stored URLs, in case you need to remove
them as a cleanup operation.

• ❷ Even though it’s declared on top, the defer statement is called at the end of the
function.

• ❸ When a file can’t be stored, remove all successfully stored files.
• ❹ Use try! to assert that this operation won’t fail (more on this later).
• ❺ The file is written, but throws if it fails, indicated by the try keyword.
• ❻ If this writing of a file doesn’t throw, you append the URL to the storedUrls array.

Cleaning up after mutation has occurred can be tricky because you’re basically rewinding time.
The writeToFiles function, for instance, removes all files on an error, but what if there were
files before the new files were written? The defer block in writeToFiles would have to be more
advanced to keep a more thorough record of what the exact state was before an error is thrown.
When writing recovery code, be aware that keeping track of multiple scenarios can become
increasingly complicated.

6.1.5. Exercises

1

Can you name one or more downsides of how Swift handles errors, and how to compensate for
them?

2

Can you name three ways to make sure throwing functions return to their original state after
throwing errors?

6.2. ERROR PROPAGATION AND CATCHING

Swift offers four ways to handle an error: you can catch them, you can throw them higher up the
stack (called propagation, or informally called “bubbling up”), you can turn them into optionals
via the try? keyword, and you can assert that an error doesn’t happen via the try!keyword.

In this section, you’ll explore propagation and some techniques for clean catching. Shortly after,
you’ll dive deeper into the try? and try! keywords.

6.2.1. Propagating errors

My favorite way of dealing with problems is to give them to somebody else. Luckily you can do
the same in Swift with errors that you receive: you propagate them by throwing them higher in
the stack, like a one-sided game of hot potato.

Let’s use this section to create a sequence of functions calling each other to see how a lower-level
function can propagate an error all the way to a higher-level function.

A trend when looking up cooking recipes is that you have to sift through someone’s personal
story merely to get to the recipe and start cooking. A long intro helps search engines for the
writer, but stripping all the fluff would be nice so you could extract a recipe straight away and
get to cooking before stomachs start to growl.

As an example, you’ll create a RecipeExtractor struct (see listing 6.8), which extracts a recipe
from an HTML web page that it gets passed. RecipeExtractor uses smaller functions to perform
this task. You’ll focus on the error propagation and not the implementation (see figure 6.2).

Figure 6.2. Propagating an error

Propagation works via a method that can call a lower-level method, which in turn can also call
lower-level methods. But an error can propagate all the way up again to the highest level if you
allow it.

When the extractRecipe function is called on RecipeExtractor, it will call a lower-level function
called parseWebpage, which in turn will call parseIngredients and parseSteps.
Both parseIngredients and parseSteps can throw an error, which parseWebpage will receive and
propagate back up to the extractRecipe function as shown in the following code.

Listing 6.8. The RecipeExtractor

struct Recipe { ❶

 let ingredients: [String]

 let steps: [String]

}

enum ParseRecipeError: Error { ❷

 case parseError

 case noRecipeDetected

 case noIngredientsDetected

}

struct RecipeExtractor {

 let html: String

 func extractRecipe() -> Recipe? { ❸

 do { ❹

 return try parseWebpage(html)

 } catch {

 print("Could not parse recipe")

 return nil

 }

 }

 private func parseWebpage(_ html: String) throws -> Recipe {

 let ingredients = try parseIngredients(html) ❺

 let steps = try parseSteps(html) ❺

 return Recipe(ingredients: ingredients, steps: steps)

 }

 private func parseIngredients(_ html: String) throws -> [String] {

 // ... Parsing happens here

 // .. Unless an error is thrown

 throw ParseRecipeError.noIngredientsDetected

 }

 private func parseSteps(_ html: String) throws -> [String] {

 // ... Parsing happens here

 // .. Unless an error is thrown

 throw ParseRecipeError.noRecipeDetected

 }

}

• ❶ The Recipe struct that RecipeExtractor returns
• ❷ The error that can be thrown inside RecipeExtractor
• ❸ The extractRecipe function kickstarts the extracting.
• ❹ The propagation of errors stops here because of the do catch statement.
• ❺ Both parseIngredients and parseSteps are called with the try keyword; any errors that

arise will be propagated up.

Getting a recipe may fail for multiple reasons; perhaps the HTML file doesn’t contain a recipe at
all, or the extractor fails to obtain the ingredients. The lower-level
functions parseIngredients and parseSteps can, therefore, throw an error. Since their parent
function parseWebpage doesn’t know how to handle the errors, it propagates the error back up
again to the extractRecipe function of the struct by using the try keyword.
Since parseWebpagepropagates an error up again, it also contains the throws keyword in its
function signature.

Notice how the extractRecipe method has a catch clause without specifically matching on an
error; this way the extractRecipe catches all possibly thrown errors. If the catch clause were
matching on specific errors, theoretically some errors would not be caught and would have to
propagate up even higher, making the extractRecipe function throwing as well.

6.2.2. Adding technical details for troubleshooting

Near where the error occurs, plenty of context surrounds it. You have the environment at your
hands at the exact point in time; you know precisely which action failed and what the state is of
each variable in the proximity of the error. When an error gets propagated up, this exact state
may get lost, losing some useful information to handle the error.

When logging an error to help the troubleshooting process, adding some useful information for
developers can be beneficial, such as where the parsing of recipes failed, for instance. After
you’ve added this extra information, you can pattern match on an error and extract the
information when troubleshooting.

For instance, as shown in the following, you can add a symbol and line property on
the parseError case of ParseRecipeError, to give a little more info about where the parsing went
wrong.

Listing 6.9. Adding more information to the ParseRecipeError

enum ParseRecipeError: Error {

 case parseError(line: Int, symbol: String) ❶

 case noRecipeDetected

 case noIngredientsDetected

}

• ❶ Adding more information to the error

This way, you can pattern match against the cases more explicitly when troubleshooting. Notice
how you still keep a catch clause in there, to prevent extractRecipes from becoming a throwing
function.

Listing 6.10. Matching on a specific error

struct RecipeExtractor {

 let html: String

 func extractRecipe() -> Recipe? {

 do {

 return try parseWebpage(html)

 } catch let ParseRecipeError.parseError(line, symbol) { ❶

 print("Parsing failed at line: \(line) and symbol: \(symbol)")

 return nil

 } catch {

 print("Could not parse recipe")

 return nil

 }

 }

 // ... snip

}

• ❶ Pattern match and extract specific information

Adding user-readable information

Now that the technical information is there, you can use it to translate the data to a user-
readable error. The reason you don’t pass a human-readable string to an error is that with
technical details you can make a distinction between a human-readable error and detailed
technical information for a developer.

One approach to get human-readable information is to incorporate the LocalizedErrorprotocol.
When adhering to this protocol, you indicate that the error follows certain conventions and
contains user-readable information. Conforming to LocalizedError tells an error handler that
information is present that it can confidently show the user without needing to do some
conversion.

To incorporate the LocalizedError protocol, you can implement a few properties, but they all
have a default value of nil so you can tailor the error to which properties you would like to
implement. An example is given in listing 6.11. In this scenario, you are choosing to incorporate
the errorDescription property, which can give more information about the error itself. You are
also adding the failureReason property, which helps explain why an error failed. You are also
incorporating a recoverySuggestion to help users with an action of what they should do, which
in this case is to try a different recipe page. On OS X, you could also include
the helpAnchor property, which you can use to link to Apple’s Help Viewer, but this property
isn’t necessary in this example.

Since the strings are user-facing, consider returning localized strings instead of regular strings,
so that the messages may fit the user’s locale.

Listing 6.11. Implementing LocalizedError

extension ParseRecipeError: LocalizedError { ❶

 var errorDescription: String? { ❷

 switch self {

 case .parseError:

 return NSLocalizedString("The HTML file had unexpected symbols.",

 comment: "Parsing error reason

➥ unexpected symbols")

 case .noIngredientsDetected:

 return NSLocalizedString("No ingredients were detected.",

 comment: "Parsing error no ingredients.")

 case .noRecipeDetected:

 return NSLocalizedString("No recipe was detected.",

 comment: "Parsing error no recipe.")

 }

 }

 var failureReason: String? { ❸

 switch self {

 case let .parseError(line: line, symbol: symbol):

 return String(format: NSLocalizedString("Parsing data failed at

➥ line: %i and symbol: %@",

 comment: "Parsing error

➥ line symbol"), line, symbol)

 case .noIngredientsDetected:

 return NSLocalizedString("The recipe seems to be missing its

➥ ingredients.",

 comment: "Parsing error reason missing

➥ ingredients.")

 case .noRecipeDetected:

 return NSLocalizedString("The recipe seems to be missing a

➥ recipe.",

 comment: "Parsing error reason missing

➥ recipe.")

 }

 }

 var recoverySuggestion: String? { ❹

 return "Please try a different recipe."

 }

}

• ❶ You can separately adhere to a protocol via an extension to separate code.
• ❷ The errorDescription property helps explain what went wrong.
• ❸ Rarer, but you can implement a failureReason property.
• ❹ Via the recoverySuggestion you can suggest how to recover from an error.

All the properties are optional. Generally speaking,
implementing errorDescription and recoverySuggestion should be enough.

Once a human-readable error is in place, you can pass it safely to anything user-facing, such as
a UIAlert on iOS, printing to the command line, or a notification on OS X.

Bridging to NSError

With a little effort, you can implement the CustomNSError protocol, which helps to bridge
a Swift.Error to NSError in case you’re calling Objective-C from Swift.
The CustomNSError expects three properties: a static errorDomain, an errorCode integer, and
an errorUserInfo dictionary.

The errorDomain and errorCode are something you need to decide. For convenience, you can fill
up the errorUserInfo with values you predefined (and fall back on empty values if they are nil).

Listing 6.12. Implementing NSError

extension ParseRecipeError: CustomNSError {

 static var errorDomain: String { return "com.recipeextractor" } ❶

 var errorCode: Int { return 300 } ❷

 var errorUserInfo: [String: Any] {

 return [

 NSLocalizedDescriptionKey: errorDescription ?? "", ❸

 NSLocalizedFailureReasonErrorKey: failureReason ?? "", ❸

 NSLocalizedRecoverySuggestionErrorKey: recoverySuggestion ?? ""❸

]

 }

}

let nsError: NSError = ParseRecipeError.parseError(line: 3, symbol: "#") as

 NSError ❹

 print(nsError) // Error Domain=com.recipeextractor Code=300 "Parsing data

➥ failed at line: 3 and symbol: #" UserInfo={NSLocalizedFailureReason=The

➥ HTML file had unexpected symbols., NSLocalizedRecoverySuggestion=Please

➥ try a different recipe., NSLocalizedDescription=Parsing data failed at

➥ line: 3 and symbol: #}

• ❶ Come up with the domain that relates to the error.
• ❷ Create some kind of code unique to this error.
• ❸ For the errorUserInfo, you use three default keys, but you can reuse the properties you

had before. Also notice how you fall back to empty strings (nil will give you warnings).
• ❹ Easily convert an error to NSError via the as NSError action.

Without supplying this information, converting an Error to an NSError means that the error
doesn’t have the proper code and domain information. Adopting the CustomNSError gives you
tight control over this conversion.

6.2.3. Centralizing error handling

A lower-level function can sometimes solve an error itself—such as a retry mechanism when
passing data—but usually, a lower-level function would propagate an error up the stack back to
the call-site because the lower-level function is missing the context on how to handle an error.
For example, if an embedded framework fails to save a file and throws an error, it wouldn’t
know that an iOS application implementing this framework would want to show
a UIAlertController dialog box, or that a Linux command-line tool would want to log to stderr.

A useful practice when handling propagated errors is to centralize the error-handling. Imagine
that when you catch an error, you want to show an error dialog in an iOS or OS X application. If
you have error-handling code in dozens of places in your application, making changes is tough,
which makes your application resistant to change. To remedy a rigid error-handling setup, you
can opt to use a central place to present the errors. When catching code, you can pass the error
to an error handler that knows what to do with it, such as presenting a dialog to the user,
submitting the error to a diagnostics systems, logging the error to stderr, you name it.

As an example, you can have one error handler that has the same handleError function multiple
times via function overloads. Thanks to the function overloads, the ErrorHandler can get
granular control over which error is ready to be presented to the user, and which errors need to
fall back on a generic message.

Listing 6.13. An ErrorHandler with function overloads

struct ErrorHandler {

 static let `default` = ErrorHandler() ❶

 let genericMessage = "Sorry! Something went wrong" ❷

 func handleError(_ error: Error) { ❸

 presentToUser(message: genericMessage)

 }

 func handleError(_ error: LocalizedError) { ❹

 if let errorDescription = error.errorDescription {

 presentToUser(message: errorDescription)

 } else {

 presentToUser(message: genericMessage)

 }

 }

 func presentToUser(message: String) { ❺

 // Not depicted: Show alert dialog in iOS or OS X, or print to

➥ stderror.

 print(message) // Now you log the error to console.

 }

}

• ❶ Offer a singleton so that any code can reach the error handler (singletons are often not
a good practice but fitting for this example).

• ❷ message if you don’t have more information to show to the user.
• ❸ The ErrorHandler shows errors without user-specific information as a generic

message.
• ❹ The ErrorHandler passed an error straight to the user, if it conforms to

LocalizedErrors.
• ❺ Not depicted: you can show an alert on iOS or OS X. You also log to the console or a

file.

Implementing the centralized error handler

Let’s see how you can best call the centralized error handler. Since you are centralizing error
handling, the RecipeExtractor doesn’t have to both return an optional and handle errors. If the
caller also treats the optional as an error, you may end up with double the error handling.
Instead, the RecipeExtractor can return a regular Recipe (non-optional) and pass the error to
the caller as shown in the following code. Then the caller can pass any error to the central error
handler.

Listing 6.14. RecipeExtractor becomes throwing

struct RecipeExtractor {

 let html: String

 func extractRecipe() throws -> Recipe { ❶

 return try parseHTML(html) ❷

 }

 private func parseHTML(_ html: String) throws -> Recipe {

 let ingredients = try extractIngredients(html)

 let steps = try extractSteps(html)

 return Recipe(ingredients: ingredients, steps: steps)

 }

 // ... snip

}

let html = ... // You can obtain html from a source

let recipeExtractor = RecipeExtractor(html: html)

do {

 let recipe = try recipeExtractor.extractRecipe() ❸

 } catch {

 ErrorHandler.default.handleError(error) ❸

 }

• ❶ Now, extractRecipe doesn’t handle errors and becomes throwing, letting the caller
deal with any errors. It can stop returning an optional Recipe. Instead, it can return a
regular Recipe.

• ❷ Any error is propagated to the caller.

• ❸ The caller can now catch an error and pass it on to a central error handler, which
knows how to deal with the error. Note that you don’t have to define the error at the catch
statement.

If you centralize error handling, you separate error handling from code that focuses on the
happy path, and you keep an application in a good state. You not only prevent duplication, but
changing the way you treat errors is also easier. You could, for instance, decide to show errors in
a different way—such as a notification instead of a dialog box—and only need to change this in a
single location.

The tricky part is that you can now have one large error-handling type with the risk of it being
giant and complicated. Depending on the needs and size of your application, you can choose to
split up this type into smaller handlers that hook into the large error handler. Each smaller
handler can then specialize in handling specific errors.

6.2.4. Exercises

3

What’s the downside of passing messages for the user inside an error?

4

The following code does not compile. What two changes to loadFile can you make to make the
code compile (without resorting to try? and try!)?

enum LoadError {

 case couldntLoadFile

}

func loadFile(name: String) -> Data? {

 let url = playgroundSharedDataDirectory.appendingPathComponent(name)

 do {

 return try Data(contentsOf: url)

 } catch let error as LoadError {

 print("Can't load file named \(name)")

 return nil

 }

}

6.3. DELIVERING PLEASANT APIS

APIs that throw more often than a major league baseball pitcher are not fun to work with in an
application. When APIs are trigger-happy about throwing errors, implementing them can
become a nuisance. The burden is placed on the developer to handle these errors. Developers
may start to catch all errors in one big net and treat them all the same or let low-level errors
propagate down to a customer who doesn’t always know what to do with them. Sometimes
errors are a nuisance because it may not be apparent to the developer what to do with each
error. Alternatively, developers may catch errors with a // TODO: Implement comment that lives
forever, swallowing both small and severe errors at the same time, leaving critical issues
unnoticed.

Ideally speaking, each error gets the utmost care. But in the real world, deadlines need to be
met, features need to be launched, and project managers need to be reassured. Error handling
can feel like an obstacle that slows you down, which sometimes results in developers taking the
easy road.

On top of that, the way Swift treats errors is that you can’t know for sure what errors a function
throws. Sure, with some documentation you can communicate which errors to expect from a
function or method. But in my experience, having 100% up-to-date documentation can be as
common as spotting the Loch Ness monster. Functions start throwing new errors or stop
throwing several errors altogether, and chances are you may miss an error or two over time.

APIs are quicker and easier to implement if they don’t throw often. But you have to make sure
that you don’t compromise the quality of an application. With the downsides of error handling
in mind, let’s go over some techniques to make your APIs friendlier and easier to implement,
while still paying attention to problems that may arise in your code.

6.3.1. Capturing validity within a type

You can diminish the amount of error handling you need to do by capturing validity within a
type.

For instance, a first attempt to validate a phone number is to use
a validatePhoneNumberfunction, and then continuously use it whenever it’s needed. Although
having a validatePhoneNumber function isn’t wrong, you’ll quickly discover how to improve it in
the next listing.

Listing 6.15. Validating a phone number

enum ValidationError: Error {

 case noEmptyValueAllowed

 case invalidPhoneNumber

}

func validatePhoneNumber(_ text: String) throws {

 guard !text.isEmpty else {

 throw ValidationError.noEmptyValueAllowed ❶

 }

 let pattern = "^(\\([0-9]{3}\\) |[0-9]{3}-)[0-9]{3}-[0-9]{4}$"

 if text.range(of: pattern, options: .regularExpression, range:

➥ nil, locale: nil) == nil {

 throw ValidationError.invalidPhoneNumber ❶

 }

}

do {

 try validatePhoneNumber("(123) 123-1234") ❷

 print("Phonenumber is valid")

} catch {

 print(error)

}

• ❶ The validatePhoneNumber function throws an error if it’s invalid.
• ❷ The error has to be caught; for instance, via a do catch statement. But this has to

happen every time for the same phone number.

With this approach you may end up validating the same string multiple times: for example, once
when entering a form, once more before making an API call, and again when updating a profile.
In these recurring places, you put the burden on a developer to handle an error.

Instead, you can capture the validity of a phone number within a type by creating a new type,
even though the phone number is only a single string, as shown in the following. You create
a PhoneNumber type and give it a throwable initializer that validates the phone number for you.
This initializer either throws an error or returns a proper PhoneNumber type, so you can catch any
errors right when you create the type.

Listing 6.16. The PhoneNumber type

struct PhoneNumber {

 let contents: String

 init(_ text: String) throws { ❶

 guard !text.isEmpty else {

 throw ValidationError.noEmptyValueAllowed

 }

 let pattern = "^(\\([0-9]{3}\\) |[0-9]{3}-)[0-9]{3}-[0-9]{4}$"

 if text.range(of: pattern, options: .regularExpression, range: nil,

 locale: nil) == nil {

 throw ValidationError.invalidPhoneNumber

 }

 self.contents = text ❷

 }

}

do {

 let phoneNumber = try PhoneNumber("(123) 123-1234") ❸

 print(phoneNumber.contents) // (123) 123-1234 ❹

 } catch {

 print(error)

}

• ❶ Create a failable initializer.
• ❷ If the phone number is validated, the value is stored.
• ❸ Create the PhoneNumber type. You have to use the try keyword because

PhoneNumber has a throwing initializer.
• ❹ You can read the contents of the phone number throughout your application.

After you obtain a PhoneNumber, you can safely pass it around your application with the
confidence that a specific phone number is valid and without having to catch errors whenever
you want to get the phone number’s value. Your methods can accept a PhoneNumber type from
here on out, and just by looking at the method signatures you know that you’re dealing with a
valid phone number.

6.3.2. try?

You can prevent propagation in other ways as well. If you create a PhoneNumber type, you can
treat it as an optional instead so that you can avoid an error from propagating higher up.

Once a function is a throwing function, but you’re not interested in the reasons for failure, you
can consider turning the result of the throwing function into an optional via the try?keyword, as
shown here.

Listing 6.17. Applying the try? keyword

let phoneNumber = try? PhoneNumber("(123) 123-1234")

print(phoneNumber) // Optional(PhoneNumber(contents: "(123) 123-1234"))

By using try?, you stop error propagation. You can use try? to reduce various reasons for errors
into a single optional. In this case, a PhoneNumber could not be created for multiple reasons, and
with try? you indicate that you’re not interested in the reason or error, just that the creation
succeeded or not.

6.3.3. try!

You can assert that an error won’t occur. In that case, like when you force unwrap, either you’re
right or you get a crash.

If you were to use try! to create a PhoneNumber, you assert that the creation won’t fail.

Listing 6.18. Applying the try! keyword.

let phoneNumber = try! PhoneNumber("(123) 123-1234")

print(phoneNumber) // PhoneNumber(contents: "(123) 123-1234")

The try! keyword saves you from unwrapping an optional. But if you’re wrong, the application
crashes:

let phoneNumber = try! PhoneNumber("Not a phone number") // Crash

As with force unwrapping, only use try! when you know better than the compiler. Otherwise,
you’re playing Russian Roulette.

6.3.4. Returning optionals

Optionals are a way of error handling: either there is a value, or there is not. You can use
optionals to signal something is wrong, which is an elegant alternative to throwing errors.

Let’s say you want to load a file from Swift’s playgrounds, which can fail, but the reason for
failure doesn’t matter. To remove the burden of error handling for your callers, you can choose
to make your function return an optional Data value on failure.

Listing 6.19. Returning an optional

func loadFile(name: String) -> Data? { ❶

 let url = playgroundSharedDataDirectory.appendingPathComponent(name)

 return try? Data(contentsOf: url) ❷

 }

• ❶ The function returns an optional Data value.
• ❷ You catch any errors that come from Data and turn it into an optional.

If a function has a single reason for failure and the function returns a value, a rule of thumb is to
return an optional instead of throwing an error. If a cause of failure does matter, you can choose
to throw an error.

If you’re unsure of what a caller is interested in, and you don’t mind introducing error types, you
can still throw an error. The caller can always decide to turn an error into an optional if needed
via the try? keyword.

6.3.5. Exercise

5

Can you name at least three ways to make throwing APIs easier for developers to use?

6.4. CLOSING THOUGHTS

As you’ve seen, error handling may sound simple on paper, but applying best practices when
dealing with errors is important. One of the worst cases of error handling is that errors get
swallowed or ignored. By applying best practices in this chapter, I hope that you’ve acquired a
good arsenal of techniques to combat—and adequately handle—these errors. If you have a taste
for more error-handling techniques, you’re in luck—chapter 11 covers errors in an asynchronous
environment.

SUMMARY

• Even though errors are usually enums, any type can implement the Error protocol.
• Inferring from a function which errors it throws isn’t possible, but you can use Quick

Help to soften the pain.
• Keep throwing code in a predictable state for when an error occurs. You can achieve a

predictable state via immutable functions, working with copies or temporary values, and
using defer to undo any mutations that may occur before an error is thrown.

• You can handle errors four ways: do catch, try? and try!, and propagating them higher
in the stack.

• If a function doesn’t catch all errors, any error that occurs gets propagated higher up the
stack.

• An error can contain technical information to help to troubleshoot. User-facing messages
can be deduced from the technical information, by implementing
the LocalizedErrorprotocol.

• By implementing the CustomNSError you can bridge an error to NSError.
• A good practice for handling errors is via centralized error handling. With centralized

error handling, you can easily change how to handle errors.
• You can prevent throwing errors by turning them into optionals via the try? keyword.
• If you’re certain that an error won’t occur, you can turn to retrieve a value from a

throwing function with the try! keyword, with the risk of a crashing application.

• If there is a single reason for failure, consider returning an optional instead of creating a
throwing function.

• A good practice is to capture validity in a type. Instead of having a throwing function you
repeatedly use, create a type with a throwing initializer and pass this type around with the
confidence of knowing that the type is validated.

ANSWERS

1

Can you name one or more downsides of how Swift handles errors, and how to compensate for
them?

Functions are marked as throwing, so it places the burden on the developer to handle them. But
functions don’t reveal which errors are thrown.

You can add a Quick Help annotation to functions to share which errors can be thrown.

2

Can you name three ways to make sure throwing functions return to their original state after
throwing errors?

• Use immutable functions.
• Work on copies or temporary values.
• Use defer to reverse mutation that happened before an error is thrown.

3

What’s the downside of passing messages for the user inside an error?

Because then it’s harder to differentiate between technical information for debugging and
information to display to the user.

4

What two changes to loadFile can you make to make the code compile? (without resorting
to try! and try?)

Make loadFile catch all errors and not just a specific one. Or make loadFile throwing to
repropagate the error.

5

Can you name at least three ways to make throwing APIs easier for developers to use?

• Capture an error when creating a type, so an error is handled only on the creation of a
type and not passing of a value.

• Return an optional instead of throwing an error when there is a single failing reason.
• Convert an error into an optional with the try? keyword and return the optional.
• Prevent propagation with the try! keyword.

Chapter 7. Generics

This chapter covers

• How and when to write generic code
• Understanding how to reason about generics
• Constraining generics with one or more protocols
• Making use of the Equatable, Comparable, and Hashable protocols
• Creating highly reusable types
• Understanding how subclasses work with generics

Generics are a core component of Swift, and they can be tricky to understand at first. There is no
shame if you’ve been staying away from generics, perhaps because they are sometimes
intimidating or confusing. Like a carpenter can do work without a hammer, so can you develop
software without generics. But making generics part of your regular software routine sure does
help, because by using generics you can create code that works on current and future
requirements, and it saves much repetition. By using generics, your code ends up more succinct,
hard-hitting, boilerplate-reducing, and future-proof.

This chapter starts by looking at the benefits of generics and when and how to apply them. It
starts slow, but then ramps up the difficulty by looking at more complex use cases. Generics are
a cornerstone of Swift, so it’s good to internalize them because they’re going to pop up a lot, both
in the book and while reading and writing Swift out in the wild.

After enough exposure and “aha” moments, you’ll start to feel comfortable in using generics to
write hard-hitting, highly reusable code.

You’ll discover the purpose and benefits of generics and how they can save you from writing
duplicate code. Then, you’ll take a closer look at what generics do behind the scenes, and how
you can reason about them. At this point, generics should be a little less scary.

In Swift, generics and protocols are vital in creating polymorphic code. You’ll find out how to
use protocols to constrain generics, which enables you to create generic functions with specific
behavior. Along the way, this chapter introduces two essential protocols that often coincide with
generics: Equatable and Comparable.

Then, to step up your generics game, you’ll find out how to constrain generics with multiple
protocols, and you’ll see how to improve readability with a where clause. The Hashable protocol
is introduced, which is another essential protocol that you see often when working with
generics.

It all comes together when you create a flexible struct. This struct contains multiple constrained
generics and implements the Hashable protocol. Along the way, you’ll get a glimpse of a Swift
feature called conditional conformance.

To further cement your knowledge of generics, you’ll learn that generics don’t always mix with
subclasses. When using both techniques at the same time, you’ll need to be aware of a few
special rules.

Once generics become part of your toolbox, you may find yourself slimming down your codebase
with elegant and highly reusable code. Let’s take a look.

7.1. THE BENEFITS OF GENERICS

Join me!

It’s more educational and fun if you can check out the code and follow along with the chapter.
You can download the source code at http://mng.bz/nQE8.

Let’s start small to get a feel for generics. Imagine that you have a function called firstLastthat
extracts the first and last elements from an array of integers.

Listing 7.1. First and last

let (first, last) = firstLast(array: [1,2,3,4,5])

print(first) // 1

print(last) // 5

func firstLast(array: [Int]) -> (Int, Int) {

 return (array[0], array[array.count-1])

}

Now, you’d like the same for arrays containing String. In the following listing, you’re defining a
similar function, except it’s specified to the String type. Swift knows which similarly named
function to pick.

Listing 7.2. firstLast with an array of strings

func firstLast(array: [String]) -> (String, String) {

 return (array[0], array[array.count-1])

}

let (first, last) = firstLast(array: ["pineapple", "cherry", "steam locomotive"])

print(first) // "pineapple"

print(last) // "steam locomotive"

Having to create a new function for each type doesn’t quite scale. If you want this method for an
array of Double, UIImage, or custom Waffle types, you would have to create new functions every
time.

Alternatively, you can write a single function that works with Any, but then the return value of
the tuple would be (Any, Any), not (String, String) or (Int, Int). You would have to
downcast (Any, Any) to (String, String) or (Int, Int) at runtime.

Reducing boilerplate and avoiding Any is where generics can help. With generics, you can create
a function that is polymorphic at compile time. Polymorphic code means that it can work on
multiple types. With a generic function, you need to define the function only once, and it works
with Int, String, and any other type, including custom types that you introduce or haven’t even
written yet. With generics, you would not work with Any, saving you from downcasting at
runtime.

7.1.1. Creating a generic function

Let’s compare the nongeneric and the generic version of the firstLast function.

You’re adding a generic <T> type parameter to your function signature. Adding a <T> helps you
introduce a generic to your function, which you can refer to in the rest of your function. Notice
how all you do is define a <T> and replace all occurrences of Int with T.

Listing 7.3. Comparing a generic versus nongeneric function signature

// Nongeneric version

func firstLast(array: [Int]) -> (Int, Int) {

 return (array[0], array[array.count-1])

}

// Generic version

func firstLast<T>(array: [T]) -> (T, T) {

 return (array[0], array[array.count-1])

}

A cup of T?

Usually a generic is often defined as type T, which stands for Type. Generics tend to be called
something abstract such as T, U, or V as a convention. Generics can be words, too, such
as Wrapped, as used in Optional.

By declaring a generic T via the <T> syntax, you can refer to this T in the rest of the function—for
example, array:[T] and its return type (T, T).

You can refer to T in the body, which is showcased by expanding the body of the function, as
shown here.

Listing 7.4. Referencing a generic from the body

func firstLast<T>(array: [T]) -> (T, T) {

 let first: T = array[0]

 let last: T = array[array.count-1]

 return (first, last)

}

You can see your generic function in action. Notice how your function works on multiple types.
You could say your function is type-agnostic.

Listing 7.5. The generic function in action

let (firstString, lastString) = firstLast(array: ["pineapple", "cherry",

 "steam locomotive"])

print(firstString) // "pineapple"

print(lastString) // "steam locomotive"

If you were to inspect the values firstString or lastString, you could see that they are of
type String, as opposed to Any. You can pass custom types, too, as demonstrated next by
the Wafflestruct shown here.

Listing 7.6. Custom types

// Custom types work, too

struct Waffle {

 let size: String

}

let (firstWaffle: Waffle, lastWaffle: Waffle) = firstLast(array: [

 Waffle(size: "large"),

 Waffle(size: "extra-large"),

 Waffle(size: "snack-size")

])

print(firstWaffle) // Waffle(size: "large")

print(lastWaffle) // Waffle(size: "snack-size")

That’s all it takes. Thanks to generics, you can use one function for an array
holding Int, String, Waffle, or anything else, and you’re getting concrete types back. You aren’t
juggling with Any or downcasting at runtime; the compiler declares everything at compile time.

Why not write generics straight away?

Starting with a nongeneric function and later replacing all types with a generic is easier than
starting to write a generic function from the get-go. But if you’re feeling confident, go ahead and
write a generic function right away!

7.1.2. Reasoning about generics

Reasoning about generics can be hard and abstract. Sometimes a T is a String, and at a different
time it’s an Int, and so forth. You can wrap both an integer and a string inside an array via the
use of a generic function as shown here.

Listing 7.7. Wrapping a value inside an array

func wrapValue<T>(value: T) -> [T] {

 return [value]

}

wrapValue(value: 30) // [30]

wrapValue(value: "Howdy!") // ["Howdy!"]

But you can’t specialize the type from inside the function body; this is to say, you can’t pass
a T and turn it into an Int value from inside the function body.

Listing 7.8. A faulty generic function

func illegalWrap<T>(value: T) -> [Int] {

 return [value]

}

Listing 7.8 produces a Swift compiler error:

Cannot convert value of type 'T' to expected element type 'Int'.

When working with generics, Swift generates specialized code at compile time. You can think of
it as the generic wrapValue function turning into specialized functions for you to use, sort of like
a prism where a white light goes in, and colors come out (see figure 7.1 and the listing that
follows).

Figure 7.1. Generic code is turned to specialized code at compile time.

Listing 7.9. The wrapValue function

// Given this generic function...

func wrapValue<T>(value: T) -> [T] { ... }

// ... you get access to specialized functions.

func wrapValue(value: Int) -> [Int] { ... }

func wrapValue(value: String) -> [String] { ... }

func wrapValue(value: YourOwnType) -> [YourOwnType] { ... }

Swift creates multiple wrapValue functions behind the scenes—a process
called monomorphization where the compiler turns polymorphic code into concrete singular
code. Swift is clever enough to prevent tons of code generation to prevent large binaries. Swift

uses various tricks involving metadata to limit the amount of code generation. In this case, the
compiler creates a low-level wrapValue function. Then, for relevant types, Swift generates
metadata, called value witness tables. At runtime, Swift passes the corresponding metadata to
the low-level representation of wrapValue when needed.

The compiler is smart enough to minimize the amount of metadata generated. Because Swift can
make smart decisions about when and how to generate code, you don’t have to worry about
large binary files—also known as code bloat—or extra-long compilation times!

Another significant benefit of generics in Swift is that you know what values you’re dealing with
at compile time. If you were to inspect the return value of wrapValue—by Alt-clicking it in
Xcode—you could already see that it returns a [String] or [Int], or anything that you put in
there. You can inspect types before you even consider running the application, making it easier
to reason about polymorphic types.

7.1.3. Exercise

1

Which of the following functions compile? Confirm this by running the code:

func wrap<T>(value: Int, secondValue: T) -> ([Int], U) {

 return ([value], secondValue)

}

func wrap<T>(value: Int, secondValue: T) -> ([Int], T) {

 return ([value], secondValue)

}

func wrap(value: Int, secondValue: T) -> ([Int], T) {

 return ([value], secondValue)

}

func wrap<T>(value: Int, secondValue: T) -> ([Int], Int) {

 return ([value], secondValue)

}

func wrap<T>(value: Int, secondValue: T) -> ([Int], Int)? {

 if let secondValue = secondValue as? Int {

 return ([value], secondValue)

 } else {

 return nil

 }

}

2

What’s the benefit of using generics over the Any type (for example, writing a function
as func<T>(process: [T]) versus func(process:[Any]))?

7.2. CONSTRAINING GENERICS

Earlier, you saw how you worked with a generic type T, which could be anything. The
generic T in your previous examples is an unconstrained generic. But when a type can be
anything you also can’t do much with it.

You can narrow down what a generic represents by constraining it with a protocol; let’s see how
this works.

7.2.1. Needing a constrained function

Imagine that you want to write a generic function that gives you the lowest value inside an array.
This function is set up generically so that it works on an array with any type, as shown here.

Listing 7.10. Running the lowest function

lowest([3,1,2]) // Optional(1)

lowest([40.2, 12.3, 99.9]) // Optional(12.3)

lowest(["a","b","c"]) // Optional("a")

The lowest function can return nil when the passed array is empty, which is why the values are
optional.

Your first attempt is to create the function with a generic parameter of type T. But you’ll quickly
discover in the following code that the function signature is lacking something.

Listing 7.11. The lowest function (will compile soon, but not yet)

// The function signature is not finished yet!

func lowest<T>(_ array: [T]) -> T? {

 let sortedArray = array.sorted { (lhs, rhs) -> Bool in ❶

 return lhs < rhs ❷

 }

 return sortedArray.first ❸

 }

lowest([1,2,3])

• ❶ Sort an array by passing it a closure.
• ❷ This line of code compares two values inside the array. If lhs is considered lower than

rhs, you end up with an ascending array.
• ❸ The lowest function returns the lowest compared value.

lhs and rhs

lhs stands for “left hand side.” rhs stands for “right hand side.” This is a convention when
comparing two of the same types.

Unfortunately, listing 7.11 won’t work. Swift throws the following error:

error: binary operator '<' cannot be applied to two 'T' operands

 if lowest < value {

           ~~~~~~ ^ ~~~~~ 

The error occurs because T could be anything. Still, you’re performing actions on it, such as 
comparing the T with another T via the < operator. But since T represents anything, 
the lowestfunction doesn’t know it can compare T values. 

Let’s find out how you can fix lowest with a protocol. First, you’ll take a little detour to learn 
about two key protocols, which you’ll need to finish the lowest function. 

7.2.2. The Equatable and Comparable protocols 

Protocols define an interface with requirements, such as which functions or variables to 
implement. Types that conform to a protocol implement the required functions and variables. 
You’ve already observed this in earlier chapters when you made types conform to 
the CustomStringConvertible protocol or the RawRepresentable protocol. 

The prevalent Equatable protocol allows you to check if two types are equal. Such types can be 
integers, strings, and many others, including your custom types: 

5 == 5 // true 

30231 == 2 // false 



"Generics are hard!" == "Generics are easy!" // false 

When a type conforms to the Equatable protocol, that type needs to implement the 
static ==function, as shown here. 

Listing 7.12. Equatable 

public protocol Equatable { 

  static func == (lhs: Self, rhs: Self) -> Bool 

} 

 

Note 

For structs and enums, Swift can synthesize the Equatable implementation for you, which saves 
you from manually implementing the == method. 

 

Another common protocol that Swift offers is Comparable. Types conforming to Comparable can 
be compared with each other, to see which value is more, or less, than the other value: 

5 > 2 // true 

3.2 <= 1.3 // false 

"b" > "a" // true 

Interestingly, Comparable also consists of static functions, but that’s not a requirement for 
protocols. 

Listing 7.13. Comparable 

public protocol Comparable : Equatable {            ❶ 

   static func < (lhs: Self, rhs: Self) -> Bool     ❷ 

   static func <= (lhs: Self, rhs: Self) -> Bool    ❷ 

   static func >= (lhs: Self, rhs: Self) -> Bool    ❷ 

   static func > (lhs: Self, rhs: Self) -> Bool     ❷ 

 } 

• ❶ Types implementing Comparable will also need to implement Equatable. 
• ❷ When a type conforms to Comparable, the <, <=, >=, and > plus == become available 

for use on a type. 

Both Comparable and Equatable are highly prevalent, and both live in the core Swift library. 



7.2.3. Constraining means specializing 

Back to the problem. Your lowest function was comparing two T types, but T is not 
yet Comparable. You can specialize the lowest function by indicating that T conforms 
to Comparable, as shown here. 

Listing 7.14. Constraining a generic 

// Before. Didn't compile. 

func lowest<T>(_ array: [T]) -> T? { 

 

// After. The following signature is correct. 

func lowest<T: Comparable>(_ array: [T]) -> T? { 

Inside the lowest function scope, T represents anything that conforms to Comparable. The code 
compiles again and works on multiple Comparable types, such as integers, floats, strings, and 
anything else that conforms to Comparable. 

Here’s the full lowest function. 

Listing 7.15. The lowest function 

func lowest<T: Comparable>(_ array: [T]) -> T? { 

    let sortedArray = array.sorted { (lhs, rhs) -> Bool in 

        return lhs < rhs 

    } 

    return sortedArray.first 

} 

You earlier recognized how sorted takes two values and returns a Bool. But sorted can use the 
power of protocols if all its elements are Comparable. You only need to call the sorted method 
without arguments, making the function body much shorter. 

Listing 7.16. The lowest function (shortened) 

func lowest<T: Comparable>(_ array: [T]) -> T? { 

    return array.sorted().first 

} 

7.2.4. Implementing Comparable 

You can apply lowest to your types, too. First, create an enum conforming to Comparable. This 
enum represents three royal ranks that you can compare. Then, you’ll pass an array of this enum 
to the lowest function. 



Listing 7.17. The RoyalRank enum, adhering to Comparable 

enum RoyalRank: Comparable {                                   ❶ 

    case emperor 

    case king 

    case duke 

 

    static func <(lhs: RoyalRank, rhs: RoyalRank) -> Bool {    ❷ 

        switch (lhs, rhs) {                                    ❸ 

          case (king, emperor): return true 

          case (duke, emperor): return true 

          case (duke, king): return true 

          default: return false 

        } 

    } 

• ❶ The RoyalRank enum implements the Comparable protocol. 
• ❷ Implement < to conform to Comparable. 
• ❸ Pattern match to see if one case is lower than the other. 

To make RoyalRank adhere to Comparable, you usually would need to 
implement == from Equatable. Luckily, Swift synthesizes this method for you, saving you from 
writing an implementation. On top of this, you also would need to implement the four methods 
from Comparable. But you only need to implement the < method, because with the 
implementations for both the < and == methods, Swift can deduce all other implementations 
for Comparable. As a result, you only need to implement the < method, saving you from writing 
some boilerplate. 

You made RoyalRank adhere to Comparable—and indirectly to Equatable—so now you can 
compare ranks against each other, or pass an array of them to your lowest function as in the 
following. 

Listing 7.18. Comparable in action 

let king = RoyalRank.king 

let duke = RoyalRank.duke 

 

duke < king // true 

duke > king // false 

duke == king // false 



 

let ranks: [RoyalRank] = [.emperor, .king, .duke] 

lowest(ranks) // .duke 

One of the benefits of generics is that you can write functions for types that don’t even exist yet. 
If you introduce new Comparable types in the future, you can pass them to lowest without extra 
work! 

7.2.5. Constraining vs. flexibility 

Not all types are Comparable. If you passed an array of Booleans, for instance, you’d get an error: 

lowest([true, false]) 

 

error: in argument type '[Bool]', 'Bool' does not conform to expected type 

     'Comparable' 

Booleans do not conform to Comparable. As a result, the lowest function won’t work on an array 
with Booleans. 

Constraining a generic means trading flexibility for functionality. A constrained generic 
becomes more specialized but is less flexible. 

7.3. MULTIPLE CONSTRAINTS 

Often, one single protocol won’t solve all your problems when constraining to it. 

Imagine a scenario where you not only want to keep track of the lowest values inside an array 
but also their occurrences. You would have to compare the values and probably store them in a 
dictionary to keep track of their occurrences. If you need a generic that can be compared and 
stored in a dictionary, you require that the generic conforms to both 
the Comparable and Hashable protocols. 

You haven’t looked at the Hashable protocol yet; do that now before seeing how to constrain a 
generic to multiple protocols. 

7.3.1. The Hashable protocol 

Types conforming to the Hashable protocol can be reduced to a single integer called a hash 
value. The act of hashing is done via a hashing function, which turns a type into an integer 
(see figure 7.2). 



Figure 7.2. In Swift, a hashing function turns a value into an integer. 

 

 

Note 

Hashing functions are a complex topic. Providing a deep understanding of them is outside the 
scope of this book. 

 

Hashable types can be used as dictionary keys, or part of a Set, amongst other use cases. One 
common Hashable type is String. 

Listing 7.19. A String as a dictionary key 

let dictionary = [ 

    "I am a key": "I am a value", 

    "I am another key": "I am another value", 

] 

Integers are also Hashable; they can also serve as dictionary keys or be stored inside a Set: 

let integers: Set = [1, 2, 3, 4] 

Many built-in types that are Equatable are also Hashable, such as Int, String, Character, 
and Double. 

Taking a closer look at the Hashable protocol 

The Hashable protocol defines a method that accepts a hasher; the implementing type can then 
feed values to this hasher. Note in this example that the Hashable protocol extends Equatable. 

Listing 7.20. The Hashable protocol 

public protocol Hashable : Equatable {      ❶ 

   func hash(into hasher: inout Hasher)     ❷ 

   // ... details omitted 



} 

• ❶ Types conforming to Hashable also have to conform to Equatable. 
• ❷ Types conforming to Hashable must offer the func hash (into hasher: inout Hasher) 

method. 

Types adhering to Hashable need to offer the static == method from Equatable and the func 
hash(into hasher: inout Hasher) method from Hashable. 

 

Note 

Just like it can with Equatable, Swift can synthesize implementations for Hashable for free on 
structs and enums, which is showcased in section 7.4. 

 

7.3.2. Combining constraints 

To create the lowestOccurences function as mentioned earlier, you need a generic type that 
conforms both to Hashable and Comparable. Conforming to two protocols is possible when you 
constrain a generic to multiple types, as shown in figure 7.3 and listing 7.21. 

Figure 7.3. A generic that conforms to two protocols. 

 

The lowestOccurrence function has a generic T type which is constrained to both 
the Comparableand Hashable protocols with the help of the & operator. 

Listing 7.21. Combining constraints 

func lowestOccurrences<T: Comparable & Hashable>(values: [T]) -> [T: Int] { 

    // ... snip 

} 

Now T can be compared and put inside a dictionary inside the function body. 



If a generic signature gets a bit hard to read, you can use a where clause, as an alternative, which 
goes at the end of a function, as shown here. 

Listing 7.22. where clause 

func lowestOccurrences<T>(values: [T]) -> [T: Int]     ❶ 

     where T: Comparable & Hashable {                  ❷ 

     // ... snip 

} 

• ❶ You still write a generic as before. 
• ❷ The constraints go at the end of the function inside a where clause. 

These are two different styles of writing generic constraints, but they both work the same. 

7.3.3. Exercises 

3 

Write a function that, given an array, returns a dictionary of the occurrences of each element inside 
the array. 

4 

Create a logger that prints a generic type’s description and debug description when passed. 

Hint: Besides CustomStringConvertible, which makes sure types implement a description 
property, Swift also offers CustomDebugStringConvertible, which makes type implement 
a debugDescription property. 

7.4. CREATING A GENERIC TYPE 

Thus far, you’ve been applying generics to your functions. But you can also make typesgeneric. 

In chapter 4, you delved into how Optional uses a generic type called Wrapped to store its value, 
as shown in the following listing. 

Listing 7.23. The generic type Wrapped 

public enum Optional<Wrapped> { 

  case none 

  case some(Wrapped) 

} 



Another generic type is Array. You write them as [Int] or [String] or something similar, which 
is syntactic sugar. Secretly, the syntax is Array<Element>, such as Array<Int>, which also 
compiles. 

Let’s use this section to create your generic struct that helps you combine Hashable types. The 
goal is to make clear how to juggle multiple generics at once while you work with 
the Hashableprotocol. 

7.4.1. Wanting to combine two Hashable types 

Unfortunately, using two Hashable types as a key for a dictionary isn’t possible, even if this key 
consists out of two Hashable types. In particular, you can combine two strings—which 
are Hashable—into a tuple and try to pass it as a dictionary key as shown here. 

Listing 7.24. Using a tuple as a key for a dictionary 

let stringsTuple = ("I want to be part of a key", "Me too!") 

let anotherDictionary = [stringsTuple: "I am a value"] 

But Swift quickly puts a stop to it. 

Listing 7.25. Error when using a tuple as a key 

error: type of expression is ambiguous without more context 

let anotherDictionary = [stringsTuple: "I am a value"] 

                        ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

As soon as you put two Hashable types inside a tuple, that tuple isn’t Hashable anymore. Swift 
doesn’t offer a way to combine the two hash values from a tuple. You’ll solve this problem by 
creating a Pair type that contains two Hashable properties. 

7.4.2. Creating a Pair type 

You can combine two Hashable types by introducing a new generic struct that you’ll call Pair. 
The Pair type accepts two Hashable types and will be made Hashable itself, too, as shown in this 
listing. 

Listing 7.26. Pair type in action 

let keyPair = Pair("I want to be part of a key", "Me too!") 

let anotherDictionary = [keyPair: "I am a value"] // This works. 

Pair can store two types, which are Hashable. A first naive approach may be to declare a single 
generic T, as shown in the next listing. 

Listing 7.27. Introducing Pair 

struct Pair<T: Hashable> {          ❶ 



    let left: T                     ❷ 

    let right: T                    ❸ 

 

    init(_ left: T, _ right: T) { 

      self.left = left 

      self.right = right 

    } 

} 

• ❶ The Pair struct contains a pair of T types, which are constrained to Hashable. 
• ❷ The first Hashable property of the pair 
• ❸ The second Hashable property of the pair 

Pair isn’t Hashable yet, but you’ll get to that shortly. First, there is a different problem—can you 
guess it? 

7.4.3. Multiple generics 

Since T is used for both values, Pair gets specialized to types such as the following. 

Listing 7.28. Pair is specialized: the left and right properties are of the same type 

struct Pair { 

  let left: Int 

  let right: Int 

} 

 

struct Pair { 

  let left: String 

  let right: String 

} 

Currently, you can’t have a Pair where the left property is one type—such as a String—and the 
right property is something else, such as an Int. 

 

Pop quiz 

Before continuing, can you guess how to fix Pair so that it accepts two separate types? 

 



You can make sure that Pair accepts two separate (or the same) types by defining two different 
generics on Pair. 

Listing 7.29. Pair accepts two generics 

struct Pair<T: Hashable, U: Hashable> {       ❶ 

    let left: T 

    let right: U                              ❷ 

 

    init(_ left: T, _ right: U) {             ❸ 

      self.left = left 

      self.right = right 

    } 

} 

• ❶ Pair now accepts two generic types, T and U. Both are constrained to Hashable. 
• ❷ The right property is now a U type. 
• ❸ The initializer is also updated to accept a U type. 

Now Pair can accept two different types, such as a String and Int, but also two similar types as 
shown here. 

Listing 7.30. Pair accepts mixed types 

// Pair accepts mixed types 

let pair = Pair("Tom", 20) 

 

// Same types such as two strings are still okay 

let pair = Pair("Tom", "Jerry") 

By introducing multiple generic types, Pair becomes more flexible because the compiler 
separately specializes the T and U types. 

7.4.4. Conforming to Hashable 

Currently, Pair isn’t Hashable yet—you’ll fix that now. 

To create a hash value for Pair, you have two options: you can let Swift synthesize the 
implementation for you, or you can create your own. First, do it the easy way where Swift 
synthesizes the Hashable implementation for you, saving you from writing boilerplate. 



Introduced in version 4.1, Swift has a fancy technique called conditional conformance, which 
allows you to automatically conform certain types to the Hashable or Equatable protocol. If all 
its properties conform to these protocols, Swift synthesizes all the required methods for you. For 
instance, if all properties are Hashable, Pair can automatically be Hashable. 

In this case, all you need to do is make Pair conform to Hashable, and you don’t need to give an 
implementation; this works as long as both left and right are Hashable, as in this example. 

Listing 7.31. Pair accepts two generics 

struct Pair<T: Hashable, U: Hashable>: Hashable {       ❶ 

     let left: T                                        ❷ 

     let right: U                                       ❷ 

 

    // ... snip 

} 

• ❶ Pair now conforms to Hashable as well. 
• ❷ You don’t need to do anything special because left and right are Hashable, too. 

Swift now creates a hash value for Pair. With little effort, you can use Pair as a Hashable type, 
such as adding them to a Set. 

Listing 7.32. Adding a Pair to a Set 

let pair = Pair<Int, Int>(10, 20) 

print(pair.hashValue) // 5280472796840031924 

 

let set: Set = [ 

  Pair("Laurel", "Hardy"), 

  Pair("Harry", "Lloyd") 

] 

 

Being explicit 

Notice how you can explicitly specify the types inside the Pair by using the Pair<Int, 
Int>syntax. 

 

Since Pair is Hashable, you can pass it a hasher, which Pair updates with values, as shown here. 



Listing 7.33. Passing a hasher to Pair 

let pair = Pair("Madonna", "Cher") 

 

var hasher = Hasher()                         ❶ 

hasher.combine(pair)                          ❶ 

// alternatively: pair.hash(into: &hasher)    ❷ 

let hash = hasher.finalize()                  ❸ 

print(hash) // 4922525492756211419 

• ❶ You can also create a manual hasher and pass it to Pair. 
• ❷ You can pass hasher to pair in a different manner, too. 
• ❸ Once you call finalize(), you obtain a hash value. 

There isn’t one winning hasher. Some hashers are fast, some are slow but more secure, and 
some are better at cryptography. Because you can pass custom hashers, you keep control of how 
and when to hash types. Then a Hashable type such as Pair keeps control of what to hash. 

Manually implementing Hashable 

Swift can synthesize a Hashable implementation for structs and enums. But 
synthesizing Equatable and Hashable implementations won’t work on classes. Also, perhaps 
you’d like more control over them. 

In these cases, implementing Hashable manually makes more sense. Let’s see how. 

You can consolidate the hash values from the two properties inside Pair by implementing 
the func hash(into hasher: inout Hasher) method. In this method, you call combine for each 
value you want to include in the hashing operation. You also implement the static == method 
from Equatable, in which you compare both values from two pairs. 

Listing 7.34. Implementing Hashable manually 

struct Pair<T: Hashable, U: Hashable>: Hashable { 

 

    // ... snip 

 

    func hash(into hasher: inout Hasher) {                        ❶ 

         hasher.combine(left)                                     ❷ 

         hasher.combine(right)                                    ❷ 

    } 



 

    static func ==(lhs: Pair<T, U>, rhs: Pair<T, U>) -> Bool {    ❸ 

         return lhs.left == rhs.left && lhs.right == rhs.right    ❹ 

    } 

 

} 

• ❶ For Pair to conform to Hashable, Pair needs to implement the func hash(into hasher: 
inout Hasher) method. 

• ❷ Call combine on the supplied hasher for each value you want to hash. 
• ❸ To conform to Hashable, you must also conform to Equatable. Do this by 

implementing the static == method where you compare two Pair types. 
• ❹ Compare two Pair types by comparing their left and right properties. 

Writing Pair took some steps, but you have a type that is flexible and highly reusable across 
projects. Which other generic structs can make your life easier? Perhaps a parser that turns a 
dictionary into a concrete type, or a struct that can write away any type to a file. 

7.4.5. Exercise 

5 

Write a generic cache that allows you to store values by Hashable keys. 

7.5. GENERICS AND SUBTYPES 

This section covers subclassing mixed with generics. It’s a bit theoretical, but it does shed a little 
light on some tricky situations if you want to understand generics on a deeper level. 

Subclassing is one way to achieve polymorphism; generics are another. Once you start mixing 
the two, you must be aware of some rules, because generics become unintuitive once you 
intertwine these two polymorphism mechanisms. Swift hides many complexities behind 
polymorphism, so you usually don’t have to worry about theory. But you’re going to hit a wall 
sooner or later once you use subclassing in combination with generics, in which case a little 
theory can be useful. To understand subclassing and generics, you need to dive into a bit of 
theory called subtype polymorphism and variance. 

7.5.1. Subtyping and invariance 

Imagine that you’re modeling data for an online education website where a subscriber can start 
specific courses. Consider the following class structure: the OnlineCourse class is a superclass 
for courses, such as SwiftOnTheServer, which inherits from OnlineCourse. You’re omitting the 
details to focus on generics, as given here. 



Listing 7.35. Two classes 

class OnlineCourse { 

    func start() { 

        print("Starting online course.") 

    } 

} 

 

class SwiftOnTheServer: OnlineCourse { 

    override func start() { 

        print("Starting Swift course.") 

    } 

} 

As a small reminder of subclassing in action: whenever an OnlineCourse is defined, such as on a 
variable, you can assign it to a SwiftOnTheServer, as shown in the next listing, since they both 
are of type OnlineCourse. 

Listing 7.36. Assigning a subclass to superclass 

var swiftCourse: SwiftOnTheServer = SwiftOnTheServer() 

var course: OnlineCourse = swiftCourse // is allowed 

course.start() // "Starting Swift course". 

You could state that SwiftOnTheServer is a subtype of OnlineCourse. Usually, subtypes refer to 
subclassing. But sometimes a subtype isn’t about subclassing. For instance, an Int is a subtype 
of an optional Int?, because whenever an Int? is expected, you can pass a regular Int. 

7.5.2. Invariance in Swift 

Passing a subclass when your code expects a superclass is all fine and dandy. But once a generic 
type wraps a superclass, you lose subtyping capabilities. For example, you’re introducing a 
generic Container holding a value of type T. Then you try to 
assign Container<SwiftOnTheServer> to Container<OnlineCourse>, just like before where you 
assigned SwiftOnTheServer to OnlineCourse. Unfortunately, you can’t do this, as shown in figure 

7.4. 



Figure 7.4. Subtyping doesn’t apply to Container 

 

Even though SwiftOnTheServer is a subtype of OnlineCourse, Container<SwiftOnTheServer> is 
not a subtype of Container<OnlineCourse>, as demonstrated in this listing. 

Listing 7.37. Container 

struct Container<T> {} 

 

var containerSwiftCourse: Container<SwiftOnTheServer> = 

➥ Container<SwiftOnTheServer>() 

var containerOnlineCourse: Container<OnlineCourse> = containerSwiftCourse 

 

error: cannot convert value of type 'Container<SwiftOnTheServer>' to 

➥ specified type 'Container<OnlineCourse>' 

Let’s see this shortcoming in a scenario slightly closer to real life. Imagine a generic Cache that 
stores data. You’d like to refresh a cache that holds online courses via the refreshCachemethod, 
as follows. 

Listing 7.38. Cache 

struct Cache<T> { 

    // methods omitted 

} 

func refreshCache(_ cache: Cache<OnlineCourse>) { 

    // ... snip 

} 

But here it shows again that, you can only pass Cache<OnlineCourse> types, but 
not Cache<SwiftOnTheServer>. 



Listing 7.39. Invariance in action 

refreshCache(Cache<OnlineCourse>()) // This is allowed 

refreshCache(Cache<SwiftOnTheServer>()) // error: cannot convert 

➥ value of type 'Cache<SwiftOnTheServer>' to expected argument type 

➥ 'Cache<OnlineCourse>' 

Swift’s generics are invariant, which states that just because a generic type wraps a subclass, it 
does not make it a subtype of a generic wrapping its superclass. My best guess why this is? 
Because Swift is relatively young, and invariance is a safe way to handle polymorphism until the 
language gets fleshed out more. 

7.5.3. Swift’s generic types get special privileges 

To make things even more confusing, Swift’s generic types, such as Array or Optional, do allow 
for subtyping with generics. In other words, Swift’s types from the standard library do not have 
the limitation you just witnessed. Only the generics that you define yourself have the limitations. 

For better comparison, write out optionals as their true generic counterpart; for 
example, Optional<OnlineCourse> instead of the syntactic sugar OnlineCourse?. Then you’ll 
pass an Optional<SwiftOnTheServer> to a function accepting an Optional<OnlineCourse>. 
Remember, this was illegal for your generic Container, but now it’s fine. 

Listing 7.40. Swift’s types are covariant 

func readOptionalCourse(_ value: Optional<OnlineCourse>) { 

    // ... snip 

} 

 

readOptionalCourse(OnlineCourse()) // This is allowed. 

readOptionalCourse(SwiftOnTheServer()) // This is allowed, Optional is covariant. 

Swift’s built-in generic types are covariant, which means that generic types can be subtypes of 
other generic types. Covariance explains why you can pass an Int to a method expecting an Int?. 

You’re flying economy while Swift’s types are enjoying extra legroom in the business class. 
Hopefully, it’s only a matter of time until your generic types can be covariant, too. 

At first thought, it might be frustrating when you’re running into a situation where you want to 
mix generics and subclasses. Honestly, you can get pretty far without subclassing. In fact, if 
you’re not using specific frameworks that depend on subclassing, such as UIKit, you can deliver 
a complete application without subclassing at all. Making your classes final by default can also 
help to disincentivize subclassing and stimulate protocols and extensions to add functionality to 
classes. This book highlights multiple alternatives to subclassing that Swift offers. 



7.6. CLOSING THOUGHTS 

Having read this chapter, I hope you feel confident in your ability to create generic components 
in your projects. 

Abstractions come at a cost. Code becomes a bit more complicated and harder to interpret with 
generics. But you gain a lot of flexibility in return. With a bit of practice, it may seem like 
the Matrix (if you’re familiar with the film), where looking at these T, U, and V types will turn 
them into blondes, brunettes, and redheads, or perhaps String, Int, and Float. 

The more comfortable you are with generics, the easier it is to shrink the size of your codebase 
and write more reusable components. I can’t express enough how important understanding 
generics on a fundamental level is, because generics keep returning in other chapters and in 
many Swift types in the wild. 

SUMMARY 

• Adding an unconstrained generic to a function allows a function to work with all types. 
• Generics can’t be specialized from inside the scope of a function or type. 
• Generic code is converted to specialized code that works on multiple types. 
• Generics can be constrained for more specialized behavior, which may exclude some 

types. 
• A type can be constrained to multiple generics to unlock more functionality on a generic 

type. 
• Swift can synthesize implementations for the Equatable and Hashable protocols on 

structs and enums. 
• Synthesizing default implementations doesn’t work on classes. 
• Generics that you write are invariant, and therefore you cannot use them as subtypes. 
• Generic types in the standard library are covariant, and you can use them as subtypes. 

ANSWERS 

1 

Which of the functions will compile? Confirm this by running the code. 

This one will work: 

func wrap<T>(value: Int, secondValue: T) -> ([Int], T) { 

    return ([value], secondValue) 

} 

Also, this one will work: 

func wrap<T>(value: Int, secondValue: T) -> ([Int], Int)? { 

    if let secondValue = secondValue as? Int { 



        return ([value], secondValue) 

    } else { 

        return nil 

    } 

} 

2 

What’s the benefit of using generics over the Any type (for example, writing a function 
as func<T>(process: [T]) versus func(process:[Any]))? 

By using a generic, code is made polymorphic at compile time. By using Any, you have to downcast 
at runtime. 

3 

Write a function that, given an array, returns a dictionary of the occurrences of each element inside 
the array: 

func occurrences<T: Hashable>(values: [T]) -> [T: Int] { 

    var groupedValues = [T: Int]() 

 

    for element in values { 

        groupedValues[element, default: 0] += 1 

    } 

 

    return groupedValues 

} 

 

print(occurrences(values: ["A", "A", "B", "C", "A"])) // ["C": 1, 

  "B": 1, "A": 3] 

4 

Create a logger that will print a generic type’s description and debugDescription when passed: 

struct CustomType: CustomDebugStringConvertible, CustomStringConvertible { 

    var description: String { 

        return  "This is my description" 



    } 

 

    var debugDescription: String { 

        return "This is my debugDescription" 

    } 

} 

 

struct Logger { 

    func log<T>(type: T) 

        where T: CustomStringConvertible & CustomDebugStringConvertible { 

            print(type.debugDescription) 

            print(type.description) 

    } 

} 

 

let logger = Logger() 

logger.log(type: CustomType()) 

5 

Write a generic cache that allows you to store values by Hashable keys: 

class MiniCache<T: Hashable, U> { 

 

    var cache = [T: U]() 

 

    init() {} 

 

    func insert(key: T, value: U) { 

        cache[key] = value 

    } 

 

    func read(key: T) -> U? { 

        return cache[key] 



    } 

 

} 

 

let cache = MiniCache<Int, String>() 

cache.insert(key: 100, value: "Jeff") 

cache.insert(key: 200, value: "Miriam") 

cache.read(key: 200) // Optional("Miriam") 

cache.read(key: 99) // Optional("Miriam") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8. Putting the pro in protocol-oriented 

programming 

This chapter covers 

• The relationship and trade-offs between generics and using protocols as types 
• Understanding associated types 
• Passing around protocols with associated types 
• Storing and constraining protocols with associated types 
• Simplifying your API with protocol inheritance 

Protocols bring a lot of power and flexibility to your code. Some might say it’s Swift’s flagship 
feature, especially since Apple markets Swift as a protocol-oriented-programming language. 
But as lovely as protocols are, they can become difficult fast. Plenty of subtleties are involved, 
such as using protocols at runtime or compile time, and constraining protocols with associated 
types. 

This chapter’s goal is to lay down a solid foundation regarding protocols; it will shed light on 
using protocols as an interface versus using protocols to constrain generics. This chapter also 
aims to carry you over the hump of what can be considered advanced protocols, which are 
protocols with associated types. The end goal is to make sure you understand why, when, and 
how to apply protocols (and generics) in multiple scenarios. The only requirements are that 
you’re at least a little bit familiar with protocols and that you have read chapter 7, “Generics.” 
After this chapter, protocols and associated types will repeatedly return, so I recommend not to 
skip this one! 

First, you’ll take a look to see how protocols fare by themselves, versus using protocols to 
constrain generics. You’ll look at both sides of the coin and take on two approaches. One 
approach uses generics, and the other does not. The aim of this chapter is that you’ll be able to 
make trade-offs and decide on a proper approach in day-to-day programming. 

In the second section, you’ll move on to the more difficult aspect of protocols, which is when you 
start using associated types. You can consider protocols with associated types as generic 
protocols, and you’ll discover why you would need them and when you can apply them in your 
applications. 

Once you start passing around protocols with associated types, you’re working with very flexible 
code. But things will get tricky. You’ll take a closer look to see how to pass protocols with 
associated types around, and how to create types that store them with constraints. On top of 
that, you’ll apply a nice trick to clean up your APIs by using a technique called protocol 
inheritance. 

8.1. RUNTIME VERSUS COMPILE TIME 

So far, this book has covered generics extensively and how they relate to protocols. With 
generics, you create polymorphic functions defined at compile time. But protocols don’t always 



have to be used with generics if you want to gain particular runtime—also known as dynamic 
dispatch—benefits. In this section, you’re going to create a protocol, and then you’ll see how to 
make trade-offs between generics constrained by protocols, and how to use protocols as types 
without using generics. 

8.1.1. Creating a protocol 

 

Join me! 

It’s more educational and fun if you can check out the code and follow along with the chapter. 
You can download the source code at http://mng.bz/qJZ2. 

 

You’ll start building a cryptocoin portfolio that can hold coins such as Bitcoin, Ethereum, 
Litecoin, Neo, Dogecoin, and a bazillion others. 

You don’t want to write a portfolio or function for each coin, especially with the hundreds of 
other coins that your application may support. You’ve seen before how you can use enums to 
work with polymorphism, which is often a suitable approach. But enums, in this case, would be 
too restrictive. You would have to declare a case for each coin (which could be hundreds!). 
Alternatively, what if you offer a framework, but then implementers can’t add more cases to the 
types of coins? In these cases, you can use protocols, which are a more flexible way to achieve 
polymorphism. If you introduce a protocol, you and others can adhere to this protocol for each 
coin. 

To showcase this method, you’ll introduce a protocol, as shown in the following listing, 
called CryptoCurrency, with four properties called name, symbol, and price (for the current price 
in the user’s currency setting) and holdings (representing the number of coins a user has). 

Listing 8.1. A CryptoCurrency protocol 

import Foundation 

 

protocol CryptoCurrency { 

    var name: String { get } 

    var symbol: String { get } 

    var holdings: Double { get set } 

    var price: NSDecimalNumber? { get set } 

} 

You are taking advantage of commonalities where you define the minimum properties that each 
coin should have. Protocols are like blueprints in this way; you can write functions and 
properties that work only on a CryptoCurrency protocol, not needing to know about the coin 
that’s passed to it. 



As a next step, you declare a few coins that adhere to this protocol. 

Listing 8.2. Declaring coins 

struct Bitcoin: CryptoCurrency { 

    let name = "Bitcoin" 

    let symbol = "BTC" 

    var holdings: Double 

    var price: NSDecimalNumber? 

} 

 

struct Ethereum: CryptoCurrency { 

    let name = "Ethereum" 

    let symbol = "ETH" 

    var holdings: Double 

    var price: NSDecimalNumber? 

} 

 

var or let 

Whenever you declare properties on a protocol, they are always a var. The implementer can 
then choose to make it a let or var property. Also, if the protocol has a get set modifier on a 
property, the implementer has to offer a var to allow for mutation. 

 

8.1.2. Generics versus protocols 

Let’s build a portfolio that can hold some coins for a customer. You’ve seen before how you can 
use generics to work with a protocol. You’ll start with the next listing by taking the generics 
approach and quickly see the problem that accompanies it. 

Listing 8.3. Introducing a portfolio (won’t fully work yet!) 

final class Portfolio<Coin: CryptoCurrency> {        ❶ 

    var coins: [Coin]                                ❷ 

 

    init(coins: [Coin]) { 

        self.coins = coins 

    } 



 

    func addCoin(_ newCoin: Coin) { 

        coins.append(newCoin) 

    } 

 

    // ... snip. We are leaving out removing coins, calculating the total 

     value, and other functionality. 

} 

• ❶ Declare a generic. 
• ❷ Store the coins with generic type Coin. 

The previous code is a small segment of a larger Portfolio class, which can have more 
functionality, such as removing coins, tracking gains and losses, and other use cases. 

 

Pop quiz 

The Portfolio class has a problem. Can you detect it? 

 

8.1.3. A trade-off with generics 

There’s a shortcoming. The Coin generic represents a single type, so you can only add one type 
of coin to your portfolio. 

Listing 8.4. Trying to add different coins to the Portfolio 

let coins = [ 

    Ethereum(holdings: 4, price: NSDecimalNumber(value: 500)),      ❶ 

    // If we mix coins, we can't pass them to Portfolio 

    // Bitcoin(holdings: 4, price: NSDecimalNumber(value: 6000))    ❷ 

 ] 

let portfolio = Portfolio(coins: coins)                             ❷ 

• ❶ An Ethereum coin is created, with a value of 500. (Normally it would be retrieved 
from live data). 

• ❷ Portfolio can’t accept an array with different coins. 



Currently, the portfolio contains an Ethereum coin. Because you used a generic, Coin inside the 
portfolio is now pinned to Ethereum coins. Because of generics, if you add a different coin, such 
as Bitcoin, you’re stopped by the compiler, as shown in this listing. 

Listing 8.5. Can’t mix protocols with generics 

let btc = Bitcoin(holdings: 3, price: nil) 

portfolio.addCoin(btc) 

 

error: cannot convert value of type 'Bitcoin' to expected argument type 'Ethereum' 

The compiler smacks you with an error. At compile time, the Portfolio initializer resolves the 
generic to Ethereum, which means that you can’t add different types to the portfolio. You can 
confirm as well by checking the type of coins that Portfolio holds, as shown in this example. 

Listing 8.6. Checking the type of coins 

print(type(of: portfolio)) // Portfolio<Ethereum> 

print(type(of: portfolio.coins)) // Array<Ethereum> 

 

type(of: ) 

By using type(of:) you can inspect a type. 

 

Generics give you benefits, such as knowing what types you’re dealing with at compile time. The 
compiler can also apply performance optimizations because of this extra information. 

But in this case, you don’t want to pin down the Coin type at compile time. You want to mix and 
match coins and even add new coins at runtime. To meet this requirement, you’re going to move 
from compile time to runtime, so it’s time to step away from generics. Not to worry; you’ll keep 
using the CryptoCurrency protocol. 

8.1.4. Moving to runtime 

You move to runtime by removing the generic. In th next example, you’ll refactor Portfolio so 
that it holds coins that adhere to CryptoCurrency. 

Listing 8.7. A dynamic Portfolio 

// Before 

final class Portfolio<Coin: CryptoCurrency> { 

    var coins: [Coin] 

 



    // ... snip 

} 

 

// After 

final class Portfolio {             ❶ 

     var coins: [CryptoCurrency]    ❷ 

 

    // ... snip 

} 

• ❶ Remove the generic definition on Portfolio. 
• ❷ The coins array is now of type CryptoCurrency instead of the generic Coin. 

The portfolio has no generic and holds only CryptoCurrency types. You can mix and match the 
types inside the CryptoCurrency array, as indicated next by adding multiple types of coins. 

Listing 8.8. Mixing and match coins 

// No need to specify what goes inside of portfolio. 

let portfolio = Portfolio(coins: [])                    ❶ 

 

// Now we can mix coins. 

let coins: [CryptoCurrency] = [ 

    Ethereum(holdings: 4, price: NSDecimalNumber(value: 500)), 

    Bitcoin(holdings: 4, price: NSDecimalNumber(value: 6000)) 

] 

portfolio.coins = coins                                 ❷ 

• ❶ You don’t need to specify any generic parameter. 
• ❷ You can add different types of coins. 

By stepping away from generics, you gain flexibility back. 

8.1.5. Choosing between compile time and runtime 

It’s a subtle distinction, but these examples showcase how generics are defined in the compile-
time world and how protocols as types live in the runtime world. 

If you use a protocol at runtime, you could think of them as interfaces or types. As shown in the 
following example, if you check the types inside the coins array, you get an array 



of CryptoCurrency, whereas before the array resolved to one type, namely [Ethereum] and 
potentially others. 

Listing 8.9. Checking an array 

print(type(of: portfolio)) // Portfolio 

 

let retrievedCoins = portfolio.coins 

print(type(of: retrievedCoins)) // Array<CryptoCurrency> 

Using a protocol at runtime means you can mix and match all sorts of types, which is a fantastic 
benefit. But the type you’re working with is a CryptoCurrency protocol. If Bitcoin has a special 
method called bitcoinStores(), you wouldn’t be able to access it from the portfolio unless the 
protocol has the method defined as well, which means all coins now have to implement this 
method. Alternatively, you could check at runtime if a coin is of a specific type, but that can be 
considered an anti-pattern and doesn’t scale with hundreds of possible coins. 

8.1.6. When a generic is the better choice 

Let’s consider another scenario that showcases another difference between protocols as a type 
and using protocols to constrain generics. This time, constraining a generic with a protocol is 
the better choice. 

For example, you can have a function called retrievePrice. You pass this function a coin, such 
as a Bitcoin struct or Ethereum struct, and you receive the same coin but updated with its most 
recent price. Next, you can see two similar functions: one with a generic implementation for 
compile time use, and one with a protocol as a type for runtime use. 

Listing 8.10. A generic protocol vs. a runtime protocol 

func retrievePriceRunTime(coin: CryptoCurrency, completion: ((CryptoCurrency) 

     -> Void) ) {                                                          ❶ 

     // ... snip. Server returns coin with most-recent price. 

    var copy = coin 

    copy.price = 6000 

    completion(copy) 

} 

 

func retrievePriceCompileTime<Coin: CryptoCurrency>(coin: Coin, 

➥ completion: ((Coin) -> Void)) {                                         ❷ 

     // ... snip. Server returns coin with most-recent price. 

    var copy = coin 



    copy.price = 6000 

    completion(copy) 

} 

 

let btc = Bitcoin(holdings: 3, price: nil) 

retrievePriceRunTime(coin: btc) { (updatedCoin: CryptoCurrency) in         ❸ 

     print("Updated value runtime is \(updatedCoin.price?.doubleValue ?? 0)") 

} 

 

retrievePriceCompileTime(coin: btc) { (updatedCoin: Bitcoin) in            ❹ 

     print("Updated value compile time is \(updatedCoin.price?.doubleValue 

     ?? 0)") 

} 

• ❶ The retrievePriceRuntime function is using a runtime protocol. You return a 
CryptoCurrency protocol inside the closure. 

• ❷ The retrievePriceCompileTime function, but this time it works on a generic 
constrained to the CryptoCurrency protocol. The completion handler also used the Coin 
generic. 

• ❸ Notice how the completion handler passed a value of type CryptoCurrency. Inside the 
closure, you don’t know what the concrete type is until runtime. 

• ❹ But you know what to expect with the generic version. The function passes a Bitcoin 
type, the same type you passed into the function. 

Thanks to generics, you know exactly what type you’re working with inside the closure. You lose 
this benefit when using a protocol as a type. 

Having generics appear inside your application may be wordy, but I hope you’re encouraged to 
use them because of their benefits compared to runtime protocols. 

Generally speaking, using a protocol as a type speeds up your programming and makes mixing 
and swapping things around easier. Generics are more restrictive and wordy, but they give you 
performance benefits and compile-time knowledge of the types you’re implementing. Generics 
are often the better (but harder) choice, and in some cases they’re the only choice, which you’ll 
discover next when implementing protocols with associated types. 

8.1.7. Exercises 

1 

Given this protocol 



protocol AudioProtocol {} 

what is the difference between the following statements? 

func loadAudio(audio: AudioProtocol) {} 

func loadAudio<T: AudioProtocol>(audio: T) {} 

2 

How would you decide to use a generic or nongeneric protocol in the following example? 

protocol Ingredient {} 

struct Recipe<I: Ingredient> { 

    let ingredients: [I] 

    let instructions: String 

} 

3 

How would you decide to use a generic or nongeneric protocol in the following struct? 

protocol APIDelegate { 

    func load(completion:(Data) -> Void) 

} 

struct ApiLoadHandler: APIDelegate { 

    func load(completion: (Data) -> Void) { 

        print("I am loading") 

    } 

} 

 

class API { 

    private let delegate: APIDelegate? 

 

    init(delegate: APIDelegate) { 

        self.delegate = delegate 

    } 

} 

 



let dataModel = API(delegate: ApiLoadHandler()) 

8.2. THE WHY OF ASSOCIATED TYPES 

Let’s go more in-depth and work with what may be considered advanced protocols, also known 
as protocols with associated types—or PATs for short, to go easy on the finger-joints of yours 
truly. 

Protocols are abstract as they are, but with PATs, you’re making your protocols generic, which 
makes your code even more abstract and exponentially complex. 

Wielding PATs is a useful skill to have. It’s one thing to hear about them, nod, and think that 
they may be useful for your code one day. But I aim to make you understand PATs profoundly 
and feel comfortable with them, so that at the end of this section, PATs don’t intimidate you, 
and you feel ready to start implementing them (when it makes sense to do so). 

In this section, you start by modeling a protocol and keep running into shortcomings, which you 
ultimately will solve with associated types. Along the way, you get to experience the reasoning 
and decision making of why you want to use PATs. 

8.2.1. Running into a shortcoming with protocols 

Imagine that you want to create a protocol resembling a piece of work that it needs to perform. 
It could represent a job or task, such as sending emails to all customers, migrating a database, 
resizing images in the background, or updating statistics by gathering information. You can 
model this piece of code via a protocol you’ll call Worker. 

The first type you’ll create and conform to Worker is MailJob. MailJob needs a String email 
address for its input, and returns a Bool for its output, indicating whether the job finished 
successfully. You’ll start naïvely and reflect the input and output of MailJob in 
the Workerprotocol. Worker has a single method, called start, that takes a String for its input 
and a Boolfor its output, as in the following listing. 

Listing 8.11. The Worker protocol 

protocol Worker { 

 

     @discardableResult                       ❶ 

     func start(input: String) -> Bool        ❷ 

 } 

 

class MailJob: Worker {                       ❸ 

     func start(input: String) -> Bool { 

        // Send mail to email address (input can represent an email address) 



        // On finished, return whether or not everything succeeded 

        return true 

    } 

} 

• ❶ Ignore the start method’s output; you can suppress compiler warnings with 
@discardableResult. 

• ❷ The Worker protocol has a single method. 
• ❸ The MailJob class adheres to Worker. 

 

Note 

Normally you may want to run a worker implementation in the background, but for simplicity 
you keep it in the same thread. 

 

But Worker does not cover all the requirements. Worker fits the needs for MailJob, but doesn’t 
scale to other types that may not have String and Bool as their input and output. 

Let’s introduce another type that conforms to Worker and specializes in removing files and call 
it FileRemover. FileRemover accepts a URL type as input for its directory, removes the files, and 
returns an array of strings representing the files it deleted. Since FileRemover accepts a URL and 
returns [String], it can’t conform to Worker (see figure 8.1). 

Figure 8.1. Trying to conform to Worker 

 

Unfortunately, the protocol doesn’t scale well. Try two different approaches before heading to 
the solution involving protocols with associated types. 



8.2.2. Trying to make everything a protocol 

Before you solve your problem with associated types, consider a solution that involves more 
protocols. How about making Input and Output a protocol, too? This seems like a valid 
suggestion—it allows you to avoid PATs altogether. But this approach has issues, as you are 
about to witness. 

Listing 8.12. Worker without associated types 

protocol Input {}                           ❶ 

protocol Output {}                          ❶ 

 

protocol Worker { 

    @discardableResult 

    func start(input: Input) -> Output      ❷ 

} 

• ❶ Declare two protocols: one for Input and one for Output. 
• ❷ The start method now accepts Input and Output as protocols, instead of associated 

types. 

This approach works. But for every type you want to use for the input and output, you’d have to 
make multiple types adhere to the Input and Output protocols. This approach is a surefire way to 
end up with boilerplate, such as making String, URL, and [URL] adhere to the Inputprotocol, and 
again for the Output protocol. Another downside is that you’re introducing a new protocol for 
each parameter and return type. On top of that, if you were to introduce a new method 
on Input or Output, you would have to implement it on all the types adhering to these protocols. 
Making everything a protocol is viable on a smaller project, but it won’t scale nicely, causes 
boilerplate, and puts a burden on the developers that conform to your protocol. 



8.2.3. Designing a generic protocol 

 

Let’s take a look at another approach where you’d like both MailJob and FileRemover to conform 
to Worker. In the next listing, you’ll first approach your solution naïvely (which won’t compile), 
but it highlights the motivation of associated types. Then, you’ll solve your approach with 
associated types. 

The Worker protocol wants to make sure that each implementation can decide for itself what the 
input and output represents. You can attempt this by defining two generics on the protocol, 
called Input and Output. Unfortunately, your approach won’t work yet—let’s see why. 

Listing 8.13. A Worker protocol (won’t compile yet!) 

protocol Worker<Input, Output> {           ❶ 

    @discardableResult 

    func start(input: Input) -> Output     ❷ 

 } 

• ❶ You can’t declare generics on a protocol. 
• ❷ The Worker starts a job with some input and returns some output. 

Swift quickly stops you: 

error: protocols do not allow generic parameters; use associated types instead 



Swift doesn’t support protocols with generic parameters. If Swift would support a generic 
protocol, you would need to define a concrete type on the protocol on an implementation. For 
instance, let’s say you model the MailJob class with the Input generic set to String and 
the Output generic set to Bool. Its implementation would then be class MailJob: 
Worker<String, Bool>. Since the Worker protocol would be generic, you theoretically could 
implement Workermultiple times on MailJob. Multiple implementations of the same protocol, 
however, do not compile, as shown in this listing. 

Listing 8.14. Not supported: a MailJob implementing Worker multiple times 

// Not supported: Implementing a generic Worker. 

class MailJob: Worker<String, Bool> {              ❶ 

     // Implementation omitted 

} 

 

class MailJob: Worker<Int, [String]> {             ❶ 

     // Implementation omitted 

} 

 

// etc 

• ❶ Theoretically you could implement Worker for different types, such as <String, Bool>, 
or <Int, [String]>. 

At the time of writing, Swift doesn’t support multiple implementations of the same protocol. 
What Swift does support, however, is that you can implement a protocol only once for each type. 
In other words, MailJob gets to implement Worker once. Associated types give you this balance 
of making sure that you can implement a protocol once while working with generic values. Let’s 
see how this works. 

8.2.4. Modeling a protocol with associated types 

You’ve seen two alternatives that were not the real solutions to your problem. You’ll create a 
viable solution to the problem. You’re going to follow the compiler’s advice and use associated 
types. You can rewrite Worker and use the associatedtype keyword, where you declare both 
the Input and Output generics as associated types. 

Listing 8.15. Worker with associated types 

protocol Worker {                         ❶ 

    associatedtype Input                  ❷ 

    associatedtype Output                 ❷ 

 



    @discardableResult 

    func start(input: Input) -> Output    ❸ 

} 

• ❶ The Worker protocol doesn’t have a generics declaration. 
• ❷ Declare associated types via the associatedtype keyword. 
• ❸ In the rest of the protocol signature, you can reference the associated types. 

Now the Input and Output generics are declared as associated types. Associated types are similar 
to generics, but they are defined inside a protocol. Notice how Worker does not have the <Input, 
Output> notation. With Worker in place, you can start to conform to it for 
both MailJob and FileRemover. 

8.2.5. Implementing a PAT 

The Worker protocol is ready to be implemented. Thanks to associated types, 
both Mailjob and FileRemover can successfully conform to Worker. MailJob sets 
the Input and Output to String and Bool, whereas FileRemover sets 
the Input and Output to URL and [String] (see figure 8.2). 

Figure 8.2. Worker implemented 

 

Looking at the details of MailJob in the next listing, you can see that it sets 
the Input and Output to concrete types. 

Listing 8.16. Mailjob (implementation omitted) 

class MailJob: Worker { 

    typealias Input = String                    ❶ 

    typealias Output = Bool                     ❷ 



 

    func start(input: String) -> Bool { 

        // Send mail to email address (input can represent an email address) 

        // On finished, return whether or not everything succeeded 

        return true 

    } 

} 

• ❶ For MailJob, the Input associated type is defined as String. 
• ❷ For MailJob, the Output associated type is defined as Bool. 

Now, MailJob always uses String and Bool for its Input and Output. 

 

Note 

Each type conforming to a protocol can only have a single implementation of a protocol. But you 
still get generic values with the help of associated types. The benefit is that each type can decide 
what these associated values represent. 

 

The implementation of FileRemover is different than MailJob, and its associated types are also of 
different types. Note, as shown in the following, that you can omit the typealias notation if 
Swift can infer the associated types. 

Listing 8.17. The FileRemover 

class FileRemover: Worker { 

//    typealias Input = URL                                                ❶ 

//    typealias Output = [String]                                          ❶ 

 

    func start(input: URL) -> [String] { 

        do { 

            var results = [String]() 

            let fileManager = FileManager.default 

            let fileURLs = try fileManager.contentsOfDirectory(at: input, 

➥ includingPropertiesForKeys: nil)                                        ❷ 

 

            for fileURL in fileURLs { 



                try fileManager.removeItem(at: fileURL)                    ❷ 

                results.append(fileURL.absoluteString) 

            } 

 

            return results 

        } catch { 

            print("Clearing directory failed.") 

            return [] 

        } 

    } 

} 

• ❶ You can choose to omit the types if the compiler can infer the types from the method 
and property signatures. 

• ❷ The FileRemover finds the directory and iterates through the files to remove them. 

When using protocols with associated types, multiple types can conform to the same protocol; 
yet, each type can define what an associated type represents. 

 

Tip 

Another way to think of an associated type is that it’s a generic, except it’s a generic that lives 
inside a protocol. 

 

8.2.6. PATs in the standard library 

Swift uses associated types all around the standard library, and you’ve been using a few already! 

The most common uses of a PAT are the IteratorProtocol, Sequence, and Collection protocols. 
These protocols are conformed to by Array, String, Set, Dictionary, and others, which use an 
associated type called Element, representing an element inside the collection. But you’ve also 
seen other protocols, such as RawRepresentable on enums where an associated type 
called RawValue allows you to transform any type to an enum and back again. 

Self requirements 

Another flavor of an associated type is the Self keyword. A common example is 
the Equatableprotocol, which you saw in chapter 7. With Equatable, two of the same types—
represented by Self—are compared. As shown in this listing, Self resolves to the type that 
conforms to Equatable. 



Listing 8.18. Equatable 

public protocol Equatable { 

  static func == (lhs: Self, rhs: Self) -> Bool      ❶ 

} 

• ❶ Equatable has Self requirements. 

8.2.7. Other uses for associated types 

Bending your mind around PATs can be tough. A protocol with an associated type is a generic 
protocol, making it harder to reason about. Introducing associated types starts making sense 
when conformers of a protocol use different types in their implementation. Generally speaking, 
PATs tend to pop up more often in frameworks because of a higher chance of reusability. 

Here are some use cases for associated types: 

• A Recording protocol—Each recording has a duration, and it could also support 
scrubbing through time via a seek() method, but the actual data could be different for 
each implementation, such as an audio file, video file, or YouTube stream. 

• A Service protocol—It loads data; one type could return JSON data from an API, and 
another could locally search and return raw string data. 

• A Message protocol—It’s on a social media tool that tracks posts. In one implementation, 
a message represents a Tweet; in another, a message represents a Facebook direct 
message; and in another, it could be a message on WhatsApp. 

• A SearchQuery protocol—It resembles database queries, where the result is different for 
each implementation. 

• A Paginator protocol—It can be given a page and offset to browse through a database. 
Each page could represent some data. Perhaps it has some users in a user table in a 
database, or perhaps a list of files, or a list of products inside a view. 

8.2.8. Exercise 

4 

Consider the following subclassing hierarchy for a game, where you have enemies that can attack 
with a specific type of damage. Can you replace this subclassing hierarchy with a protocol-based 
solution? 

class AbstractDamage {} 

 

class AbstractEnemy { 

    func attack() -> AbstractDamage { 

        fatalError("This method must be implemented by subclass") 

    } 



} 

 

class Fire: AbstractDamage {} 

class Imp: AbstractEnemy { 

    override func attack() -> Fire { 

        return Fire() 

    } 

} 

 

class BluntDamage: AbstractDamage {} 

class Centaur: AbstractEnemy { 

    override func attack() -> BluntDamage { 

        return BluntDamage() 

    } 

} 

8.3. PASSING PROTOCOLS WITH ASSOCIATED TYPES 

 

Let’s see the ways you can pass a protocol with associated types around. You’ll use 
the Workerprotocol from the last section with two associated types named Input and Output. 



Imagine that you want to write a generic function or method that accepts a single worker and an 
array of elements that this worker must process. By passing an array of type [W.Input], 
where W represents a Worker, you make sure that the Input associated type is the exact type 
the Worker can handle (see figure 8.5). PATs can only be implemented as generic constraints—
with some complicated exceptions aside—so you’ll use generics to stay in the world of compile-
time code. 

 

Note 

You can safely omit any references to W.Output in runWorker because you’re not doing anything 
with it. 

 

Figure 8.3. Passing the same input to multiple workers 

 

With runWorker in place, you can pass it multiple Worker types, such as a MailJob or 
a FileRemover, as shown in the next listing. Make sure that you pass matching Input types for 
each worker; you pass strings for MailJob and URLs to FileRemover. 

Listing 8.19. Passing multiple workers 

let mailJob = MailJob() 

runWorker(worker: mailJob, input: ["grover@sesamestreetcom", "bigbird@sesames 

     treet.com"])                                                          ❶ 

 

let fileRemover = FileRemover() 

runWorker(worker: fileRemover, input: [                                    ❷ 

    URL(fileURLWithPath: "./cache", isDirectory: true), 

    URL(fileURLWithPath: "./tmp", isDirectory: true), 

    ]) 



• ❶ Pass the MailJob to runWorker with a list of emails. 
• ❷ Pass a FileRemover instance to runWorker with a list of URLs. 

 

Note 

Like generics, associated types get resolved at compile time, too. 

 

8.3.1. Where clauses with associated types 

You can constrain associated types in functions with a where clause, which becomes useful if 
you want to specialize functionality somewhat. Constraining associated types is very similar to 
constraining a generic, yet the syntax is slightly different. 

For instance, let’s say you want to process an array of users; perhaps you need to strip empty 
spaces from their names or update other values. You can pass an array of users to a single 
worker. You can make sure that the Input associated type is of type User with the help of 
a where clause so that you can print the users’ names the worker is processing. By constraining 
an associated type, the function is specialized to work only with users as input. 

Listing 8.20. Constraining the Input associated type 

final class User {                                                          ❶ 

    let firstName: String 

    let lastName: String 

    init(firstName: String, lastName: String) { 

        self.firstName = firstName 

        self.lastName = lastName 

    } 

} 

 

func runWorker<W>(worker: W, input: [W.Input]) 

where W: Worker, W.Input == User {                                          ❷ 

     input.forEach { (user: W.Input) in 

        worker.start(input: user) 

        print("Finished processing user \(user.firstName) \(user.lastName)")❸ 

     } 

} 



• ❶ Define a User. 
• ❷ Inside runWorker, you constrain the Input associated type to User. Note that you can 

constrain W here as well. 
• ❸ Now you can reference users by their properties inside the body of the function. 

8.3.2. Types constraining associated types 

You just saw how associated types get passed via functions. Now focus on how associated types 
work with types such as structs, classes, or enums. 

As an example, you could have an ImageProcessor class that can store a Worker type (see figure 
8.6). Workers in this context could be types that crop an image, resize an image, or turn them to 
sepia. What exactly this ImageProcessor does depends on the Worker. The added value of 
the ImageProcessor is that it can batch process a large number of images by getting them out of 
a store, such as a database. 

Figure 8.4. ImageProcessor 

 

The ImageProcessor accepts an ImageCropper that is of type Worker. 

Listing 8.21. Calling the ImageProcessor 

let cropper = ImageCropper(size: CGSize(width: 200, height: 200)) 

let imageProcessor: ImageProcessor<ImageCropper> = ImageProcessor(worker: 

➥ cropper)                                                                ❶ 

• ❶ Here you explicitly define the generic type inside ImageProcessor, via 
ImageProcessor<ImageCropper>. 

First you’ll introduce the Worker, which in this case is ImageCropper. The implementation is 
omitted to focus on the protocol conformance. 



Listing 8.22. ImageCropper 

final class ImageCropper: Worker { 

 

    let size: CGSize 

    init(size: CGSize) { 

        self.size = size 

    } 

 

    func start(input: UIImage) -> Bool { 

        // Omitted: Resize image to self.size 

        // return bool to indicate that the process succeeded 

        return true 

    } 

} 

Here is where you’ll create the ImageProcessor type. ImageProcessor accepts a generic Worker. 
But this Worker has two constraints: the first constraint sets the Input to type UIImage, and 
the Output is expected to be a Boolean, which reflects whether the job of the Worker was 
completed successfully or not. 

You can constrain the associated types of Worker with a where clause. You can write 
this where clause before the opening brackets of ImageProcessor, as shown here. 

Listing 8.23. The ImageProcessor type 

final class ImageProcessor<W: Worker>                              ❶ 

 where W.Input == UIImage, W.Output == Bool {                      ❷ 

 

    let worker: W 

 

    init(worker: W) { 

        self.worker = worker 

    } 

 

    private func process() {                                       ❸ 

        // start batches 



        var results = [Bool]() 

 

        let amount = 50 

        var offset = 0 

        var images = fetchImages(amount: amount, offset: offset) 

        var failedCount = 0 

        while !images.isEmpty {                                    ❹ 

 

            for image in images { 

                if !worker.start(input: image) {                   ❺ 

                     failedCount += 1 

                } 

            } 

 

            offset += amount 

            images = fetchImages(amount: amount, offset: offset) 

        } 

 

        print("\(failedCount) images failed") 

    } 

 

    private func fetchImages(amount: Int, offset: Int) -> [UIImage] { 

        // Not displayed: Return images from database or harddisk 

        return [UIImage(), UIImage()]                              ❻ 

     } 

} 

• ❶ The ImageProcessor defines a generic W of type Worker. 
• ❷ Constrain the W generic to specific Input and Output types. 
• ❸ The process method runs the ImageProcessor. 
• ❹ Loop through the store’s images, and process them, until you run out of images. 
• ❺ For each image, the worker’s start method is called to process the image. If it fails, you 

bump the failedCount by one. 
• ❻ In the example, you mock the returning of images, but in a real-world scenario, it 

would work with a real data-store. 



By accepting a generic Worker, the ImageProcessor class can accept different types, such as 
image croppers, resizers, or one that makes an image black and white. 

8.3.3. Cleaning up your API with protocol inheritance 

Depending on how generic this application turns out, you may end up passing a 
generic Worker around. Redeclaring the same constraints—such as where W.Input == UIImage, 
W.Output == Bool—may get tiresome, though. 

For convenience, you can apply protocol inheritance to further constrain a protocol. Protocol 
inheritance means that you create a new protocol that inherits the definition of another 
protocol. Think of it like subclassing a protocol. 

You can create an ImageWorker protocol that inherits all the properties and functions from 
the Worker protocol, but with one big difference: the ImageWorker protocol constrains 
the Input and Output associated types with a where clause, as shown here. 

Listing 8.24. The ImageWorker 

protocol ImageWorker: Worker where Input == UIImage, Output == Bool { 

    // extra methods can go here if you want 

} 

 

Protocol extension 

In this case, ImageWorker is empty, but note that you can add extra protocol definitions to it if 
you’d like. Then types adhering to ImageWorker must implement these on top of 
the Workerprotocol. 

 

With this protocol, the where clause is implied, and passing an ImageWorker around means that 
types don’t need to manually constrain to Image and Bool anymore. The ImageWorkerprotocol 
can make the API of ImageProcessor a bit cleaner. 

Listing 8.25. No need to constrain anymore 

// Before: 

final class ImageProcessor<W: Worker> 

where W.Input == UIImage, W.Output == Bool { ... } 

 

// After: 

final class ImageProcessor<W: ImageWorker> { ... } 



8.3.4. Exercises 

5 

You have the following types: 

// A protocol representing something that can play a file at a location. 

protocol Playable { 

    var contents: URL { get } 

    func play() 

} 

 

// A Movie struct that inherits this protocol. 

final class Movie: Playable { 

    let contents: URL 

 

    init(contents: URL) { 

        self.contents = contents 

    } 

 

    func play() { print("Playing video at \(contents)") } 

} 

You introduce a new Song type, but instead of playing a file at a URL, it uses an AudioFiletype. How 
would you deal with this? See if you can make the protocol reflect this change: 

struct AudioFile {} 

 

final class Song: Playable { 

    let contents: AudioFile 

 

    init(contents: AudioFile) { 

        self.contents = contents 

    } 

 

    func play() { print("Playing song") } 



} 

6 

Given this playlist that first could only play movies, how can you make sure it can play either 
movies or songs? 

final class Playlist { 

 

    private var queue: [Movie] = [] 

 

    func addToQueue(playable: Movie) { 

        queue.append(playable) 

    } 

 

    func start() { 

        queue.first?.play() 

    } 

} 

8.4. CLOSING THOUGHTS 

Protocols with associated types and generics unlocks abstract code, but forces you to reason 
about types during compile time. Although it’s sometimes challenging to work with, getting your 
highly reusable abstract code to compile can be rewarding. You don’t always have to make 
things difficult, however. Sometimes a single generic or concrete code is enough to give you 
what you want. Now that you have seen how associated types work, you’re prepared to take 
them on when they return in upcoming chapters. 

SUMMARY 

• You can use protocols as generic constraints. But protocols can also be used as a type at 
runtime (dynamic dispatch) when you step away from generics. 

• Using protocols as a generic constraint is usually the way to go, until you need dynamic 
dispatch. 

• Associated types are generics that are tied to a protocol. 
• Protocols with associated types allow a concrete type to define the associated type. Each 

concrete type can specialize an associated type to a different type. 
• Protocols with Self requirements are a unique flavor of associated types referencing the 

current type. 
• Protocols with associated types or Self requirements force you to reason about types at 

compile time. 



• You can make a protocol inherit another protocol to further constrain its associated 
types. 

ANSWERS 

1 

What is the difference between the statements? 

• The nongeneric function uses dynamic dispatch (runtime). 
• The generic function is resolved at compile time. 

2 

How would you decide to use a generic or nongeneric protocol in the struct? 

A recipe requires multiple different ingredients. By using a generic, you can use only one type of 
ingredient. Using eggs for everything can get boring, so, in this case, you should step away from 
generics. 

3 

How would you decide to use a generic or nongeneric protocol in the struct? 

The delegate is a single type; you can safely use a generic here. You get compile-time benefits, such 
as extra performance, and seeing at compile time which type you’ll use. The code could look like 
this: 

protocol APIDelegate { 

    func load(completion:(Data) -> Void) 

} 

 

struct ApiLoadHandler: APIDelegate { 

    func load(completion: (Data) -> Void) { 

        print("I am loading") 

    } 

} 

 

class API<Delegate: APIDelegate> { 

    private let delegate: Delegate? 

 



    init(delegate: Delegate) { 

        self.delegate = delegate 

    } 

} 

 

let dataModel = API(delegate: ApiLoadHandler()) 

4 

Consider the subclassing hierarchy for a game, where you have enemies that can attack with a 
certain type of damage. Can you replace this subclassing hierarchy with a protocol-based solution? 

protocol Enemy { 

    associatedtype DamageType 

    func attack() -> DamageType 

} 

 

struct Fire {} 

class Imp: Enemy { 

    func attack() -> Fire { 

        return Fire() 

    } 

} 

 

struct BluntDamage {} 

class Centaur: Enemy { 

    func attack() -> BluntDamage { 

        return BluntDamage() 

    } 

} 

5 

You introduce a new Song type, but instead of playing a file at a URL, it uses an AudioFiletype. How 
would you deal with this? See if you can make the protocol reflect this. 



Answer: You introduce an associated type, such as Media. The contents property is now of 
type Media, which resolves to something different for each implementation: 

protocol Playable { 

    associatedtype Media 

    var contents: Media { get } 

    func play() 

} 

 

final class Movie: Playable { 

    let contents: URL 

 

    init(contents: URL) { 

        self.contents = contents 

    } 

 

    func play() { print("Playing video at \(contents)") } 

} 

 

struct AudioFile {} 

final class Song: Playable { 

    let contents: AudioFile 

 

    init(contents: AudioFile) { 

        self.contents = contents 

    } 

 

    func play() { print("Playing song") } 

} 

6 

Given the playlist that first could only play movies, how can you make sure it can play either movies 
or songs? 



final class Playlist<P: Playable> { 

 

    private var queue: [P] = [] 

 

    func addToQueue(playable: P) { 

        queue.append(playable) 

    } 

 

    func start() { 

        queue.first?.play() 

    } 

} 

Note 

You can’t mix movies and songs, but you can create a playlist for songs (or a playlist for movies). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 9. Iterators, sequences, and collections 

This chapter covers 

• Taking a closer look at iteration in Swift 
• Showing how Sequence is related to IteratorProtocol 
• Learning useful methods that Sequence supplies 
• Understanding the different collection protocols 
• Creating data structures with the Sequence and Collection protocols. 

You use iterators, sequences, and collections all the time when programming Swift. Whenever 
you use an Array, String, stride, Dictionary, and other types, you’re working with something 
you can iterate over. Iterators enable the use of for loops. They also enable a large number of 
methods, including, but not limited to, filter, map, sorted, and reduce. 

In this chapter, you’re going to see how these iterators work, learn about useful methods (such 
as reduce and lazy), and see how to create types that conform to the Sequence protocol. The 
chapter also covers the Collection protocol and its many subprotocols, such 
as MutableCollection, RandomAccessCollection, and others. You’ll find out how to implement 
the Collection protocol to get a lot of free methods on your types. Being comfortable 
with Sequenceand Collection will give you a deeper understanding of how iteration works, and 
how to create custom types powered up by iterators. 

You’ll start at the bottom and build up from there. You’ll get a look at how for loops work and 
how they are syntactic sugar for methods on IteratorProtocol and Sequence. 

Then, you’ll take a closer look at Sequence, and find out how it produces iterators and why this is 
needed. 

After that, you’ll learn some useful methods on Sequence that can help expand your iterator 
vocabulary. You’ll get acquainted with lazy, reduce, zip, and others. 

To best show that you understand Sequence, you’ll create a custom type that conforms 
to Sequence. This sequence is a data structure called a Bag or MultiSet, which is like a Set, but 
for multiple values. 

Then you’ll move on to Collection and see how it’s different from Sequence. You’ll see all the 
different types of Collection protocols that Swift offers and their unique traits. 

As a final touch, you’ll integrate Collection on a custom data structure. You don’t need to be an 
algorithm wizard to reap the benefits of Collection. Instead, you’ll learn a practical approach by 
taking a regular data structure and power it up with Collection. 

I made sure that you won’t fall asleep during this chapter either. Besides some theory, this 
chapter contains plenty of practical use cases. 



9.1. ITERATING 

When programming Swift, you’re looping (iterating) through data all the time, such as retrieving 
elements inside of an array, obtaining individual characters inside a string, processing integers 
inside a range—you name it. Let’s start with a little bit of theory, so you know the inner workings 
of iteration in Swift. Then you’ll be ready to apply this newfound knowledge on practical 
solutions. 

 

Join me! 

It’s more educational and fun if you can check out the code and follow along with the chapter. 
You can download the source code at http://mng.bz/7JPy. 

 

9.1.1. IteratorProtocol 

Every time you use a for in loop, you’re using an iterator. For example, you can loop over an 
array regularly via for in. 

Listing 9.1. Using for in 

let cheeses = ["Gouda", "Camembert", "Brie"] 

 

for cheese in cheeses { 

    print(cheese) 

} 

 

// Output: 

"Gouda" 

"Camembert" 

"Brie" 

But for in is syntactic sugar. Actually, what’s happening under the hood is that an iterator is 
created via the makeIterator() method. Swift walks through the elements via a while loop, 
shown here. 

Listing 9.2. Using makeIterator() 

var cheeseIterator = cheeses.makeIterator()       ❶ 

while let cheese = cheeseIterator.next() {        ❷ 

     print(cheese) 



} 

 

// Output: 

"Gouda" 

"Camembert" 

"Brie" 

• ❶ An iterator is created; notice how it’s mutable and requires a var. 
• ❷ Behind the scenes, Swift continuously calls next() on the iterator until it’s exhausted 

and ends the loop. 

Although a for loop calls makeIterator() under the hood, you can pass an iterator directly to 
a for loop: 

var cheeseIterator = cheeses.makeIterator() 

for element in cheeseIterator { 

    print(cheese) 

} 

The makeIterator() method is defined in the Sequence protocol, which is closely related 
to IteratorProtocol. Before moving on to Sequence, let’s take a closer look 
at IteratorProtocolfirst. 

9.1.2. The IteratorProtocol 

An iterator implements IteratorProtocol, which is a small, yet powerful component in 
Swift. IteratorProtocol has an associated type called Element and a next() method that returns 
an optional Element (see figure 9.1 and the listing that follows). Iterators generate values, which 
is how you can loop through multiple elements. 

Figure 9.1. IteratorProtocol produces elements 

 

Listing 9.3. IteratorProtocol in Swift 

public protocol IteratorProtocol { 

  /// The type of element traversed by the iterator. 

  associatedtype Element                               ❶ 



 

  mutating func next() -> Element? 

} 

• ❶ An Element associated type is defined, representing an element that an iterator 
product 

 

Note 

If you’ve ever seen Array extensions, this is the same Element the extension uses. 

 

Every time you call next on an iterator, you get the next value an iterator produces until the 
iterator is exhausted, on which you receive nil. 

An iterator is like a bag of groceries— you can pull elements out of it, one by one. When the bag 
is empty, you’re out. The convention is that after an iterator depletes, it returns nil and any 
subsequent next() call is expected to return nil, too, as shown in this example. 

Listing 9.4. Going through an iterator 

let groceries = ["Flour", "Eggs", "Sugar"] 

var groceriesIterator: IndexingIterator<[String]> = groceries.makeIterator() 

print(groceriesIterator.next()) // Optional("Flour") 

print(groceriesIterator.next()) // Optional("Eggs") 

print(groceriesIterator.next()) // Optional("Sugar") 

print(groceriesIterator.next()) // nil 

print(groceriesIterator.next()) // nil 

 

Note 

Array returns an IndexingIterator, but this could be different per type. 

 

9.1.3. The Sequence protocol 

Closely related to IteratorProtocol, the Sequence protocol is implemented all over Swift. In 
fact, you’ve been using sequences all the time. Sequence is the backbone behind any other type 
that you can iterate over. Sequence is also the superprotocol of Collection, which is inherited 
by Array, Set, String, Dictionary, and others, which means that these types also adhere 
to Sequence. 



9.1.4. Taking a closer look at Sequence 

A Sequence can produce iterators. Whereas an IteratorProtocol is exhaustive, after the 
elements inside an iterator are consumed, the iterator is depleted. But that’s not a problem 
for Sequence, because Sequence can create a new iterator for a new loop. This way, types 
conforming to Sequence can repeatedly be iterated over (see figure 9.2). 

Figure 9.2. Sequence produces iterators 

 

Notice in listing 9.5 that the Sequence protocol has an associated type called Iterator, which is 
constrained to IteratorProtocol. Sequence also has a makeIterator method that creates an 
iterator. 

Sequence is a large protocol with a great number of default methods, but this chapter covers only 
the crucial elements. 

Listing 9.5. Sequence protocol (not complete) 

public protocol Sequence { 

 

  associatedtype Element                                                     ❶ 

 

  associatedtype Iterator: IteratorProtocol where Iterator.Element == Element❷ ❸ 

 

  func makeIterator() -> Iterator                                            ❹ 

 

  func filter(                                                               ❺ 

     _ isIncluded: (Element) throws -> Bool 

) rethrows -> [Element] 

 

 func forEach(_ body: (Element) throws -> Void) rethrows                     ❺ 



 

// ... snip 

} 

• ❶ An Element associated type is defined, representing an element that an iterator 
produces. 

• ❷ Sequence makes sure that the Element associated type is the same as the one from 
IteratorProtocol. 

• ❸ An associated type is defined and constrained to IteratorProtocol. 
• ❹ A Sequence can keep producing iterators. 
• ❺ Many methods are defined on Sequence, such as filter and forEach, to name a few. 

 

No ‘SequenceProtocol’? 

Sequence is not SequenceProtocol. Yet, Sequence constrains Iterator to IteratorProtocol, 
which might explain why IteratorProtocol is named this way. Quirky, but so be it. 

 

To implement Sequence, you merely have to implement makeIterator(). Being able to produce 
iterators is the secret sauce to how a Sequence can be iterated over repeatedly, such as looping 
over an array multiple times. Sequence may seem like an iterator factory, but don’t let this code 
snippet fool you. Sequence packs quite the punch, because it offers many default methods, such 
as filter, map, reduce, flatMap, forEach, dropFirst, contains, regular looping with for in, and 
much more. Having a type conform to Sequence means that it gets a lot of functionality for 
free. Sequence is not reserved for Swift types; you can create custom types that adhere 
to Sequence, too. 

Let’s take a look at some essential methods on Sequence. 

9.2. THE POWERS OF SEQUENCE 

Types that implement Sequence gain many useful methods for free. This book doesn’t rehash all 
methods because you’re probably familiar with some of them (and I’d like to try to keep this 
book under 1,000 pages). Let’s take this opportunity to shed light on some useful or tricky 
methods to build your iterative vocabulary. 

9.2.1. filter 

Swift doesn’t shy away from taking ideas from functional programming concepts, such 
as map, filter, or reduce methods. The filter method is a common method 
that Sequence offers. 

As an example, filter on Sequence filters data depending on the closure you pass it. For each 
element, filter passes each element to the closure function and expects a Boolean in return. 



The filter method returns a new collection, except it keeps the elements from which you 
return true in the passed closure. 

To illustrate, notice how filter is being applied to filter values of an array. It returns an array 
with all values higher than 1. 

Listing 9.6. filter is a higher-order function 

let result = [1,2,3].filter { (value) -> Bool in 

    return value > 1 

} 

 

print(result) // [2, 3] 

9.2.2. forEach 

Eating pasta every day gets boring—same with using for loops every day. If boredom strikes, you 
can use forEach instead; it’s a good alternative to a regular for loop to indicate that you want a 
so-called side effect. A side effect happens when some outside state is altered—such as saving an 
element to a database, printing, rendering a view, you name it—indicated by forEach not 
returning a value. 

 

For instance, you can have an array of strings where for each element the deleteFile function 
gets called. 

Listing 9.7. Using forEach 

["file_one.txt", "file_two.txt"].forEach { path in 

    deleteFile(path: path) 

} 

 



func deleteFile(path: String) { 

    // deleting file .... 

} 

With forEach you have a nice shorthand way to call a function. In fact, if the function only 
accepts an argument and returns nothing, you can directly pass it to forEach instead. Notice in 
this listing how curly braces {} are replaced by parentheses (), because you’re directly passing a 
function. 

Listing 9.8. Using forEach by passing a function 

["file_one.txt", "file_two.txt"].forEach(deleteFile) 

9.2.3. enumerated 

When you want to keep track of the number of times you looped, you can use 
the enumeratedmethod, as shown in the following listing. It returns a 
special Sequence called EnumeratedSequence that keeps count of the iterations. The iteration 
starts at zero. 

Listing 9.9. enumerated 

["First line", "Second line", "Third line"] 

     .enumerated()                                   ❶ 

     .forEach { (index: Int, element: String) in 

        print("\(index+1): \(element)")              ❷ 

 } 

 

// Output: 

1: First line 

2: Second line 

3: Third line 

• ❶ The enumerated() method returns a special EnumeratedSequence, which produces 
the element with an offset (index). 

• ❷ Use the index to prefix the text with a line number. You add 1 to the index so that your 
list starts at 1 because index starts at 0. 

Notice how forEach fits well once you chain sequence methods. 

9.2.4. Lazy iteration 

Whenever you’re calling methods on a sequence, such as forEach, filter, or others, the 
elements are iterated eagerly. Eager iteration means that the elements inside the sequence are 



accessed immediately once you iterate. In most scenarios, an eager approach is the one you 
need. But in some scenarios this is not ideal. For example, if you have extremely large (or even 
infinite) resources, you may not want to traverse the whole sequence, but only some elements at 
a time. 

For this case, Swift offers a particular sequence called LazySequence, which you obtain via 
the lazy keyword. 

For example, you could have a range, going from 0 to the massive Int.max number. You want to 
filter on this range to keep all even numbers, and then get the last three numbers. You’ll 
use lazy to prevent a full iteration over a gigantic collection. Because of lazy, this iteration is 
quite cheap, because a lazy iterator calculates only a select few elements. 

Notice in this listing that no actual work is done by LazySequence until you start reading the 
elements, which you do in the last step. 

Listing 9.10. Using lazy 

let bigRange = 0..<Int.max                               ❶ 

 

let filtered = bigRange.lazy.filter { (int) -> Bool in 

    return int % 2 == 0 

}                                                        ❷ 

 

let lastThree = filtered.suffix(3)                       ❸ 

 

for value in lastThree { 

    print(value)                                         ❹ 

 } 

 

// Output: 

9223372036854775802 

9223372036854775804 

9223372036854775806 

• ❶ Define an enormous range. 
• ❷ Define the filtered elements; note that no elements have been evaluated yet. 
• ❸ Get the last three elements; note that (again) no elements have been evaluated. 
• ❹ Now that you act on the elements, the lazy code is evaluated. 



Using lazy can be a great tool for large collections when you’re not interested in all the values. 
One downside is that lazy closures are @escaping and temporarily store a closure. Another 
downside of using lazy is that every time you access the elements, the results are recalculated on 
the fly. With an eager iteration, once you have the results, you’re done. 

9.2.5. reduce 

The reduce method may be one of the trickier methods on Sequence to understand. With its 
foundation in functional programming, you may see it appear in other languages. It could be 
called fold, like in Kotlin or Rust, or it could be called inject in Ruby. To make it even more 
challenging, Swift offers two variants of the reduce method, so you have to decide which one to 
pick for each scenario. Let’s take a look at both variants. 

With reduce you iterate over each element in a Sequence, such as an Array, and you 
accumulatively build an object. When reduce is done, it returns the finalized object. In other 
words, with reduce you turn multiple elements into a new object. Most commonly, you’re 
turning an array into something else, but reduce can also be called on other types. 

reduce in action 

Here, you’ll apply reduce to see it in action. String conforms to Sequence, so you can 
call reduceon it and iterate over its characters. For instance, imagine that you want to know the 
number of line breaks on a String. You’ll do this by iterating over each character, and increase 
the count if a character equals "\n". 

To start off, you have to supply a start value to reduce. Then, for each iteration, you update this 
value. In the next scenario, you want to count the number of line breaks, so you pass an integer 
with a value of zero, representing the count. Then your final result is the number of line breaks 
you measured, stored in numberOfLineBreaks. 

Listing 9.11. Preparing for a reduce 

let text = "It's hard to come up with fresh exercises.\nOver and over again.\ 

     nAnd again." 

let startValue = 0 

let numberOfLineBreaks = text.reduce(startValue) { // ... snip 

  // ... Do some work here 

} 

print(numberOfLineBreaks) // 2 

With each iteration, reduce passes two values via a closure: one value is the element from the 
iteration, the other is the integer (startValue) you passed to reduce. 

Then, for each iteration, you check for a newline character, represented by "\n", and you 
increase the integer by one if needed. You do this by returning a new integer (see figure 9.3). 



Figure 9.3. How reduce passes values 

 

But reduce does something clever: in each iteration, you get the next character and the new 
integer you just updated in the previous iteration. 

You return the accumulation value inside the closure, and reduce gives it right back again in the 
next iteration, allowing you to keep updating the accumulation integer. This way, you iterate 
over all elements while you update a single value. After reduce has finished iterating, it returns 
the final value you created—in this case numberOfLineBreaks. 

9.2.6. reduce into 

Imagine that you’re reducing the number of student grades into a dictionary that counts the 
number of grades, resolved to A, B, C, or D. You would be updating this dictionary in each 
iteration. The problem, however, is that you would have to create a mutable copy of this 
dictionary for every iteration. A copy occurs whenever you reference a dictionary, 
because Dictionary is a value type. Let’s see in this next listing how this works with reduce, 
before improving the code with reduce(into:). 

Listing 9.12. reduce with less performance 

let grades = [3.2, 4.2, 2.6, 4.1] 

let results = grades.reduce([:]) { (results: [Character: Int], grade: Double) in ❶ 

     var copy = results                                                          ❷ 

     switch grade { 

     case 1..<2: copy["D", default: 0] += 1                                      ❸ 

     case 2..<3: copy["C", default: 0] += 1                                      ❸ 

     case 3..<4: copy["B", default: 0] += 1                                      ❸ 

     case 4...: copy["A", default: 0] += 1                                       ❸ 

     default: break 

     } 

 



    return copy                                                                  ❹ 

 } 

 

print(results) // ["C": 1, "B": 1, "A": 2]                                       ❺ 

• ❶ You’re reducing, with a start value of [:], which is an empty dictionary. Swift can 
deduce which type it is, saving you from explicitly writing [Character: Int](). 

• ❷ Create a mutable copy with var to be able to mutate a dictionary. 
• ❸ Increment a counter by matching on the grades. 
• ❹ Return a copy for every iteration. 
• ❺ In the end, you have a dictionary with the grades collected. 

Because you’re copying the dictionary for every iteration with var copy = results, you incur a 
performance hit. Here is where reduce(into:) comes in. With the into variant, you can keep 
mutating the same dictionary, as shown here. 

Listing 9.13. reduce(into:) 

let results = grades.reduce(into: [:]) { (results: inout [Character: Int], 

     grade: Double) in                                                     ❶ 

     switch grade { 

     case 1..<2: results["D", default: 0] += 1 

     case 2..<3: results["C", default: 0] += 1 

     case 3..<4: results["B", default: 0] += 1 

     case 4...: results["A", default: 0] += 1 

     default: break 

     } 

} 

• ❶ The into variant of reduce 

 

Note 

You aren’t returning anything from the closure when using reduce (into:). 

 

When you’re working with larger value types—such as dictionaries or arrays—consider using 
the into variant for added performance. 



Using reduce may look a bit foreign, because you might as well use a for loop as an alternative. 
But reduce can be a very concise way to build a value accumulatively. You could also state 
that reduce shows intent. With a for loop, you have to play the compiler to see if you’re filtering 
or transforming data or doing something else. If you see a reduce, you can quickly deduce 
(poetry intended) that you’re turning multiple values into something new. 

Reduce is abstract enough that you can do many things with it. But reduce is most elegant when 
converting a list of elements into one thing. Whether that thing is a simple integer or a complex 
class or struct, reduce is your friend. 

9.2.7. zip 

To close off this section, let’s look at zip. Zipping allows you to zip (pair) two iterators. If one 
iterator depletes, zip stops iterating. 

Notice in this next listing how you iterate both from a to c and 1 to 10. Since the array with 
strings is the shortest, zip ends after three iterations. 

Listing 9.14. zip 

for (integer, string) in zip(0..<10, ["a", "b", "c"]) { 

    print("\(integer): \(string)") 

} 

// Output: 

// 0: a 

// 1: b 

// 2: c 

 

Note 

zip is a free-standing function and not called on a type. 

 

Many more methods exist, including, but not limited to, map, flatMap, and compactMap, which 
have the privilege of their own chapter (chapter 10). Let’s move on and see how to create a type 
conforming to Sequence, which gets all these methods for free. 

9.2.8. Exercises 

1 

What is the difference between reduce and reduce(into:)? 

2 



How would you choose between the two? 

9.3. CREATING A GENERIC DATA STRUCTURE WITH SEQUENCE 

Earlier you survived the theory lesson of how Sequence and IteratorProtocol work under the 
hood. Now, you’ll focus on building something with the newly acquired knowledge. 

In this section, you’re building a data structure called a Bag, also known as a multiset. You’ll be 
using Sequence and IteratorProtocol so that you get free methods on Bag, such 
as contains or filter. 

A Bag is like a Set: it stores elements in an unordered way and has quick insertion and lookup 
capabilities. But a Bag can store the same element multiple times, whereas a Set doesn’t. 

Foundation has NSCountedSet, which is similar, but it’s not a native Swift type with a Swift-like 
interface. The one you build here is smaller in functionality, but Swifty all over and a good 
exercise. 

9.3.1. Seeing bags in action 

First, let’s see how a bag works (see figure 9.4). You can insert objects just like Set, but with one 
big difference: you can store the same object multiple times. Bag has one optimization trick up 
its sleeve, though, because it keeps track of the number of times an object is stored and doesn’t 
physically store an object multiple times. Storing an element only once keeps memory usage 
down. 

Figure 9.4. How Bag stores data 

 



Let’s see your Bag in action in this next listing. Its interface is similar to that of Set, but notice 
how you can add the same string multiple times. Also note that Bag is generic, just like Set, 
indicated by Bag storing strings, integers, or anything Hashable. 

Listing 9.15. Using Bag 

var bag = Bag<String>() 

bag.insert("Huey")                                        ❶ 

bag.insert("Huey")                                        ❶ 

bag.insert("Huey")                                        ❶ 

 

bag.insert("Mickey")                                      ❶ 

 

bag.remove("Huey")                                        ❷ 

 

bag.count // 3 

 

print(bag) 

// Output: 

// Huey occurs 2 times 

// Mickey occurs 1 time 

 

let anotherBag: Bag = [1.0, 2.0, 2.0, 3.0, 3.0, 3.0]      ❸ 

 print(anotherBag) 

// Output: 

// 2.0 occurs 2 times 

// 1.0 occurs 1 time 

// 3.0 occurs 3 times 

• ❶ You can insert elements into Bag. 
• ❷ You can also remove elements from Bag. 
• ❸ You can create a Bag the same way you would create a Set. You’ll see how to do this 

with the help of the ExpressibleByArrayLiteral protocol. 

 



Note 

A bag can store anything that’s Hashable. Even though a bag can store anything, it can’t simply 
mix and match types—such as strings and integers—just like with Array or Set. 

 

Before you implement any protocols, get your base data structure working to keep things simple. 

Like Set, your Bag stores Hashable types so that you can have quick lookups by putting an 
element inside a dictionary. You define a generic Element constrained to Hashable for this, 
representing the elements that Bag stores. Bag stores each element inside a store property, and 
increases the counter of an element if you add the same element again. Conversely, Bagdecreases 
the counter if you remove an element from it. When the counter hits zero, Bagremoves the 
element altogether, which frees up memory, as shown in this listing. 

Listing 9.16. Looking inside Bag 

struct Bag<Element: Hashable> {                    ❶ 

    private var store = [Element: Int]()           ❷ 

 

    mutating func insert(_ element: Element) { 

        store[element, default: 0] += 1            ❸ 

    } 

 

    mutating func remove(_ element: Element) { 

        store[element]? -= 1                       ❹ 

        if store[element] == 0 {                   ❺ 

             store[element] = nil                  ❺ 

        } 

    } 

 

    var count: Int { 

        return store.values.reduce(0, +)           ❻ 

    } 

 

} 

• ❶ Bag stores Hashable elements. 



• ❷ Internally it stores its data inside a dictionary with elements and their counts for 
values. 

• ❸ When you insert an element, you increase its count by 1. If an element doesn’t exist in 
the store yet, it gets added with a default value of 0, which you immediately increase as 
well. 

• ❹ When you remove an element, you decrease its count. 
• ❺ If an element’s count is 0, you remove the element from Bag. 
• ❻ Reduce the collective counts into a total count. 

Now, with the basic functionality in place, start implementing some useful protocols. To help 
peek inside the bag, implement CustomStringConvertible. Whenever you print your bag, 
the description property supplies a custom string of the elements inside and their occurrences, 
as shown in this listing. 

Listing 9.17. Making Bag conform to CustomStringConvertible 

extension Bag: CustomStringConvertible { 

    var description: String { 

        var summary = String() 

        for (key, value) in store { 

            let times = value == 1 ? "time" : "times" 

            summary.append("\(key) occurs \(value) \(times)\n") 

        } 

        return summary 

    } 

} 

This is how you got the output as before: 

let anotherBag: Bag = [1.0, 2.0, 2.0, 3.0, 3.0, 3.0] 

print(anotherBag) 

// Output: 

// 2.0 occurs 2 times 

// 1.0 occurs 1 time 

// 3.0 occurs 3 times 

9.3.2. Creating a BagIterator 

You can already use Bag as is. But you can’t iterate over it until you implement Sequence. To 
implement Sequence, you need an iterator, which you’ll creatively call BagIterator. 



Inside Bag, a store property holds the data. Bag passes store to the IteratorProtocol so 
that IteratorProtocol can produce values one by one. Sending a copy 
to IteratorProtocol means that it can mutate its copy of the store without affecting Bag. 

Since store is a value type, it gets copied to IteratorProtocol when Bag passes the store 
to IteratorProtocol—but not to worry: Swift optimizes this to make sure a copy is cheap. 

You need to apply a little trick because Bag is lying. It isn’t holding the number of elements that 
it says it does; it’s merely holding the element with a counter. So you’ll apply a 
trick: BagIterator returns the same element a multiple of times depending on the element’s 
count. This way, an outsider doesn’t need to know about the tricks Bag uses, and yet it gets the 
correct amount of elements. 

Every time you call next on BagIterator, the iterator returns an element and lowers its count. 
Once the count hits nil, BagIterator removes the element. If no elements are left, the iterator is 
depleted and returns nil, signaling that BagIterator has finished iteration. The following listing 
gives an example of this. 

Listing 9.18. Creating a BagIterator 

struct BagIterator<Element: Hashable>: IteratorProtocol {        ❶ 

 

    var store = [Element: Int]()                                 ❷ 

 

    mutating func next() -> Element? {                           ❸ 

         guard let (key, value) = store.first else {             ❹ 

             return nil                                          ❹ 

         } 

         if value > 1 {                                          ❺ 

             store[key]? -= 1                                    ❺ 

         } else { 

             store[key] = nil                                    ❻ 

         } 

         return key                                              ❼ 

     } 

} 

• ❶ The BagIterator conforms to IteratorProtocol, and also has a generic Element like Bag 
for its elements. 

• ❷ BagIterator has its copy of the store from Bag. 



• ❸ The next method from IteratorProtocol is called to supply elements. 
• ❹ If the store is empty, the iterator is depleted and returns nil. 
• ❺ If the value has some counts left, you decrease its count. 
• ❻ If the value has no more counts left, you remove it from the dictionary. 
• ❼ At the end, you return the element. 

You’re almost there. With BagIterator in place, you can extend Bag and make it conform 
to Sequence, as shown in the following listing. All that you need to do is 
implement makeIteratorand return a freshly made BagIterator, which gets a fresh copy 
of store. 

Listing 9.19. Implementing Sequence 

extension Bag: Sequence {                             ❶ 

     func makeIterator() -> BagIterator<Element> {    ❷ 

         return BagIterator(store: store)             ❸ 

     } 

} 

• ❶ Bag now conforms to Sequence. 
• ❷ You only need to implement the makeIterator method. 
• ❸ You create and return a new BagIterator, but not before you supply it a copy of your 

store. 

That was it; you now have unlocked the powers of Sequence, and Bag has plenty of free 
functionality. You can call filter, lazy, reduce, contains, and many other methods on 
a Baginstance. 

Listing 9.20. Wielding the power of Sequence 

bag.filter { $0.count > 2} 

bag.lazy.filter { $0.count > 2} 

bag.contains("Huey") // true 

bag.contains("Mickey") // false 

Bag is complete and wields the power of Sequence. Still, you can implement at least two more 
optimizations, related to AnyIterator and ExpressibleByArrayLiteral. Let’s go over them now. 

9.3.3. Implementing AnyIterator 

For Bag, you had very little work to do when extending Sequence. All you did was create an 
instance of BagIterator and return it. In a scenario like this, you can decide to 
return AnyIterator to save you from creating a BagIterator altogether. 



AnyIterator is a type erased iterator, which you can think of as a generalized 
iterator. AnyIterator accepts a closure when initialized; this closure is called whenever next is 
called on the iterator. In other words, you can put the next functionality 
from BagIterator inside the closure you pass to AnyIterator. 

The result is that you can extend Bag by conforming to Sequence, return a new AnyIteratorthere, 
and then you can delete BagIterator. 

Listing 9.21. Using AnyIterator 

extension Bag: Sequence { 

    func makeIterator() -> AnyIterator<Element> {                      ❶ 

         var exhaustiveStore = store // create copy 

 

        return AnyIterator<Element> {                                  ❷ 

            guard let (key, value) = exhaustiveStore.first  else { 

                return nil 

            } 

            if value > 1 { 

                exhaustiveStore[key]? -= 1 

            } else { 

                exhaustiveStore[key] = nil 

            } 

            return key 

        } 

    } 

} 

• ❶ The makeIterator method now returns an AnyIterator. 
• ❷ You create an AnyIterator while you pass it a closure, which depletes the 

exhaustiveStore. 

Whether you want to use AnyIterator depends on your situation, but it can be an excellent 
alternative to a custom iterator to remove some boilerplate. 

9.3.4. Implementing ExpressibleByArrayLiteral 

Earlier, you saw how to create a bag from an array literal syntax. Notice how you create a bag, 
even though you use an array-like notation: 



let colors: Bag = ["Green", "Green", "Blue", "Yellow", "Yellow", "Yellow"] 

To obtain this syntactic sugar, you can implement ExpressibleByArrayLiteral. By doing so, you 
implement an initializer that accepts an array of elements. You can then use these elements to 
propagate the store property of Bag. You’ll use the reduce method on the array to reduce all 
elements into one store dictionary. 

Listing 9.22. Implementing ExpressibleByArrayLiteral 

extension Bag: ExpressibleByArrayLiteral {                                 ❶ 

    typealias ArrayLiteralElement = Element 

    init(arrayLiteral elements: Element...) {                              ❷ 

         store = elements.reduce(into: [Element: Int]()) { 

     (updatingStore, element) in                                           ❸ 

             updatingStore[element, default: 0] += 1                       ❹ 

         } 

    } 

} 

 

let colors: Bag = ["Green", "Green", "Blue", "Yellow", "Yellow", "Yellow"] ❺ 

print(colors) 

// Output: 

// Green occurs 2 times 

// Blue occurs 1 time 

// Yellow occurs 3 times 

• ❶ Make Bag conform to ExpressibleByArrayLiteral. 
• ❷ To conform to ExpressibleByArrayLiteral, you have to implement an initializer to 

accept an array of elements. 
• ❸ Use reduce to convert the elements array into a dictionary. 
• ❹ Increment the value of each element inside the dictionary by one, with a default value 

of zero. 
• ❺ Now you can use the array syntax to create a bag. Notice how colors is of type Bag so 

Swift knows that colors is not an array. 

The Bag type has a Swift-friendly interface. In its current state, Bag is ready to use, and you can 
keep adding to it, such as by adding intersection and union methods to make it more valuable. 
Generally speaking, you won’t have to create a custom data structure every day, but it does have 
use once in a while. Knowing about Sequence lays down an essential foundation because it’s the 
base for the Collection protocol, which is a bit higher-level. The next section introduces 
the Collection protocol. 



9.3.5. Exercise 

3 

Make an infinite sequence. This sequence keeps looping over the sequence you pass. An infinite 
sequence is handy to generate data, such as when zipping. The infinite sequence keeps going, but 
the other sequence could deplete, thus stopping the iteration. 

For example, this code 

let infiniteSequence = InfiniteSequence(["a","b","c"]) 

for (index, letter) in zip(0..<100, infiniteSequence) { 

    print("\(index): \(letter)") 

} 

outputs the following: 

0: a 

1: b 

2: c 

3: a 

4: b 

 

... snip 

 

95: c 

96: a 

97: b 

98: c 

99: a 

9.4. THE COLLECTION PROTOCOL 

It’s time to move on to the next level of the iteration trifecta: 
besides IteratorProtocol and Sequence, there is the Collection protocol. 

The Collection protocol is a subprotocol of Sequence—meaning that Collection inherits all 
functionality from Sequence. One major difference between Collection and Sequence is that 
collection types are indexable. In other words, with collection types, you can directly access an 



element at a specific position, such as via a subscript; for example, you can 
use myarray[2]or myset["monkeywrench"]. 

Another difference is that Sequence doesn’t dictate whether or not it’s destructive, meaning that 
two iterations may not give the same results, which can potentially be a problem if you want to 
iterate over the same sequence multiple times. 

As an example, if you break an iteration and continue from where you left off, you won’t know if 
a Sequence continues where it stopped, or if it restarted from the beginning. 

Listing 9.23. Resuming iteration on a Sequence 

let numbers = // Let's say numbers is a Sequence but not a Collection 

for number in numbers { 

  if number == 10 { 

    break 

  } 

} 

 

for number in numbers { 

  // Will iteration resume, or start from the beginning? 

} 

Collection does guarantee to be nondestructive, and it allows for repeated iteration over a type 
with the same results every time. 

The most common Collection types that you use every day are String, Array, Dictionary, 
and Set. You’ll start by taking a closer look at all available Collection protocols. 

9.4.1. The Collection landscape 

With collections, you gain indexing capabilities. For example, on String you can use indices to 
get elements, such as getting the words before and after a space character, as shown in the 
following listing. 

Listing 9.24. Indexing a String 

let strayanAnimals = "Kangaroo Koala" 

if let middleIndex = strayanAnimals.index(of: " ") {                       ❶ 

    strayanAnimals.prefix(upTo: middleIndex) // Kangaroo 

    strayanAnimals.suffix(from: strayanAnimals.index(after: middleIndex)) // 

     Koala 



} 

• ❶ Obtain the index of a Character inside a String. 

Besides offering indexing capabilities, Collection has multiple subprotocols, which each offer 
restrictions and optimizations on top of Collection. For instance, MutableCollection allows for 
mutation of a collection, but it doesn’t allow you to change its length. 
Alternatively, RangeReplaceableCollection allows the length of a collection to 
change. BidirectionalCollectionallows a collection to be traversed 
backwards. RandomAccessCollection promises performance improvements 
over BidirectionalCollection (see figure 9.5). 

Figure 9.5. An overview of the Collection protocols 

 

9.4.2. MutableCollection 

MutableCollection offers methods that mutate elements in place without changing the length of 
a collection. Because the methods of MutableCollection don’t change the length, the protocol 
can offer guarantees and performance improvements. The most common type that adheres 
to MutableCollection is Array. 

MutableCollection adds a few special methods. To obtain these methods, you need to have a 
variable Array—as opposed to a constant—by using the var keyword. 

With a MutableCollection you can sort in place: 

var mutableArray = [4, 3, 1, 2] 



mutableArray.sort() // [1, 2, 3, 4] 

Another intriguing method that MutableCollection offers is partition. The partition method 
reshuffles the array in two parts that you define. On top of that, partition returns the index of 
where the array is split up. You can, as shown in this example, choose to partition an array of 
integers into odd and even numbers. 

Listing 9.25. Partitioning 

var arr = [1,2,3,4,5] 

let index = arr.partition { (int) -> Bool in 

    return int % 2 == 0                         ❶ 

} 

 

print(arr) // [1, 5, 3, 4, 2]                   ❷ 

print(index) // 3                               ❸ 

 

arr[..<index] // [1, 5, 3]                      ❹ 

arr[index...] // [4, 2]                         ❺ 

• ❶ Partition the array by even numbers. 
• ❷ The array is reshuffled; the even numbers are now at the end. 
• ❸ This is the index of the cutoff point between odd and even numbers. 
• ❹ The first numbers until the partitioned index are odd numbers. 
• ❺ The numbers after the partitioned index are even numbers. 

Other methods, such as reverse() and swapAt(), come in handy, too. I recommended 
experimenting with them and making them part of your iterator vocabulary. 

String doesn’t conform to MutableCollection 

Perhaps surprisingly, String doesn’t conform to MutableCollection, because the length 
of String can change if you were to reorder characters. Changing the length of a collection is 
something that MutableCollection doesn’t allow. 

The length of String changes when you reorder characters, because of its underlying structure; a 
character can be composed out of multiple unicode scalars. For instance, the character é could 
exist out of the scalars e and the acute accent '; swapping them around could turn é into 'e. 
Because moving scalars could potentially create different characters, String can change length, 
which is why String does not conform to MutableCollection. 



9.4.3. RangeReplaceableCollection 

Next up in the list of contenders is RangeReplaceableCollection, which allows you to swap out 
ranges and change its length. Array and String conform to RangeReplaceableCollection. 
Moreover, it brings you some handy methods, such as concatenation via the + method. 

If the array is defined mutably by var (not to be confused with MutableCollection), you can use 
the += keyword to append in place. Notice in the next listing how you can change the length of 
the array with the methods offered by RangeReplaceableCollection. 

Listing 9.26. Mutating length of an array 

var muppets = ["Kermit", "Miss Piggy", "Fozzie bear"] 

 

muppets += ["Statler", "Waldorf"] 

print(muppets) // ["Kermit", "Miss Piggy", "Fozzie bear", "Statler", "Waldorf"] 

 

muppets.removeFirst() // "Kermit" 

print(muppets) // ["Miss Piggy", "Fozzie bear", "Statler", "Waldorf"] 

 

muppets.removeSubrange(0..<2) 

print(muppets) // ["Statler", "Waldorf"] 

Since String adheres to RangeReplaceableCollection, you can mutate strings in place and 
change its length. 

Listing 9.27. Mutating String 

var matrix = "The Matrix" 

matrix += " Reloaded" 

print(matrix) // The Matrix Reloaded 

removeAll 

RangeReplaceableCollection also has a useful method called removeAll(where:). With this 
method, you can quickly remove elements from a collection, such as Array (for instance, when 
you want to remove “Donut” from an array of healthy food items, as shown in the following 
code). 

Listing 9.28. removeAll in action 

var healthyFood = ["Donut", "Lettuce", "Kiwi", "Grapes"] 

healthyFood.removeAll(where:{ $0 == "Donut" }) 



print(healthyFood) // ["Lettuce", "Kiwi", "Grapes"] 

You may be tempted to use filter instead, but when removing values, special optimizations can 
be applied, making it faster to use the removeAll method on variable collections. 

 

Note 

The removeAll method is only available if your collection is a variable, as indicated with var. 

 

9.4.4. BidirectionalCollection 

With a BidirectionalCollection you can traverse a collection backwards from an index, as in 
the following example. You can get the index before another index, which allows you to access a 
previous element (such as obtaining previous characters on a string). 

Listing 9.29. Iterating backwards 

var letters = "abcd" 

var lastIndex = letters.endIndex 

while lastIndex > letters.startIndex { 

    lastIndex = letters.index(before: lastIndex) 

    print(letters[lastIndex]) 

} 

 

// Output: 

// d 

// c 

// b 

// a 

Using index(before:) is a bit low level for regular use. Idiomatically, you can use 
the reversed() keyword to reverse a collection. 

Listing 9.30. Using reversed() instead 

var letters = "abcd" 

for value in letters.reversed() { 

    print(value) 

} 



But index(before:) does help if you want to iterate backwards only a specific number of times. 
By using reversed(), the iterator keeps looping until you break the loop. 

9.4.5. RandomAccessCollection 

The RandomAccessCollection inherits from BidirectionalCollection and offers some 
performance improvements for its methods. The major difference is that it can measure 
distances between indices in constant time. In other words, RandomAccessCollection poses 
more restrictions on the implementer, because it must be able to measure the distances between 
indices without traversal. Potentially, traversing a collection can be expensive when you advance 
indices—for example, using index(_offsetBy:)—which is not the case 
for RandomAccessCollection. 

Array conforms to all collection protocols, including RandomAccessCollection, but a more 
esoteric type that conforms to RandomAccessCollection is the Repeated type. This type is handy 
to enumerate over a value multiple times. You obtain a Repeated type by using 
the repeatElement function, as shown here. 

Listing 9.31. Repeated type 

for element in repeatElement("Broken record", count: 3) { 

    print(element) 

} 

 

// Output: 

// Broken record 

// Broken record 

// Broken record 

You can use repeatElement to quickly generate values, which is useful for use cases such as 
generating test data. You can even zip them together, as in the following example, for more 
advanced iterations. 

Listing 9.32. Using zip 

zip(repeatElement("Mr. Sniffles", count: 3), repeatElement(100, count: 

     3)).forEach { name, index in 

    print("Generated \(name) \(index)") 

} 

 

Generated Mr. Sniffles 100 

Generated Mr. Sniffles 100 



Generated Mr. Sniffles 100 

9.5. CREATING A COLLECTION 

Let’s face it, in most of your programming you’re not inventing a new collection type every day. 
You can usually get by with Set, Array, and others that Swift offers. That isn’t to say that 
knowing about Collection is a waste of time, though. More often than not you have some data 
structure that could benefit from Collection. With a little bit of code, you can make your types 
conform to Collection and reap all the benefits without knowing how to balance binary search 
trees or by implementing other fancy algorithms. 

9.5.1. Creating a travel plan 

You’ll start by making a data structure called TravelPlan. A travel plan is a sequence of days, 
consisting of one or more activities. For instance, a travel plan could be visiting Florida, and it 
could contain multiple activities, such as visiting Key West, being chased by alligators on the 
golf course, or having breakfast at the beach. 

First, you’ll create the data structures, and then you’ll adhere TravelPlan to Collection so that 
you can iterate over TravelPlan and obtain indexing behavior. You’ll start with 
the Activityand Day before you move on to TravelPlan. 

As shown in this listing, Activity is nothing more than a timestamp and a description. 

Listing 9.33. Activity 

struct Activity: Equatable { 

    let date: Date 

    let description: String 

} 

Day is slightly more intricate than Activity. Day has a date, but since it covers a whole day, you 
can strip the time, as in this next listing. Then you can make Day conform to Hashable so that 
you can store it in a dictionary as a key later. 

Listing 9.34. Day 

struct Day: Hashable {                                                          ❶ 

    let date: Date 

 

    init(date: Date) { 

        // Strip time from Date 

        let unitFlags: Set<Calendar.Component> = [.day, .month, .year]          ❷ 

        let components = Calendar.current.dateComponents(unitFlags, from: date) 



        guard let convertedDate = Calendar.current.date(from: components) else {❸ 

            self.date = date 

            return 

        } 

        self.date = convertedDate 

    } 

 

} 

• ❶ Conform Day to Hashable. 
• ❷ You care only about the day, month, and year components of a date, not the time. 
• ❸ Create a new date without the time. 

The TravelPlan stores days as keys, and their activities as values. This way, a travel plan can 
have multiple days, where each day can have multiple activities. Having multiple activities per 
day is reflected by a dictionary inside TravelPlan. Since you refer to this dictionary multiple 
times, you introduce a typealias for convenience called DataType. 

Also, you add an initializer that accepts activities. You can then group activities by days and 
store them in the dictionary. In this next listing, you’ll use the grouping method on Dictionaryto 
turn [Activity] into [Day: [Activity]]. 

Listing 9.35. TravelPlan 

struct TravelPlan { 

 

    typealias DataType = [Day: [Activity]]                                 ❶ 

 

    private var trips = DataType() 

 

    init(activities: [Activity]) { 

        self.trips = Dictionary(grouping: activities) { activity -> Day in ❷ 

             Day(date: activity.date) 

        } 

    } 

 

} 



• ❶ DataType is a type alias to save you from repeatedly typing [Day: [Activity]]. 
• ❷ You can create a dictionary out of an array of activities by using the grouping 

initializer on Dictionary. 

grouping works by passing it a sequence—such as [Activity]—and a closure. 
Then groupingcalls the closure for each element. You return a Hashable type inside the closure, 
and then every value of the array is added to the corresponding key. You end up with the keys—
the ones you return in the closure—and an array of values for each key. 

9.5.2. Implementing Collection 

Now, your TravelPlan data structure is functional, but you can’t iterate over it yet. Instead of 
conforming TravelPlan to Sequence, you’ll make TravelPlan conform to Collection. 

Surprisingly enough, you don’t need to implement makeIterator. You could, 
but Collectionsupplies a default IndexingIterator, which is a nice benefit of adhering 
to Collection. 

To adhere to Collection, you need to implement four things: two variables 
(startIndex and endIndex) and two methods (index(after:) and subscript(index:)). 

Because you’re not coming up with your own algorithm and you’re encapsulating a type that 
conforms to Collection—in this case, a dictionary—you can use the methods of the underlying 
dictionary instead, as shown in this listing. In essence, you’re forwarding the underlying 
methods of a dictionary. 

Listing 9.36. Implementing Collection 

extension TravelPlan: Collection { 

 

    typealias KeysIndex = DataType.Index                         ❶ 

    typealias DataElement = DataType.Element                     ❶ 

 

    var startIndex: KeysIndex { return trips.keys.startIndex }   ❷ 

    var endIndex: KeysIndex { return trips.keys.endIndex }       ❷ 

 

    func index(after i: KeysIndex) -> KeysIndex {                ❸ 

         return trips.index(after: i) 

    } 

 

    subscript(index: KeysIndex) -> DataElement {                 ❸ 



         return trips[index] 

    } 

 

} 

• ❶ Make two aliases for convenience. 
• ❷ Forward the startIndex and endIndex properties from the underlying dictionary. 
• ❸ Forward the index(after:) and subscript(index:) methods from the underlying 

dictionary. 

That’s all it took! Now TravelPlan is a full-fledged Collection and you can iterate over it. 

Listing 9.37. TravelPlan iteration 

for (day, activities) in travelPlan { 

    print(day) 

    print(activities) 

} 

You don’t have to come up with a custom iterator. Collection supplies IndexingIterator for 
you. 

Listing 9.38. A default iterator 

let defaultIterator: IndexingIterator<TravelPlan> = travelPlan.makeIterator() 

9.5.3. Custom subscripts 

By adhering to Collection, you gain subscript capabilities, which let you access a collection via 
square brackets []. 

But since you’re forwarding the one from a dictionary, you’d have to use an esoteric dictionary 
index type. In the next listing, you’ll create a few convenient subscripts instead, which allows 
you to access elements via a useful subscript syntax. 

Listing 9.39. Implementing subscripts 

extension TravelPlan { 

    subscript(date: Date) -> [Activity] { 

        return trips[Day(date: date)] ?? [] 

    } 

 

    subscript(day: Day) -> [Activity] { 

        return trips[day] ?? [] 



    } 

} 

 

// Now, you can access contents via convenient subscripts. 

 

travelPlan[Date()]                  ❶ 

 

let day = Day(date: Date()) 

travelPlan[day]                     ❷ 

• ❶ You can subscript with a Date. 
• ❷ You can subscript with a Day. 

Another critical aspect of Collection is that the subscript is expected to give back a result 
instantaneously unless stated otherwise for your type. Instant access is also referred to 
as constant-time or O(1) performance in Big-O notation. Since you’re forwarding method calls 
from a dictionary, TravelPlan is returning values in constant time. If you were to traverse a full 
collection to get a value, access would not be instantaneous, and you would have a so-called 
O(n) performance. With O(n) performance, longer collections mean that lookup times increase 
linearly. Developers that use your collection may not expect that. 

9.5.4. ExpressibleByDictionaryLiteral 

Like you did with the Bag type in section 9.3.4, “Implementing ExpressibleByArrayLiteral”, you 
can implement the ExpressibleByArrayLiteral protocol for convenient initializing. To conform 
to this protocol, you merely have to adopt an initializer that accepts multiple elements. As 
shown in this listing, inside the body of the initializer, you can relay the method by calling an 
existing initializer. 

Listing 9.40. Implementing ExpressibleByArrayLiteral 

extension TravelPlan: ExpressibleByArrayLiteral { 

    init(arrayLiteral elements: Activity...) { 

        self.init(activities: elements) 

    } 

} 

Another protocol you can implement for convenience is ExpressibleByDictionaryLiteral. It’s 
similar to ExpressibleByArrayLiteral, but it allows you to create a TravelPlan from a 
dictionary notation instead. You implement an initializer that supplies an array of tuples. Then 
you can use the uniquingKeysWith: method on Dictionary to turn the tuples into a dictionary. 
The closure you pass to uniquingKeysWith: is called when a conflict of two keys occurs. In this 
case, you choose one of the two conflicting values, as shown in the following code. 



Listing 9.41. Implementing ExpressibleByDictionaryLiteral 

extension TravelPlan: ExpressibleByDictionaryLiteral { 

    init(dictionaryLiteral elements: (Day, [Activity])...) { 

        self.trips = Dictionary(elements, uniquingKeysWith: { (first: Day, ) in ❶ 

             return first // Choose one when a Day is duplicate.                ❷ 

         }) 

    } 

} 

 

let adrenalineTrip = Day(date: Date()) 

let adrenalineActivities = [ 

    Activity(date: Date(), description: "Bungee jumping"), 

    Activity(date: Date(), description: "Driving in rush hour LA"), 

    Activity(date: Date(), description: "Sky diving") 

] 

 

let adrenalinePlan = [adrenalineTrip: activities] // You can now create a 

     TravelPlan from a dictionary 

• ❶ Pass an array of tuples to a Dictionary initializer. 
• ❷ If two days are equal, you have a conflict. You use the closure to decide to use one of 

the two days. 

9.5.5. Exercise 

4 

Make the following type adhere to the Collection protocol: 

struct Fruits { 

    let banana = "Banana" 

    let apple = "Apple" 

    let tomato = "Tomato" 

} 



9.6. CLOSING THOUGHTS 

You’ve successfully—and relatively painlessly—created a custom type that adheres 
to Collection. The real power lies in recognizing when you can implement these iteration 
protocols. Chances are that you might have some types in your projects that can gain extra 
functionality by adhering to Collection. 

You’ve also taken a closer look at Sequence and IteratorProtocol to get a deeper understand of 
how iteration works in Swift. You don’t need to be an algorithmic wizard to power up your types, 
which come in handy in day-to-day work. You also discovered a handful of widespread and 
useful iterator methods you can find on Sequence. If you want more iteration tips, check 
out chapter 10, which covers map, flatMap, and compactMap. 

SUMMARY 

• Iterators produce elements. 
• To iterate, Swift uses a while loop on makeIterator() under the covers. 
• Sequences produce iterators, allowing them to be iterated over repeatedly. 
• Sequences won’t guarantee the same values when iterated over multiple times. 
• Sequence is the backbone for methods such as filter, reduce, map, zip, repeat, and many 

others. 
• Collection inherits from Sequence. 
• Collection is a protocol that adds subscript capabilities and guarantees nondestructive 

iteration. 
• Collection has subprotocols, which are more-specialized versions of Collection. 
• MutableCollection is a protocol that offers mutating methods without changing the 

length of a collection. 
• RangeReplaceableCollection is a protocol that restricts collections for easy modification 

of part of a collection. As a result, the length of a collection may change. It also offers 
useful methods, such as removeAll(where:). 

• BidirectionalCollection is a protocol that defines a collection that can be traversed 
both forward and backward. 

• RandomAccessCollection restricts collections to constant-time traversal between indices. 
• You can implement Collection for regular types that you use in day-to-day 

programming. 

ANSWERS 

1 

What is the difference between reduce and reduce(into:)? 

With reduce(into:) you can prevent copies for each iteration. 

2 

How would you choose between the two? 



reduce makes sense when you aren’t creating expensive copies for each iteration, such as when 
you’re reducing into an integer. reduce(into:) makes more sense when you’re reducing into a 
struct, such as an array or dictionary. 

3 

Make an infinite sequence. This sequence will keep looping over the sequence you pass: 

// If you implement both Sequence and IteratorProtocol, you only need 

➥ to implement the next method. 

struct InfiniteSequence<S: Sequence>: Sequence, IteratorProtocol { 

 

    let sequence: S 

    var currentIterator: S.Iterator 

    var isFinished: Bool = false 

 

    init(_ sequence: S) { 

        self.sequence = sequence 

        self.currentIterator = sequence.makeIterator() 

    } 

 

    mutating func next() -> S.Element? { 

        guard !isFinished else { 

            return nil 

        } 

 

        if let element = currentIterator.next() { 

            return element 

        } else { 

            self.currentIterator = sequence.makeIterator() 

            let element = currentIterator.next() 

            if element == nil { 

                // If sequence is still empty after creating a new one, 

➥ then the sequence is empty to begin with; you will need to protect 



➥ against this in case of an infinite loop. 

                isFinished = true 

            } 

            return element 

        } 

    } 

 

} 

 

let infiniteSequence = InfiniteSequence(["a","b","c"]) 

for (index, letter) in zip(0..<100, infiniteSequence) { 

    print("\(index): \(letter)") 

} 

4 

Make the following type adhere to Collection: 

struct Fruits { 

    let banana = "Banana" 

    let apple = "Apple" 

    let tomato = "Tomato" 

} 

 

extension Fruits: Collection { 

    var startIndex: Int { 

        return 0 

    } 

 

    var endIndex: Int { 

        return 3 // Yep, it's 3, not 2. That's how Collection wants it. 

    } 

 

    func index(after i: Int) -> Int { 



        return i+1 

    } 

 

    subscript(index: Int) -> String { 

        switch index { 

        case 0: return banana 

        case 1: return apple 

        case 2: return tomato 

        default: fatalError("The fruits end here.") 

        } 

    } 

 

} 

 

let fruits = Fruits() 

fruits.forEach { (fruit) in 

    print(fruit) 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 10. Understanding map, flatMap, and compactMap 

This chapter covers 

• Mapping over arrays, dictionaries, and other collections 
• When and how to map over optionals 
• How and why to flatMap over collections 
• Using flatMap on optionals 
• Chaining and short-circuiting computations 
• How to mix map and flatMap for advanced transformations 

Modern languages like Swift borrow many concepts from the functional programming world, 
and map and flatMap are powerful examples of that. Sooner or later in your Swift career, you’ll 
run into (or write) code that applies map and flatMap operations on arrays, dictionaries, and 
even optionals. With map and flatMap, you can write hard-hitting, succinct code that is 
immutable—and therefore safer. Moreover, since version 4.1, Swift introduces compactMap, 
which is another refreshing operation that helps you perform effective transformations on 
optionals inside collections. 

In fact, you may even be familiar with applying map and flatMap now and then in your code. This 
chapter takes a deep dive to show how you can apply map and flatMap in many ways. Also, it 
compares these operations against alternatives and looks at the trade-offs that come with them, 
so you’ll know exactly how to decide between a functional programming style or an imperative 
style. 

This chapter flows well after reading chapter 9. If you haven’t read it yet, I recommend going 
back to that chapter before reading this one. 

First, you’ll see how map works on arrays and how you can easily perform effective 
transformations via a pipeline. Also, you’ll find out how iterative for loops fare against the 
functional map method, so you’ll have some rules of thumb to pick between each style. 

Then you’ll learn about mapping over dictionaries, and other types conforming to 
the Sequence protocol for an in-depth look. 

After covering mapping over collections, you’ll find out more about mapping over optionals, 
which allows you to delay unwrapping of optionals and program a happy path in your program. 
Then you’ll see that map is an abstraction and how it’s beneficial to your code. 

Being able to apply flatMap on optionals is the next big subject. You’ll see how map doesn’t 
always cut it when dealing with nested optionals, but luckily, flatMap can help. 

Then, you’ll see how flatMap can help you fight nested if let unwrapping of optionals—
sometimes referred to as the pyramid of doom. You’ll discover how you can create powerful 
transformations while maintaining high code readability. 



Like map, flatMap is also defined on collections. This chapter covers Collection types, such as 
arrays and strings, to show how you can harness flatMap for succinct operations. 

Taking it one step further, you’ll get a look at how optionals and collections are affected 
with compactMap. You’ll see how you can filter nils while transforming collections. 

As a cherry on top, you’ll explore the differences and benefits after you start 
nesting map, flatMap, and compactMap operations. 

The goal of this chapter is to make sure you’re confident incorporating map, flatMap, 
and compactMap often in your daily programming. You’ll see how to write more concise code, as 
well as more immutable code, and learn some cool tips and tricks along the way, even if you’ve 
already been using map or flatMap from time to time. Another reason to get comfortable 
with map and flatMap is to prepare you for asynchronous error-handling in chapter 11, 
where map and flatMap will return. 

10.1. BECOMING FAMILIAR WITH MAP 

 

Join me! 

It’s more educational and fun if you can check out the code and follow along with the chapter. 
You can download the source code at http://mng.bz/mzr2. 

 

Receiving an array, looping over it, and transforming its values is a routine operation. 

Suppose that you have the names and git commits of people on a project. You could create a 
more readable format to see if some developers are involved in a project. To transform the 
names and commits to a readable format, you start with a for loop to iterate over each value and 
use that to fill up the array you want. 

Listing 10.1. Transforming an array 

let commitStats = [                                                        ❶ 

    (name: "Miranda", count: 30), 

    (name: "Elly", count: 650), 

    (name: "John", count: 0) 

] 

 

let readableStats = resolveCounts(statistics: commitStats)                 ❷ 

print(readableStats) // ["Miranda isn't very active on the project", "Elly 

➥ is quite active", "John isn't involved in the project"] 



 

func resolveCounts(statistics: [(String, Int)]) -> [String] { 

     var resolvedCommits = [String]()                                      ❸ 

     for (name, count) in statistics {                                     ❹ 

         let involvement: String                                           ❺ 

 

        switch count {                                                     ❻ 

        case 0: involvement = "\(name) isn't involved in the project" 

        case 1..<100: involvement =  "\(name) isn't active on the project" 

        default: involvement =  "\(name) is active on the project" 

        } 

 

        resolvedCommits.append(involvement)                                ❼ 

     } 

    return resolvedCommits                                                 ❽ 

 } 

• ❶ An array of tuples as data to work with 
• ❷ Pass the array of tuples to the resolveCounts function. 
• ❸ Inside the resolveCounts function, you create a temporary array that you’ll return. 
• ❹ To iterate over the tuples, name and count are bound to constants. 
• ❺ Create an involvement string which will be populated with a value. 
• ❻ Depending on the count, you set the involvement string. 
• ❼ Append each string to the resolvedCommits variable. 
• ❽ When all is done, the resolvedCommits variable is returned as the transformed result. 

The for loop is a good start, but you have some boilerplate. You need a new variable array 
(resolvedCommits), which could theoretically be mutated by accident. 

Now that the function is in place, you can easily refactor its body without affecting the rest of the 
program. Here, you’ll use map to turn this imperative style of looping into a map operation. 

With map, you can iterate over each element and pass it to a closure that returns a new value. 
Then, you end up with a new array that contains the new values (see figure 10.1). 



Figure 10.1. A map operation on an array 

 

In code, this means you’re passing a closure to map, which gets called for each element in the 
array. In the closure, you return a new string, and the new array is built with these strings. 
After map finishes, resolveCounts returns this new mapped array. 

Listing 10.2. Refactoring a for loop with map 

func resolveCounts(statistics: [(String, Int)]) -> [String] { 

    return statistics.map { (name: String, count: Int) -> String in        ❶ 

         switch count {                                                    ❷ 

         case 0: return "\(name) isn't involved in the project."           ❸ 

         case 1..<100: return "\(name) isn't very active on the project."  ❸ 

         default: return "\(name) is active on the project."               ❸ 

         } 

    } 

} 

• ❶ A closure is passed to map on the statistics array. After map is done, resolveCounts 
returns a new array. 

• ❷ You still match on the count to determine the string. 
• ❸ A new string is returned in the closure for each iteration. 

Notice how the structure of the new array is intact. You end up with a new Array, with the same 
length, except its inner values are transformed. 

Both the map approach and the for loop give the same results, but the map operation is shorter 
and immutable, which are two benefits. Another difference with a for loop is that with foryou’re 
responsible for creating a new array, instead of letting the map function handle this for you. 



10.1.1. Creating a pipeline with map 

Pipelines are an expressive way to describe the steps of data transformations. Let’s discover how 
this works. 

Imagine that you have a function that again takes the names and commit counts. It returns only 
the counts, but sorted and with empty counts filtered out, such as the following: 

[(name: "Miranda", count: 30), (name: "Elly", count: 650), (name: "John", count: 

0)] turns into [650, 30]. 

You can start with a for loop, and transform the array that way. Notice in the following listing 
how you can filter inside the for statement outside of the loop body. 

Listing 10.3. Transforming data with a for loop 

func counts(statistics: [(String, Int)]) -> [Int] { 

    var counts = [Int]()                                 ❶ 

    for (name, count) in statistics where count > 0 {    ❷ 

         counts.append(count) 

    } 

 

    return counts.sorted(by: >)                          ❸ 

 } 

• ❶ Again, you create a temporary array. 
• ❷ Filter during iteration via a where statement. 
• ❸ Sort the counts in descending manner. 

The for loop works fine as is. Alternatively, you can take a pipeline approach where you 
separately describe each step. Notice how for every step, a value goes in, and a value goes out, 
allowing you to connect the pieces of a pipeline in a modular fashion. You can express the intent 
of the operations quite elegantly, as shown here. 

Listing 10.4. Transforming data with a pipeline 

func counts(statistics: [(String, Int)]) -> [Int] { 

    return statistics                                ❶ 

         .map { $0.1 }                               ❷ 

         .filter { $0 > 0 }                          ❸ 

         .sorted(by: >)                              ❹ 

 } 



• ❶ When transformations are done, the result is returned. 
• ❷ map over the tuples inside the statistics array, returning only the counts. 
• ❸ Filter out any empty counts. 
• ❹ Sort the counts. 

The map method is a crucial component in constructing a pipeline because it returns a new array. 
It helps you transform data while you can keep chaining, such as by sorting and filtering 
operations you apply. 

A pipeline defines a clear and immutable way of transforming your data into separate steps. In 
contrast, if you perform many operations inside a single for loop, you risk ending up with a 
more complex loop and mutable arrays. The second downside of a for loop is that many actions 
can muddy up the loop, where you end up with hard-to-maintain or even buggy code. 

The downside of this pipeline approach is that you perform at least two loops on this array: one 
for filter, one for map, and some iterations used by the sorted method, which doesn’t need to 
perform a full iteration. With a for loop, you can be more efficient by combining 
the map and filter in one loop (and also sorting if you want to reinvent the wheel). Generally 
speaking, a pipeline is performant enough and worth the expressive and immutable nature—
Swift is fast, after all. But when absolute performance is vital, a for loop might be the better 
approach. 

Another benefit of a for loop is that you can stop an iteration halfway with continue, break, 
or return. But with map or a pipeline, you’d have to perform a complete iteration of an array for 
every action. 

Generally speaking, readability and immutability are more crucial than performance 
optimizations. Use what fits your scenario best. 

10.1.2. Mapping over a dictionary 

An array isn’t the only type of collection you can map over. You can even map over dictionaries. 
For instance, if you have the commits data in the shape of a dictionary, you can again transform 
these into string values. 

Before you work with dictionaries, as a tip, you can effortlessly turn your array of tuples into a 
dictionary via the uniqueKeysWithValues initializer on Dictionary, as shown in this code. 

Listing 10.5. Turning tuples into a dictionary 

print(commitStats) // [(name: "Miranda", count: 30), (name: "Elly", count: 

     650), (name: "John", count: 0)] 

let commitsDict = Dictionary(uniqueKeysWithValues: commitStats) 

print(commitsDict) // ["Miranda": 30, "Elly": 650, "John": 0] 

 



Unique keys 

If two tuples with the same keys are passed to Dictionary (uniqueKeysWithValues:), a runtime 
error occurs. For instance, if you pass [(name: "Miranda", count: 30), name: "Miranda", 
count 40)], an application could crash. In that case, you may want to 
use Dictionary(_:uniquingKeysWith:). 

 

Now that you own a dictionary, you can map over it, as shown here. 

Listing 10.6. Mapping over a dictionary 

print(commitsDict) // ["Miranda": 30, "Elly": 650, "John": 0] 

 

let mappedKeysAndValues = commitsDict.map { (name: String, count: Int) -> 

     String in 

    switch count { 

    case 0: return "\(name) isn't involved in the project." 

    case 1..<100: return "\(name) isn't very active on the project." 

    default: return "\(name) is active on the project." 

    } 

} 

 

print(mappedKeysAndValues) // ["Miranda isn't very active on the project", 

➥ "Elly is active on the project", "John isn't involved in the project"] 

 

From dictionary to array 

Be aware that going from a dictionary to an array means that you go from an unordered 
collection to an ordered collection, which may not be the correct ordering you’d like. 

 

With map, you turned both a key and value into a single string. If you want, you can only mapover 
a dictionary’s values. For instance, you can transform the counts into strings, while keeping the 
names in the dictionary, as in the next example. 

Listing 10.7. Mapping over a dictionary’s values 

let mappedValues = commitsDict.mapValues { (count: Int) -> String in 

    switch count { 



    case 0: return "Not involved in the project." 

    case 1..<100: return "Not very active on the project." 

    default: return "Is active on the project" 

    } 

} 

 

print(mappedValues) // ["Miranda": "Very active on the project", "Elly": 

➥ "Is active on the project", "John": "Not involved in the project"] 

Note that by using mapValues, you keep owning a dictionary, but with map you end up with an 
array. 

10.1.3. Exercises 

1 

Create a function that turns an array into a nested array. Make sure to use the mapmethod. Given the 
following: 

makeSubArrays(["a","b","c"]) // [[a], [b], [c]] 

makeSubArrays([100,50,1]) // [[100], [50], [1]] 

2 

Create a function that transforms the values inside a dictionary for movies. Each rating, from 1 to 5, 
needs to be turned into a human readable format (for example, a rating of 1.2 is “Very low”, a rating 
of 3 is “Average”, and a rating of 4.5 is “Excellent”): 

let moviesAndRatings: [String : Float] = ["Home Alone 4" : 1.2, "Who 

➥ Framed Roger Rabbit?" : 4.6, "Star Wars: The Phantom Menace" : 2.2, 

➥ "The Shawshank Redemption" : 4.9] 

 

let moviesHumanRadable = transformRating(moviesAndRatings) 

 

print(moviesHumanRadable) // ["Home Alone 4": "Weak", "Star Wars: The 

➥ Phantom Menace": "Average", "Who Framed Roger Rabbit?": "Excellent", 

➥ "The Shawshank Redemption": "Excellent"] 

3 



Still looking at movies and ratings, convert the dictionary into a single description per movie with 
the rating appended to the title. For example 

let movies: [String : Float] = ["Home Alone 4" : 1.2, "Who framed Roger 

➥ Rabbit?" : 4.6, "Star Wars: The Phantom Menace" : 2.2, "The Shawshank 

➥ Redemption" : 4.9] 

turns into 

["Home Alone 4 (Weak)", "Star Wars: The Phantom Menace (Average)", 

➥ "Who framed Roger Rabbit? (Excellent)", "The Shawshank Redemption 

➥ (Excellent)"] 

Try to use map if possible. 

10.2. MAPPING OVER SEQUENCES 

You saw before how you could map over Array and Dictionary types. These types implement 
a Collection and Sequence protocol. 

As an example, you can generate mock data—such as for tests or to fill up screens in a user 
interface—by defining some names, creating a Range of integers, and mapping over each 
iteration. In this case, you can quickly generate an array of names, as in this example. 

Listing 10.8. Mapping over a Range sequence 

let names = [                                  ❶ 

    "John", 

    "Mary", 

    "Elizabeth" 

] 

let nameCount = names.count                    ❷ 

 

let generatedNames = (0..<5).map { index in    ❸ 

     return names[index % nameCount]           ❹ 

} 

 

print(generatedNames) // ["John", "Mary", "Elizabeth", "John", "Mary"] 

• ❶ Define a set of names to be generated. 



• ❷ Measure the count once (as opposed to in each iteration of map). 
• ❸ map over a range, in this case from 0 to 4. 
• ❹ Using a modulus operator, you generate a value of either 0, 1, or 2. Then you pick a 

name based on this value. 

With a Range, you can generate numbers; but by mapping over a range, you can generate values 
that can be something other than numbers. 

Besides ranges, you can also apply map on zip or stride because they conform to 
the Sequenceprotocol. With map, you can generate lots of useful values and instances. 
Performing map on sequences and collections always returns a new Array, which is something to 
keep in mind when working with map on these types. 

10.2.1. Exercise 

4 

Generate an array of the letters “a”, “b”, and “c” 10 times. The end result should be [“a”, “b”, “c”, “a”, 
“b”, “c”, “a” ...] until the array is 30 elements long. Try to use map if you can. 

10.3. MAPPING OVER OPTIONALS 

At first, applying map may seem like a fancy way to update values inside of collections. But 
the map concept isn’t reserved for collections alone. You can also map over optionals. Strange, 
perhaps? Not really—it’s a similar concept to transforming a value inside a container. 

Mapping over an array means that you transform its inside values. In contrast, mapping over an 
optional means that you transform its single value (assuming it has one). Mapping over a 
collection versus mapping over an optional isn’t so different after all. You’re going to get 
comfortable with it and wield its power. 

10.3.1. When to use map on optionals 

Imagine that you’re creating a printing service where you can print out books with social media 
photos and their comments. Unfortunately, the printing service doesn’t support special 
characters, such as emojis, so you need to strip emojis from the texts. 

Let’s see how you can use map to clean up your code while stripping emojis. But before 
you mapover an optional, you’ll start with a way to strip emojis from strings, which you’ll use in 
the mapping operation. 

Stripping emojis 

First, you need a function that strips the emojis from a String; it does so by iterating over 
the unicodeScalars view of a String, and removes each scalar that’s an emoji. You achieve this 
by passing the isEmoji method to the removeAll method, as shown here. 



Listing 10.9. The removeEmojis function 

func removeEmojis(_ string: String) -> String { 

     var scalars = string.unicodeScalars               ❶ 

     scalars.removeAll(where: isEmoji)                 ❷ 

     return String(scalars)                            ❸ 

 } 

 

func isEmoji(_ scalar: Unicode.Scalar) -> Bool {       ❹ 

     // You'll fill the body. First, let's focus on the function signatures. 

     return true 

} 

• ❶ Create a mutable copy of the string’s scalars. It needs to be mutable so that you can 
call removeAll. 

• ❷ Remove each scalar that is an emoji. 
• ❸ Convert the scalars back to a String again before returning it. 
• ❹ The isEmoji function is a placeholder at this stage so that you can finish 

removeEmojis first. 

A useful approach when creating new functionality is to create dummy functions, such 
as isEmoji, so that you can finish up the high-level functions you want to create, such 
as removeEmojis, without losing focus over low-level functions. 

At this stage, removeEmojis is ready and the code compiles. You’re ready to focus on finishing 
the function body of isEmoji. 

To create isEmoji, you check if a Unicode is part of an emoji range by pattern matching on the 
emoji range. 

Listing 10.10. Detect if Unicode is in emoji range 

/// Detect if Unicode is an emoji, based on Unicode tables 

/// https://apps.timwhitlock.info/emoji/tables/unicode 

func isEmoji(_ scalar: Unicode.Scalar) -> Bool { 

    switch Int(scalar.value) { 

    case 0x1F601...0x1F64F: return true // Emoticons 

    case 0x1F600...0x1F636: return true // Additional emoticons 

    case 0x2702...0x27B0: return true // Dingbats 

    case 0x1F680...0x1F6C0: return true // Transport and map symbols 



    case 0x1F681...0x1F6C5: return true // Additional transport and map symbols 

    case 0x24C2...0x1F251: return true // Enclosed characters 

    case 0x1F30D...0x1F567: return true // Other additional symbols 

    default: return false 

    } 

} 

With both functions complete, let’s continue and see how you can embed this in a mapping 
operation to clean up your code. 

10.3.2. Creating a cover 

Back to your printing service. To create a printed photo book, you need to create a cover. This 
cover will always have an image, and it will have an optional title to display on top of the image. 

The goal is to apply the removeEmojis function to the optional title, so that when a cover 
contains a title, the emojis will get stripped. This way, the emojis don’t end up as squares on a 
printed photo book (see figure 10.2). 

Figure 10.2. Removing emojis from a cover title 

 

In the following listing, you introduce the Cover class, which contains an 
optional titleproperty. Because removeEmojis doesn’t accept an optional, you’ll first unwrap 
the title to apply the removeEmojis function. 

Listing 10.11. The Cover class 

class Cover { 

    let image: UIImage 

    let title: String? 

 

    init(image: UIImage, title: String?) { 

        self.image = image 

 

        var cleanedTitle: String? = nil            ❶ 

        if let title = title {                     ❷ 

            cleanedTitle = removeEmojis(title)     ❸ 

        } 



        self.title = cleanedTitle                  ❹ 

     } 

} 

• ❶ Create a temporary variable. 
• ❷ The optional title is unwrapped. 
• ❸ The removeEmojis function is applied to the unwrapped title. 
• ❹ The title on the class is set. 

You can condense (and improve) these four steps into a single step by mapping over the 
optional. 

If you were to map over an optional, you’d apply the removeEmojis() function on the unwrapped 
value inside map (if there is one). If the optional is nil, the mapping operation is ignored 
(see figure 10.3). 

Figure 10.3. A map operation on two optionals 

 

In listing 10.12, you’ll see how mapping over an optional would look like inside your Cover. 

Listing 10.12. Mapping over a title 

class Cover { 

    let image: UIImage 

    let title: String? 

 

    init(image: UIImage, title: String?) { 

        self.image = image 

 



        self.title = title.map { (string: String) -> String in      ❶ 

             return removeEmojis(string)                            ❷ 

        } 

    } 

} 

• ❶ Pass a closure to map on the optional title. 
• ❷ Inside the closure you have a regular string, which you transform with removeEmojis. 

Both operations give you the same output, which is a title without emojis, except you shortened 
the operation with map. 

 

Inside map 

Notice how the value inside the map closure isn’t an optional. That’s the beauty of map: you don’t 
have to worry about a value being optional or not. 

 

10.3.3. A shorter map notation 

You managed to shave off a few lines; big whoop, right? Let’s see if you can shorten it further. 

You can start by using the shorthand notation of a closure: 

self.title = title.map { removeEmojis($0) } 

But all map needs is a function, closure or not, that takes an argument and returns a value. So 
instead of creating a closure, you can pass your existing function removeEmojis straight to map: 

self.title = title.map(removeEmojis) 

Passing removeEmojis directly to map works because it’s a function that accepts one parameter 
and returns one parameter, which is exactly what map expects. 

 

Note 

The curly braces {} are replaced by parentheses () because you’re not creating a closure; you’re 
passing a function reference as a regular argument. 

 

The end result, as shown in this listing, is now much shorter. 



Listing 10.13. Clean mapping 

class Cover { 

    let image: UIImage 

    let title: String? 

 

    init(image: UIImage, title: String?) { 

        self.image = image 

        self.title = title.map(removeEmojis) 

    } 

} 

By using map, you turned your multiline unwrapping logic into a clean, immutable one-liner. 
The title property remains an optional string, but its values are transformed when the 
passed title argument has a value. 

Benefits of mapping over optionals 

An optional has a context: namely, whether or not a value is nil. With map, you could think of 
mapping over this context. Considering optionals in Swift are everywhere, mapping over them is 
a powerful tool. 

You can perform actions on the optional as if the optional were unwrapped; this way you can 
delay unwrapping the optional. Also, the function you pass to map doesn’t need to know or deal 
with optionals, which is another benefit. 

Applying map helps you remove boilerplate. Thanks to map, you’re not fiddling with temporary 
variables or manual unwrapping anymore. Programming in an immutable way is good practice 
because it saves you from variables changing right under your nose. 

Another benefit of map is that you can keep chaining, as shown in the following listing. For 
example, besides removing emojis, you can also remove whitespace from the title by mapping 
over it twice. 

Listing 10.14. Chaining map operations 

class Cover { 

    let image: UIImage 

    let title: String? 

 

    init(image: UIImage, title: String?) { 

        self.image = image 



        self.title = title.map(removeEmojis).map { $0.trimmingCharacters(in: 

     .whitespaces) } 

    } 

} 

Listing 10.14 maps over the same optional twice. First, you pass a removeEmojis function, and 
then a closure to trim the whitespace. The second map operation is done via a closure because 
you can’t pass a function reference in this case. Also, notice how you haven’t unwrapped the 
optional once, yet you performed multiple actions on it. 

You end up with a small pipeline where you immutably apply mapping operations on the 
optional. Somewhere else in the application you can unwrap the optional to read the value. But 
until then, you can pretend that the optional isn’t nil and work with its inner value. 

10.3.4. Exercise 

5 

Given a contact data dictionary, the following code gets the street and city from the data and cleans 
up the strings. See if you can reduce the boilerplate (and be sure to use mapsomewhere): 

let contact = 

    ["address": 

 

        [ 

            "zipcode": "12345", 

            "street": "broadway", 

            "city": "wichita" 

        ] 

 

] 

 

func capitalizedAndTrimmed(_ string: String) -> String { 

    return string.trimmingCharacters(in: .whitespaces).capitalized 

} 

 

// Clean up this code: 

var capitalizedStreet: String? = nil 



var capitalizedCity: String? = nil 

 

if let address = contact["address"] { 

    if let street = address["street"] { 

        capitalizedStreet = capitalizedAndTrimmed(street.capitalized) 

    } 

    if let city = address["city"] { 

        capitalizedCity = capitalizedAndTrimmed(city.capitalized) 

    } 

} 

 

print(capitalizedStreet) // Broadway 

print(capitalizedCity) // Wichita 

10.4. MAP IS AN ABSTRACTION 

With map, you can transform data while bypassing containers or contexts, such as arrays, 
dictionaries, or optionals. 

Refer back to your method that strips emojis from a string, used in the previous section. Via the 
use of map, you can use the removeEmojis function on all types of containers, such as strings, 
dictionaries, or sets (see figure 10.4). 

Figure 10.4. Removing emojis on multiple types 

 

No matter whether you’re dealing with dictionaries, arrays, optionals, or sets, 
the removeEmojiworks on any type via the use of map. You don’t need to write 
a removeEmojis function separately for each type. 

The map abstraction is called a functor, which is a name coming from the field of mathematics 
and category theory. Mathematics is something you don’t need to know about to use map. But it’s 
interesting to see how a functor defines something that you can map over, and that Swift borrows 
the map function from the functional programming world. 



10.5. GROKKING FLATMAP 

Understanding flatMap can be a rite of passage in Swift. At first, flatMap is like a monster under 
your bed: it’s scary at first, but once you confront it, you’ll see that flatMap isn’t so bad. 

 

This section’s goal is for you to develop an understanding of flatMap—going for that feeling of 
“That was it?”, like a magic trick being spoiled. 

10.5.1. What are the benefits of flatMap? 

Let’s take the magic away: flatMap is a flatten operation after a map operation. 

A flatten operation is useful when you’re applying map, but you end up with a nested type. For 
instance, while mapping you end up with Optional(Optional(4)), but you wish it 
were Optional(4). Alternatively, you end up with [[1, 2, 3], [4, 5, 6]], but you need [1, 2, 
3, 4, 5, 6]. 

Simply put: with flatMap you combine nested structures. 

It’s a little more involved than that—such as the ability to sequence operations while carrying 
contexts, or when you want to program happy paths—but you’ll get into that soon. 

That’s all the theory for now. That wasn’t so bad, was it? Let’s get right to the fun parts. 

10.5.2. When map doesn’t cut it 

Let’s take a look at how flatMap affects optionals. 



Consider the following example where you want to transform an optional String to an 
optional URL. You naïvely try to use map and quickly see that it isn’t suited for this situation. 

Listing 10.15. Transforming a String to URL 

// You received this data. 

let receivedData = ["url": "https://www.clubpenguinisland.com"] 

 

let path: String? = receivedData["url"] 

 

let url = path.map { (string: String) -> URL? in 

    let url = URL(string: string) // Optional(https://www.clubpenguinisland.com) 

    return url // You return an optional string 

} 

 

print(url) // Optional(Optional(http://www.clubpenguinisland.com)) 

In this scenario, an optional String is given to you; you’d like to transform it into an 
optional URL object. 

The problem, however, is that the creation of a URL can return a nil value. URL returns nil when 
you pass it an invalid URL. 

When you’re applying map, you’re returning a URL? object in the mapping function. 
Unfortunately, you end up with two optionals nested in each other, such 
as Optional(Optional(http://www.clubpenguinisland.com)). 

When you’d like to remove one layer of nesting, you can force unwrap the optional. Easy, right? 
See the results in the following code. 

Listing 10.16. Removing double nesting with a force unwrap 

let receivedData = ["url": "https://www.clubpenguinisland.com"] 

 

let path: String? = receivedData["url"] 

 

let url = path.map { (string: String) -> URL in              ❶ 

     return URL(string: string)!                             ❷ 

 } 



 

print(url) // Optional(http://www.clubpenguinisland.com).    ❸ 

• ❶ You return a regular URL now. 
• ❷ You force unwrap—dangerous! 
• ❸ The optional isn’t nested anymore. 

Hold your ponies. 

Even though this solves your double-nested optional problem, you’ve now introduced a possible 
crash by using a force unwrap. In this example, the code works fine because the URLis valid. But 
in real-world applications, that might not be the case. As soon as the URL returns nil, you’re done 
for, and you have a crash. 

Instead, as shown here, you can use flatMap to remove one layer of nesting. 

Listing 10.17. Using flatMap to remove double-nested optional 

let receivedData = ["url": "https://www.clubpenguinisland.com"] 

 

let path: String? = receivedData["url"] 

 

let url = path.flatMap { (string: String) -> URL? in        ❶ 

     return URL(string: string)                             ❷ 

 } 

 

print(url) // Optional(http://www.clubpenguinisland.com).   ❸ 

• ❶ You return URL? again. 
• ❷ You return an optional URL.! 
• ❸ The optional isn’t double-nested. 

Note how you return a URL? again in the flatMap function. Just like with map, both closures are 
the same. But because you use flatMap, a flattening operation happens after the transformation. 
This flattening operation removes one layer of optional nesting. 

FlatMap first performs a map, and then it flattens the optional. It can help to think 
of flatMap as mapFlat, because of the order of the operations. 

By using flatMap, you can keep on transforming optionals and refrain from introducing those 
dreaded force unwraps. 



10.5.3. Fighting the pyramid of doom 

A pyramid of doom is code that leans to the right via indentation. This pyramid shape is a result 
of a lot of nesting, such as when unwrapping multiple optionals. 

Here’s another example when map won’t be able to help, but flatMap comes in handy to fight this 
pyramid. 

 

To showcase fighting the pyramid of doom, let’s talk about the division of integers. 

When you divide an integer, decimals get cut off: 

print(5 / 2) // 2 

When dividing an Int, dividing 5 by 2 returns 2 instead of 2.5, because Int doesn’t have floating 
point precision, as Float does. 

The function in listing 10.18 halves an Int only when it’s even. If the Int is odd, the function 
returns nil. 

The safe halving function takes a non-optional and returns an optional—for example, halving 4 
becomes Optional(2). But halving 5 returns nil because decimals would be cut off. 

Listing 10.18. Safe halving function 

func half(_ int: Int) -> Int? { // Only half even numbers 

    guard int % 2 == 0 else { return nil } 



    return int / 2 

} 

print(half(4)) // Optional(2) 

print(half(5)) // nil 

Next, you’re going to continuously apply this function. 

You create a start value and halve it, which returns a new optional. If you halve the new value, 
you first have to unwrap the newly halved value before passing it on to half. 

This chain of events creates a create a nasty tree of indented if let operations, also known as 
the pyramid of doom, as demonstrated here. 

Listing 10.19. A pyramid of doom 

var value: Int? = nil 

let startValue = 80 

if let halvedValue = half(startValue) { 

    print(halvedValue) // 40 

    value = halvedValue 

 

    if let halvedValue = half(halvedValue) { 

        print(halvedValue) // 20 

        value = halvedValue 

 

        if let halvedValue = half(halvedValue) { 

            print(halvedValue) // 10 

            if let halvedValue = half(halvedValue) { 

                value = halvedValue 

            } else { 

                value = nil 

            } 

 

        } else { 

            value = nil 

        } 



    } else { 

        value = nil 

    } 

} 

 

print(value) // Optional(5) 

As you can see in this example, when you want to apply a function on a value continuously, you 
have to keep unwrapping the returned value. This nested unwrapping happens 
because half returns an optional each time. 

Alternatively, you can group the if let statements in Swift, which is an idiomatic approach. 

Listing 10.20. Combining if let statements 

let startValue = 80 

var endValue: Int? = nil 

 

if 

    let firstHalf = half(startValue), 

    let secondHalf = half(firstHalf), 

    let thirdHalf = half(secondHalf), 

    let fourthHalf = half(thirdHalf) { 

    endValue = fourthHalf 

} 

print(endValue) // Optional(5) 

The downside of this approach is that you have to bind values to constants for each step, but 
naming each step can be cumbersome. Also, not all functions neatly accept one value and return 
another, which means that you would be chaining multiple closures, in which case the if 
let approach wouldn’t fit. 

Let’s take a functional programming approach with flatMap and see if you can rewrite your 
code. 

10.5.4. flatMapping over an optional 

Now you’re going to see how flatMap can be beneficial. Remember, flatMap is like map, except 
that it removes a layer of nesting after the mapping operation. You could, for example, have 



an Optional(4) and flatMap over it, applying the half function, which returns a new optional 
that flatMap flattens (see figure 10.5 and listing 10.21). 

Figure 10.5. A successful flatMap operation 

 

You can see that if you flatMap the half function over Optional(4), you end up 
with Optional(2). With map you would end up with Optional(Optional(2)). 

Listing 10.21. Halving with flatMap 

let startValue = 8 

let four = half(startValue) // Optional(4) 

let two = four.flatMap { (int: Int) -> Int? in 

    print(int) // 4 

    let nestedTwo = half(int) 

    print(nestedTwo) // Optional(2) 

    return nestedTwo 

} 

 

print(two) // Optional(2) 

The beauty of using flatMap is that you keep a regular optional, which means that you can keep 
chaining operations on it. 

Listing 10.22. Multiple halving operations on flatMap 

let startValue = 40 

let twenty = half(startValue) // Optional(20) 

let five = 

    twenty 

        .flatMap { (int: Int) -> Int? in 

            print(int) // 20 



            let ten = half(int) 

            print(ten) // Optional(10) 

            return ten 

        }.flatMap { (int: Int) -> Int? in 

            print(int) // 10 

            let five = half(int) 

            print(five) // Optional(5) 

            return five 

} 

 

print(five) // Optional(5) 

Because you never nest an optional more than once, you can keep chaining forever, or just twice, 
as in this example. You are getting rid of the ugly nested if let pyramid of doom. As a bonus, you 
aren’t manually keeping track of a temporary value anymore while juggling if letstatements. 

Shortcircuiting with flatMap 

Because flatMap allows you to keep chaining nullable operations, you get another benefit: you 
can break off chains if needed. 

When you return nil from a flatMap operation, you end up with a regular nil value instead. 
Returning nil from a flatMap operation means that subsequent flatMap operations are ignored. 

In the next example, you halve 5 and flatMap over it. You end up with a nil; the result is the 
same as starting with a nil (see figure 10.6). 



Figure 10.6. flatMap and nil values 

 

When you have a nil optional, subsequent flatMap operations are ignored. Because you can 
return nil from the flatMap closure, you can short-circuit a chained operation. 

In the next example, see what happens if you keep on chaining, even when a flatMapoperation 
returns nil. 

Listing 10.23. Short-circuiting 

let startValue = 40 

let twenty = half(startValue) // Optional(20) 

let someNil = 

    twenty 

        .flatMap { (int: Int) -> Int? in 

            print(int) // 20 

            let ten = half(int) 

            print(ten) // Optional(10) 

            return ten 

        }.flatMap { (int: Int) -> Int? in 

            print(int) // 10 

            let five = half(int) 

            print(five) // Optional(5) 

            return five 



        }.flatMap { (int: Int) -> Int? in           ❶ 

            print(int) // 5 

            let someNilValue = half(int) 

            print(someNilValue) // nil 

            return someNilValue                     ❷ 

         }.flatMap { (int: Int) -> Int? in          ❸ 

            return half(int)                        ❹ 

 } 

 

print(someNil) // nil 

• ❶ The closure in this flatMap returns a nil. 
• ❷ You’re returning nil. 
• ❸ The closure in the last flatMap operation won’t be called because the optional is nil 

before. 
• ❹ This code is never called because you’re calling flatMap on a nil value. 

flatMap ignores the passed closures as soon as a nil is found. This is the same as mapping over 
an optional, which also won’t do anything if a nil is found. 

Notice how the third flatMap operation returns nil, and how the fourth flatMap operation is 
ignored. The result remains nil, which means that flatMap gives you the power to break off 
chained operations. 

You let flatMap handle any failed conversions, and you can focus on the happy path of the 
program instead! 

Moreover, to finalize and clean up your code, you can use a shorter notation, as you did before, 
where you pass a named function to map. You can do the same with flatMap, as shown here. 

Listing 10.24. A shorter notation 

let endResult = 

    half(80) 

        .flatMap(half) 

        .flatMap(half) 

        .flatMap(half) 

 

print(endResult) // Optional(5) 



Generally, combining if let statements is the way to go because it doesn’t require in-
depth flatMap knowledge. If you don’t want to create intermediate constants, or if you’re 
working with multiple closures, you can use a flatMap approach for concise code. 

As shown in the following example, imagine a scenario where you’d find a user by an id, find the 
user’s favorite product, and see if any related product exists. The last step formats the data. Any 
of these steps could be a function or a closure. With flatMap and map, you can cleanly chain 
transformations without resorting to a big stack of if let constants and intermediary values. 

Listing 10.25. Finding related products 

let alternativeProduct = 

    findUser(3) 

      .flatMap(findFavoriteProduct) 

      .flatMap(findRelatedProduct) 

      .map { product in 

        product.description.trimmingCharacters(in: .whitespaces) 

      } 

10.6. FLATMAPPING OVER COLLECTIONS 

You might have guessed that flatMap isn’t reserved just for optionals, but for collections as well. 

Just like flatMap ends up flattening two optionals, it also flattens a nested collection after a 
mapping operation. 

For instance, you can have a function that generates a new array from each value inside an 
array—for example, turning [2, 3] into [[2, 2], [3, 3]]. With flatMap you can flatten these 
subarrays again to a single array, such as [2, 2, 3, 3] (see figure 10.7). 

Figure 10.7. Flattening a collection with flatMap 

 

In code this would look as follows. 



Listing 10.26. Repeating values 

let repeated = [2, 3].flatMap { (value: Int) -> [Int] in 

    return [value, value] 

} 

 

print(repeated) // [2, 2, 3, 3] 

Also, consider the following, where you start with a nested array of values. With flatMap, you 
flatten the subarrays to a single array. 

Listing 10.27. Flattening a nested array 

let stringsArr = [["I", "just"], ["want", "to"], ["learn", "about"], 

     ["protocols"]] 

let flattenedArray = stringsArr.flatMap { $0 }                            ❶ 

 print(flattenedArray) // ["I", "just", "want", "to", "learn", "about", 

     "protocols"] 

• ❶ Only the passed value is returned; no transformations are applied. 

Notice how you’re not performing anything particular in the flatMap closure in this case. 

10.6.1. flatMapping over strings 

String is a collection, too. As you saw earlier, you can iterate over a view on a String, such 
as unicodeScalars. Depending on the “view” of String you pick, you can also iterate over the 
utf8 and utf16 code units of String. 

If you were to iterate over a String itself, you would iterate over its characters. 
Because Stringconforms to the Collection protocol, you can flatMap over a String as well. 

For instance, you can create a succinct interspersed method on String, which takes 
a Characterand intersperses or weaves a character between each character of the string (as in 
this example, turning “Swift” into “S-w-i-f-t”). 

Listing 10.28. interspersed 

"Swift".interspersed("-") // S-w-i-f-t 

 

extension String {                                                         ❶ 

     func interspersed(_ element: Character) -> String { 

        let characters = self.flatMap { (char: Character) -> [Character] in❷ 



             return [char, element]                                        ❸ 

             }.dropLast()                                                  ❹ 

 

        return String(characters)                                          ❺ 

     } 

} 

• ❶ String is extended with new functionality. 
• ❷ You call flatMap the String itself. 
• ❸ The closure returns an array containing a String character, and the passed element. 

Then flatMap flattens the array. 
• ❹ You don’t need the element added to the last character; you can drop this element 

with dropLast(). 
• ❺ The array of characters is converted to a String. 

You can write the method in a shorthanded manner, too, by omitting explicit types. 

Listing 10.29. Shorthanded interspersed method 

extension String { 

    func interspersed(_ element: Character) -> String { 

        let characters = self.flatMap { return [$0, element] }.dropLast() 

        return String(characters) 

    } 

} 

10.6.2. Combining flatMap with map 

Once you start nesting flatMap with other flatMap or map operations, you can create powerful 
functionality with a few lines of code. Imagine that you need to create a full deck of cards. You 
can create this in very few lines once you combine map and flatMap. 

First, you define the suits and faces. Then you iterate through the suits, and for each suit, you 
iterate through the faces. To create your deck, you’re nesting flatMap and map so that you have 
access to both the suit and the face at the same time. This way, you can effortlessly create tuple 
pairs for each card. 

As shown here, in the end, you use the shuffle() method, which shuffles deckOfCards in place. 

Listing 10.30. Generating a deck of cards 

let suits = ["Hearts", "Clubs", "Diamonds", "Spades"]                          ❶ 

let faces = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A"] ❶ 



 

var deckOfCards = suits.flatMap { suit in                                      ❷ 

     faces.map { face in                                                       ❸ 

         (suit, face)                                                          ❹ 

     } 

} 

deckOfCards.shuffle()                                                          ❺ 

print(deckOfCards) // [("Diamonds", "5"), ("Hearts", "8"), ("Hearts", "K"), 

➥ ("Clubs", "3"), ("Diamonds", "10"), ("Spades", "A"), ... 

• ❶ Define the possible suits and faces. 
• ❷ Iterate through suits with a flatMap operation, because you’re flattening an array. 
• ❸ Map over the possible faces. 
• ❹ Because you’re nesting, both face and suit become available to create a new type (in 

this case a tuple). 
• ❺ Shuffle the cards—otherwise the game gets boring. Note that deckOfCards is a var, 

allowing for in-place shuffling. 

 

Tip 

You shuffle deckOfCards in place, but you can also get a fresh copy with the shuffled() method. 

 

The reason you use flatMap on the suits array is because mapping over faces returns an array, 
causing you to end up with nested arrays. With flatMap you remove one layer of nesting so that 
you neatly end up with an array of tuples. 

10.6.3. Using compactMap 

For collections, such as Array, String, or Dictionary, there is a little brother 
of flatMap called compactMap. With compactMap, instead of flattening a nested collection, you can 
flatten optionals inside a collection. 

In simpler terms, you can filter nils out of a collection. As you’ve seen before, not 
every Stringcan be turned into a URL, resulting in an optional URL type, as in this example. 

Listing 10.31. Creating optional URLs 

let wrongUrl = URL(string: "OMG SHOES") 

print(wrongUrl) // nil 

let properUrl = URL(string: "https://www.swift.org") 



print(properUrl) // Optional(https://www.swift.org) 

If you were to fill up an array with strings and try to convert these to URL types via map, you 
would end up with an array of optional integers, as shown here. 

Listing 10.32. Mapping over an array 

let strings = [ 

    "https://www.duckduckgo.com", 

    "https://www.twitter.com", 

    "OMG SHOES", 

    "https://www.swift.org" 

] 

 

let optionalUrls = strings.map { URL(string: $0) } 

print(optionalUrls) // [Optional(https://www.duckduckgo.com), 

➥ Optional(https://www.twitter.com), nil, Optional(https://www.swift.org)] 

Notice how "OMG SHOES" can’t be turned into an URL, resulting in a nil value inside the array. 

Again, with compactMap you can flatten this operation, except this time, flattening the array 
means removing the nil optionals. This way, as shown in this listing, you end up with a non-
optional list of URLs. 

Listing 10.33. Flattening an optional array 

let urls = strings.compactMap(URL.init) 

print(urls) // [https://www.duckduckgo.com, https://www.twitter.com, https:// 

     www.swift.org] 

Because not all strings can be turned into URL types, URL.init returns an optional URL. 
Then compactMap filters out these nil values. For instance, you can’t turn "OMG SHOES" into a URL, 
so compactMap filters out this nil for you. The result is that you end up with proper URLs where 
none are optional. 

If a for loop is more your cup of tea, you can use one to filter an optional array as well via a case 
let expression, as in listing 10.34. This expression allows you to pattern match on an enum’s 
case, such as optionals (because optionals are enums). For instance, you can obtain an array 
with optional URL types and loop over them, filtering any nils, and end up with an unwrapped 
value inside the loop. 

Listing 10.34. Using a for loop to filter an optional array 

let optionalUrls: [URL?] = [ 



    URL(string: "https://www.duckduckgo.com"), 

    URL(string: "Bananaphone"), 

    URL(string: "https://www.twitter.com"), 

    URL(string: "https://www.swift.org") 

] 

for case let url? in optionalUrls { 

    print("The url is \(url)") // url is unwrapped here 

} 

 

// Output: 

// The url is https://www.duckduckgo.com 

// The url is https://www.twitter.com 

// The url is https://www.swift.org 

As mentioned before, with for loops you get the benefit of using break, continue, or return to 
break loops halfway. 

10.6.4. Nesting or chaining 

A nice trick with flatMap and compactMap is that it doesn’t matter whether you nest or 
chain flatMap or compactMap operations. For instance, you could flatMap over an Optional twice 
in a row. Alternatively, you can nest two flatMap operations. Either way, you end up with the 
same result: 

let value = Optional(40) 

let lhs = value.flatMap(half).flatMap(half) 

let rhs = value.flatMap { int in half(int).flatMap(half) } 

lhs == rhs // true 

print(rhs) // Optional(10) 

Another benefit of the nested flatMap or compactMap approach is that you can refer to 
encapsulated values inside a nested closure. 

For instance, you can both flatMap and compactMap over the same String. First, each element 
inside the string is bound to a inside a flatMap operation; then you compactMap over the same 
string again, but you’ll bind each element to b. You end up with a way to combine a and b to 
build a new list. 



Using this technique as shown next, you build up an array of unique tuples from the characters 
in the same string. 

Listing 10.35. Combining characters from a string 

let string = "abc" 

let results = string.flatMap { a -> [(Character, Character)] in     ❶ 

     string.compactMap { b -> (Character, Character)? in            ❷ 

        if a == b {                                                 ❸ 

            return nil                                              ❹ 

        } else { 

            return (a, b) 

        } 

    } 

} 

print(results) // [("a", "b"), ("a", "c"), ("b", "a"), ("b", "c"), ("c", "a"), 

     ("c", "b")]                                                    ❺ 

• ❶ flatMap over a string. 
• ❷ Nest a compactMap operation, again over the same string. 
• ❸ Because of nesting, you can refer to both a and b constants from this inner 

compactMap operation. 
• ❹ If a and b are the same, you return a nil, so that you end up with unique combinations 

only. 
• ❺ The result is a unique combination of characters, filtered and flattened thanks to 

nested operations. 

It’s a small trick, but knowing that flatMap and compactMap can be chained or nested can help 
you refactor your code in different ways for similar results. 

10.6.5. Exercises 

6 

Create a function that turns an array of integers into an array with a value subtracted and added for 
each integer—for instance, [20, 30, 40] is turned into [19, 20, 21, 29, 30, 31, 39, 40, 41]. Try to solve 
it with the help of map or flatMap. 

7 

Generate values from 0 to 100, with only even numbers. But be sure to skip every factor of 10, such 
as 10, 20, and so on. You should end up with [2, 4, 6, 8, 12, 14, 16, 18, 22 ...]. See if you can solve it 
with the help of map or flatMap. 



8 

Create a function that removes all vowels from a string. Again, see if you can solve it 
with map or flatMap. 

9 

Given an array of tuples, create an array with tuples of all possible tuple pairs of these values—for 
example, [1, 2] gets turned into [(1, 1), (1, 2), (2, 1), (2, 2)]. Again, see if you can do it with the help 
from map and/or flatMap and make sure that there are no duplicates. 

10 

Write a function that duplicates each value inside an array—for example, [1, 2, 3] turns into [1, 1, 2, 
2, 3, 3] and [[“a”, “b”],[“c”, “d”]], turns into [[“a”, “b”], [“a”, “b”], [“c”, “d”], [“c”, “d”]]. See if you can 
use map or flatMap for this. 

10.7. CLOSING THOUGHTS 

Depending on your background, a functional style of programming can feel a bit foreign. 
Luckily, you don’t need functional programming to create spectacular applications. But by 
adding map and flatMap to your toolbelt, you can harness their powers and add powerful 
immutable abstractions to your code in a succinct manner. 

Whether you prefer an imperative style or a functional style to programming, I hope you feel 
confident picking an approach that creates a delicate balance between readability, robustness, 
and speed. 

SUMMARY 

• The map and flatMap methods are concepts taken from the functional programming 
world. 

• The map method is an abstraction called a functor. 
• A functor represents a container—or context—of which you can transform its value 

with map. 
• The map method is defined on many types, including Array, Dictionary, Sequence, 

and Collections protocol, and Optional. 
• The map method is a crucial element when transforming data inside a pipeline. 
• Imperative-style programming is a fine alternative to functional, style programming. 
• Imperative-style programming can be more performant. In contrast, functional-style 

programming can involve immutable transformations and can sometimes be more 
readable and show clearer intent. 

• The flatMap method is a flatten operation after a map operation. 
• With flatMap you can flatten a nested optional to a single optional. 
• With flatMap you can sequence operations on an optional in an immutable way. 
• Once an optional is nil, map and flatMap ignores any chained operations. 
• If you return nil from a flatMap, you can short-circuit operations. 



• With flatMap you can transform arrays and sequences in powerful ways with very little 
code. 

• With compactMap you can filter nils out of arrays and sequences of optionals. 
• You can also filter nils with an imperative style by using a for loop. 
• You can nest flatMap and compactMap operations for the same results. 
• On collections and sequences, you can combine flatMap with map to combine all their 

values. 

ANSWERS 

1 

Create a function that turns an array into a nested array, make sure to use the mapfunction: 

func makeSubArrays<T>(_ arr: [T]) -> [[T]] { 

    return arr.map { [$0] } 

} 

 

makeSubArrays(["a","b","c"]) // [[a], [b], [c]] 

makeSubArrays([100,50,1]) // [[100], [50], [1]] 

2 

Create a function that transforms the values inside a dictionary for movies. Each rating, from 1 to 5, 
needs to be turned into a human readable format: 

// E.g. 

// A rating of 1.2 is "Very low", a rating of 3 is "Average", a rating 

➥ of 4.5 is "Excellent". 

 

func transformRating<T>(_ dict: [T: Float]) -> [T: String] { 

    return dict.mapValues { (rating) -> String in 

        switch rating { 

        case ..<1: return "Very weak" 

        case ..<2: return "Weak" 

        case ..<3: return "Average" 

        case ..<4: return "Good" 

        case ..<5: return "Excellent" 

        default: fatalError("Unknown rating") 



        } 

    } 

} 

 

let moviesAndRatings: [String : Float] = ["Home Alone 4" : 1.2, 

➥ "Who framed Roger Rabbit?" : 4.6, "Star Wars: The Phantom Menace" 

➥ : 2.2, "The Shawshank Redemption" : 4.9] 

let moviesHumanRadable = transformRating(moviesAndRatings) 

3 

Still looking at the movies and ratings, convert the dictionary into a single description per movie 
with the rating appended to the title: 

let movies: [String : Float] = ["Home Alone 4" : 1.2, "Who framed Roger 

➥ Rabbit?" : 4.6, "Star Wars: The Phantom Menace" : 2.2, "The Shawshank 

➥ Redemption" : 4.9] 

 

func convertRating(_ rating: Float) -> String { 

    switch rating { 

    case ..<1: return "Very weak" 

    case ..<2: return "Weak" 

    case ..<3: return "Average" 

    case ..<4: return "Good" 

    case ..<5: return "Excellent" 

    default: fatalError("Unknown rating") 

    } 

} 

let movieDescriptions = movies.map { (tuple) in 

    return "\(tuple.key) (\(convertRating(tuple.value)))" 

} 

 

print(movieDescriptions) // ["Home Alone 4 (Weak)", "Star Wars: The 

➥ Phantom Menace (Average)", "Who framed Roger Rabbit? (Excellent)", 



➥ "The Shawshank Redemption (Excellent)"] 

4 

Generate an array of the letters “a”, “b”, “c” 10 times. The end result should be [“a”, “b”, “c”, “a”, “b”, 
“c”, “a” ...]. The array should be 30 elements long. See if you can solve this with a map operation on 
some kind of iterator: 

let values = (0..<30).map { (int: Int) -> String in 

    switch int % 3 { 

    case 0: return "a" 

    case 1: return "b" 

    case 2: return "c" 

    default: fatalError("Not allowed to come here") 

    } 

} 

 

print(values) 

5 

Given a contact data dictionary, the following code gets the street and city from the data and cleans 
up the strings. See if you can reduce the boilerplate. Be sure to use mapsomewhere: 

let someStreet = contact["address"]?["street"].map(capitalizedAndTrimmed) 

let someCity = contact["address"]?["city"].map(capitalizedAndTrimmed) 

6 

Create a function that turns an array of integers into an array with a value subtracted and added for 
each integer. For instance, [20, 30, 40] will be turned into [19, 20, 21, 29, 30, 31, 39, 40, 41]. Try to 
solve it with the help of map or flatMap: 

func buildList(_ values: [Int]) -> [Int] { 

    return values.flatMap { 

        [$0 - 1, $0, $0 + 1] 

    } 

} 

7 



Generate values from 0 to 100, with only even numbers. But be sure to skip every factor of 10, such 
as 10, 20, and so on. You would end up with [2, 4, 6, 8, 12, 14, 16, 18, 22 ...]. See if you can solve it 
with the help of map or flatMap: 

let strideSequence = stride(from: 0, through: 30, by: 2).flatMap { int in 

    return int % 10 == 0 ? nil : int 

} 

8 

Create a function that removes all vowels from a string. Again, see if you can solve it 
with map or flatMap: 

func removeVowels(_ string: String) -> String { 

    let characters = string.flatMap { char -> Character? in 

        switch char { 

        case "e", "u", "i", "o", "a": return nil 

        default: return char 

        } 

    } 

 

    return String(characters) 

} 

 

removeVowels("Hi there!") // H thr! 

9 

Given an array of tuples, create an array with tuples of all possible tuple pairs of these values—for 
example, [1, 2] gets turned into [(1, 1), (1, 2), (2, 1), (2, 2)]. Again, see if you can do it with the help 
from map and/or flatMap: 

func pairValues(_ values: [Int]) -> [(Int, Int)] { 

    return values.flatMap { lhs in 

        values.map { rhs -> (Int, Int) in 

            return (lhs, rhs) 

        } 

    } 

} 



10 

Write a function that duplicates each value inside an array—for example, [1, 2, 3] turns into [1, 1, 2, 
2, 3, 3], and [[“a”, “b”],[“c”, “d”]] turns into [[“a”, “b”], [“a”, “b”], [“c”, “d”], [“c”, “d”]]. See if you can 
use map or flatMap for this: 

func double<T>(_ values: [T]) -> [T] { 

    return values.flatMap { [$0, $0] } 

} 

 

print(double([1,2,3])) 

print(double([["a", "b"], ["c", "d"]])) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 11. Asynchronous error handling with Result 

This chapter covers 

• Learning about the problems with Cocoa style error handling 
• Getting an introduction to Apple’s Result type 
• Seeing how Result provides compile-time safety 
• Preventing bugs involving forgotten callbacks 
• Transforming data robustly with map, mapError, and flatMap 
• Focusing on the happy path when handling errors 
• Mixing throwing functions with Result 
• Learning how AnyError makes Result less restrictive 
• How to show intent with the Never type 

You’ve covered a lot of Swift’s error handling mechanics, and you may have noticed in chapter 

6 that you were throwing errors synchronously. This chapter focuses on handling errors from 
asynchronous processes, which is, unfortunately, an entirely different idiom in Swift. 

Asynchronous actions could be some code running in the background while a current method is 
running. For instance, you could perform an asynchronous API call to fetch JSON data from a 
server. When the call finishes, it triggers a callback giving you the data or an error. 

Swift doesn’t yet offer an official solution to asynchronous error handling. According to rumor, 
Swift won’t offer one until the async/await pattern gets introduced somewhere around Swift 
version 7 or 8. Luckily, the community seems to favor asynchronous error handling with 
the Result type (which is reinforced by Apple’s inclusion of an unofficial Resulttype in the Swift 
Package Manager). You may already have worked with the Result type and even implemented it 
in projects. In this chapter, you’ll use one offered by Apple, which may be a bit more advanced 
than most examples found online. To get the most out of Result, you’ll go deep into the rabbit 
hole and look at propagation, so-called monadic error handling, and its related AnyError type. 
The Result type is an enum like Optional, with some differences, so if you’re comfortable 
with Optional, then Result should not be too big of a jump. 

You’ll start off by exploring the Result type’s benefits and how you can add it to your projects. 
You’ll create a networking API, and then keep improving it in the following sections. Then you’ll 
start rewriting the API, but you’ll use the Result type to reap its benefits. 

Next, you’ll see how to propagate asynchronous errors and how you can keep your code clean 
while focusing on the happy path. You do this via the use of map, mapError, and flatMap. 

Sooner or later you’ll use regular throwing functions again to transform your asynchronous 
data. You’ll see how to mix the two error handling idioms by working with throwing functions in 
combination with Result. 

After building a solid API, you’ll look at a unique AnyError type that Apple also offers in 
combination with Result. This type gives you the option to store multiple types of errors inside 



a Result. The benefit is that you can loosen up the error handling strictness without needing to 
look back to Objective-C by using NSError. You’ll try out plenty of convenience functions to keep 
the code concise. 

You’ll then take a look at the Never type to indicate that your code can never fail or succeed. It’s 
a little theoretical but a nice finisher. Consider it a bonus section. 

By the end of the chapter, you’ll feel comfortable applying powerful transformations to your 
asynchronous code while dealing with all the errors that can come with it. You’ll also be able to 
avoid the dreaded pyramid of doom and focus on the happy path. But the significant benefit is 
that your code will be safe and succinct while elegantly handling errors—so let’s begin! 

11.1. WHY USE THE RESULT TYPE? 

 

Join me! 

It’s more educational and fun if you can check out the code and follow along with the chapter. 
You can download the source code at http://mng.bz/5YP1. 

 

Swift’s error handling mechanism doesn’t translate well to asynchronous error handling. At the 
time of writing, Swift’s asynchronous error handling is still not fleshed out. Generally speaking, 
developers tend to use Cocoa’s style of error handling—coming from the good ol’ Objective-C 
days—where a network call returns multiple values. For instance, you could fetch some JSON 
data from an API, and the callback gives you both a value and an error where you’d have to 
check for nil on both of them. 

Unfortunately, the Cocoa Touch way has some problems—which you’ll uncover in a moment—
and the Result type solves them. The Result type, inspired by Rust’s Result type and 
the Either type in Haskell and Scala, is a functional programming idiom that has been taken on 
by the Swift community, making it a non-official standard of error handling. 

At the time of writing, developers repeatedly reimagine the Result type because no official 
standard exists yet. Even though Swift doesn’t officially offer the Result type, the Swift Package 
Manager offers it unofficially. So Apple (indirectly) offers a Result type, which justifies 
implementing it in your codebases. You’ll power up Result with useful custom functionality as 
well. 

11.1.1. Getting your hands on Result 

You can find the Result type inside this chapter’s playgrounds file. But you can also directly 
pluck it from the Swift Package Manager—also known as SwiftPM—on GitHub found 
at http://mng.bz/6GPD. 



You can also retrieve Result via dependencies of the SwiftPM. This chapter doesn’t provide a 
full guide on how to create a Swift command-line tool via the SwiftPM, but these following 
commands should get you started. 

First, run the following to set up a folder and a Swift executable project. Open the command line 
and enter the following: 

mkdir ResultFun 

cd ResultFun 

swift package init --type executable 

Next, open Package.swift and change it to the following: 

// swift-tools-version:4.2 

// The swift-tools- 

     version declares the minimum version of Swift the required to build this 

     package. 

 

import PackageDescription 

 

let package = Package( 

    name: "ResultFun", 

    dependencies: [ 

        .package(url: "https://github.com/apple/swift-package-manager", 

     from: "0.2.1")                                                      ❶ 

     ], 

    targets: [ 

        .target( 

            name: "ResultFun", 

            dependencies: ["Utility"]),                                  ❷ 

     ] 

) 

• ❶ You link to the SwiftPM project from the SwiftPM itself. 
• ❷ You need to depend on the Utility package to get required source files. 

Inside your project folder, open Sources/ResultFun/main.swift and change it to the following: 



import Basic                                                       ❶ 

 

let result = Result<String, AnyError>("It's working, hooray!")     ❷ ❸ 

print(result) 

• ❶ The Basic package is offered by the SwiftPM. 
• ❷ AnyError is covered later in this chapter. 
• ❸ Create a Result type to make sure the import worked correctly. 

Type swift run, and you’ll see Result(It's working, hooray!). Ready? Let’s continue. 

11.1.2. Result is like Optional, with a twist 

Result is a lot like Optional, which is great because if you’re comfortable with optionals 
(see chapter 4), you’ll feel right at home with the Result type. 

Swift’s Result type is an enum with two cases: namely, a success case and a failure case. But 
don’t let that fool you. Optional is also “just” an enum with two cases, but it’s powerful, and so 
is Result. 

In its simplest form, the Result type looks as follows. 

Listing 11.1. The Result type 

public enum Result<Value, ErrorType: Swift.Error> {                 ❶ 

     /// Indicates success with value in the associated object. 

    case success(Value)                                             ❷ 

 

    /// Indicates failure with error inside the associated object. 

    case failure(ErrorType)                                         ❸ 

 

    // ... The rest is left out for later 

} 

• ❶ The Result type requires two generic values. 
• ❷ In the success case, a Value is bound. 
• ❸ The ErrorType generic is bound in the failure case. 

The difference with Optional is that instead of a value being present (some case) or nil 
(nonecase), Result states that it either has a value (success case) or it has an error 
(failure case). In essence, the Result type indicates possible failure instead of nil. In other 
words, with Resultyou can give context for why an operation failed, instead of missing a value. 



Result contains a value for each case, whereas with Optional, only the some case has a value. 
Also the ErrorType generic is constrained to Swift’s Error protocol, which means that 
only Error types can fit inside the failure case of Result. The constraint comes in handy for 
some convenience functions, which you’ll discover in a later section. Note that the success case 
can fit any type because it isn’t constrained. 

You haven’t seen the full Result type, which has plenty of methods, but this code is enough to 
get you started. Soon enough you’ll get to see more methods, such as bridging to and from 
throwing functions and transforming values and errors inside Result in an immutable way. 

Let’s quickly move on to the raison d’être of Result: error handling. 

11.1.3. Understanding the benefits of Result 

To better understand the benefits of the Result type in asynchronous calls, let’s first look at the 
downsides of Cocoa Touch–style asynchronous APIs before you see how Result is an 
improvement. Throughout the chapter, you’ll keep updating this API with improvements. 

Let’s look at URLSession inside the Foundation framework. You’ll use URLSession to perform a 
network call, as shown in listing 11.2, and you’re interested in the data and error of the response. 
The iTunes app isn’t known for its “popular” desktop application, so you’ll create an API for 
searching the iTunes Store without a desktop app. 

To start, you’ll use a hardcoded string to search for “iron man”—which you percent encode 
manually at first—and make use of a function callURL to perform a network call. 

Listing 11.2. Performing a network call 

func callURL(with url: URL, completionHandler: @escaping (Data?, Error?)   ❶ 

➥ -> Void) {                                                              ❷ 

     let task = URLSession.shared.dataTask(with: url, completionHandler: 

➥ { (data, response, error) -> Void in 

        completionHandler(data, error)                                     ❸ 

     }) 

 

    task.resume() 

} 

 

let url = URL(string: "https://itunes.apple.com/search?term=iron%20man")! 

 

callURL(with: url) { (data, error) in                                      ❹ 



     if let error = error {                                                ❺ 

         print(error) 

    } else if let data = data {                                            ❻ 

         let value = String(data: data, encoding: .utf8)                   ❼ 

         print(value) 

    } else { 

        // What goes here?                                                 ❽ 

     } 

} 

• ❶ The @escaping keyword is required in this situation; it indicates that the 
completionHandler closure can potentially be stored and retain memory. 

• ❷ The callURL function has a completionHandler handler that is called when the 
URLSession.dataTask finishes. 

• ❸ You get the data from a URL, and you pass the data and error back to the caller. 
• ❹ You call the callURL function to get the data and error, which are returned at some 

point in time (asynchronously). 
• ❺ As soon as the callback is called, any error is unwrapped. 
• ❻ If there is data, you can work with the response. 
• ❼ You turn the data to String to read the raw value. 
• ❽ Here’s the problem: If both error and data are nil, what do you do then? 

But the problem is that you have to check whether an error and/or the data is nil. Also, what 
happens if both values are nil? The URLSession documentation (http://mng.bz/oVxr) states that 
either data or error has a value; yet in code this isn’t reflected, and you still have to check 
against all values. 

When returning multiple values from an asynchronous call from URLSession, a success and 
failure value are not mutually exclusive. In theory, you could have received both response data 
and a failure error or neither. Or you can have one or the other, but falsely assume that if there 
is no error, the call must have succeeded. Either way, you don’t have a compile-time guarantee 
to enforce safe handling of the returned data. But you’re going to change that and see 
how Result will give you these compile-time guarantees. 

11.1.4. Creating an API using Result 

Let’s get back to the API call. With a Result type, you can enforce at compile time that a 
response is either a success (with a value) or a failure (with an error). As an example, let’s 
update the asynchronous call so that it passes a Result. 

You’re going to introduce a NetworkError and make the callURL function use the Result type. 



Listing 11.3. A response with Result 

enum NetworkError: Error { 

    case fetchFailed(Error)                                                ❶ 

 } 

 

func callURL(with url: URL, completionHandler: @escaping (Result<Data, 

➥ NetworkError>) -> Void) {                                               ❷ 

    let task = URLSession.shared.dataTask(with: url, completionHandler: { 

➥ (data, response, error) -> Void in 

      // ... details will be filled in shortly 

    }) 

 

    task.resume() 

} 

 

let url = URL(string: "https://itunes.apple.com/search?term=iron%20man")! 

 

callURL(with: url) { (result: Result<Data, NetworkError>) in               ❸ 

    switch result { 

    case .success(let data):                                               ❹ 

         let value = String(data: data, encoding: .utf8) 

         print(value) 

    case .failure(let error):                                              ❺ 

         print(error) 

    } 

} 

• ❶ Define a custom error to pass around inside Result. You can store a lower-level error 
from URLSession inside the fetchFailed case to help with troubleshooting. 

• ❷ This time, callURL passes a Result type containing either a Data or NetworkError. 
• ❸ Call callURL to get the Result back via a closure. 
• ❹ Pattern match on the success case to get the value out of a Result. 
• ❺ Pattern match on the failure case to catch any error. 



As you can see, you receive a Result<Data, NetworkError> type when you call callURL(). But 
this time, instead of matching on both error and data, the values are now mutually exclusive. If 
you want the value out of Result, you must handle both cases, giving you compile-time safety in 
return and removing any awkward situations where both data and error can be nil or filled at 
the same time. Also, a big benefit is that you know beforehand that the error inside 
the failure case is of type NetworkError, as opposed to throwing functions where you only know 
the error type at runtime. 

You may also use an error handling system where a data type contains 
an onSuccess or onFailure closure. But I want to emphasize that with Result, if you want the 
value out, you must do something with the error. 

Avoiding error handling 

Granted, you can’t fully enforce handling an error inside of Result if you match on a single case 
of an enum with the if case let statement. Alternatively, you can ignore the error with the 
infamous // TODO handle error comment, but then you’d be consciously going out of your way 
to avoid handling an error. Generally speaking, if you want to get the value out of Result, the 
compiler tells you to handle the error, too. 

As another option, if you’re not interested in the reason for failure, yet still want a value out 
of Result, you can get the value out by using the dematerialize method. This function either 
returns the value or throws the error inside Result. If you use the try? keyword, as shown in the 
following listing, you can instantly convert the Result to an Optional. 

Listing 11.4. Dematerializing Result 

let value: Data? = try? result.dematerialize() 

11.1.5. Bridging from Cocoa Touch to Result 

Moving on, the response from URLSession’s dataTask returns three values: data, response, 
and error. 

Listing 11.5. The URLSession’s response 

URLSession.shared.dataTask(with: url, completionHandler: { (data, response, 

     error) -> Void in ... } 

But if you want to work with Result, you’ll have to convert the values from URLSession’s 
completion handler to a Result yourself. Let’s take this opportunity to flesh out 
the callURLfunction so that you can bridge Cocoa Touch–style error handling to a Result-style 
error handling. 

One way to convert a value and error to Result is to add a custom initializer to Result that 
performs the conversion for you, as shown in the next listing. You can pass this initializer the 
data and error, and then use that to make a new Result. In your callURL function, you can then 
return a Result via the closure. 



Listing 11.6. Converting a response and error into a Result 

public enum Result<Value, ErrorType> { 

      // ... snip 

 

    init(value: Value?, error: ErrorType?) {                              ❶ 

        if let error = error { 

            self = .failure(error) 

        } else if let value = value { 

            self = .success(value) 

        } else { 

            fatalError("Could not create Result")                         ❷ 

        } 

    } 

} 

 

func callURL(with url: URL, completionHandler: @escaping (Result<Data, 

➥ NetworkError>) -> Void) { 

    let task = URLSession.shared.dataTask(with: url, completionHandler: 

➥ { (data, response, error) -> Void in 

         let dataTaskError = error.map { NetworkError.fetchFailed($0)}    ❸ 

         let result = Result<Data, NetworkError>(value: data, error: 

➥ dataTaskError)                                                         ❹ 

         completionHandler(result)                                        ❺ 

    }) 

 

    task.resume() 

} 

• ❶ Create an initializer that accepts an optional value and optional error. 
• ❷ If both a value and error are nil, you end up in a bad state and crash, because you can 

be confident that URLSession returns either a value or error. 
• ❸ Turn the current error into a higher-level NetworkError and pass the lower-level error 

from URLSession to its fetchFailed case to help with troubleshooting. 
• ❹ Create a Result from the data and error values. 



• ❺ Pass the Result back to the completionHandler closure. 

 

If an API doesn’t return a value 

Not all APIs return a value, but you can still use Result with a so-called unit type represented 
by Void or (). You can use Void or () as the value for a Result, such as Result<(), MyError>. 

 

11.2. PROPAGATING RESULT 

Let’s make your API a bit higher-level so that instead of manually creating URLs, you can search 
for items in the iTunes Store by passing strings. Also, instead of dealing with lower-level errors, 
let’s work with a higher-level SearchResultError, which better matches the new search 
abstraction you’re creating. This section is a good opportunity to see how you can propagate and 
transform any Result types. 

The API that you’ll create allows you to enter a search term, and you’ll get JSON results back in 
the shape of [String: Any]. 

Listing 11.7. Calling the search API 

enum SearchResultError: Error { 

     case invalidTerm(String)                                                  ❶ 

     case underlyingError(NetworkError)                                        ❷ 

     case invalidData                                                          ❸ 

 } 

 

search(term: "Iron man") { result: Result<[String: Any], SearchResultError> in ❹ 

     print(result) 

} 

• ❶ The invalidTerm case is used when an URL can’t be created. 
• ❷ The underlyingError case carries the lower-level NetworkError for troubleshooting or 

to help recover from an error. 
• ❸ The invalidData case is for when the raw data could not be parsed to JSON. 
• ❹ Search for a term, and you retrieve a Result via a closure. 

11.2.1. Typealiasing for convenience 

Before creating the search implementation, you create a few typealiases for convenience, which 
come in handy when repeatedly working with the same Result over and over again. 



For instance, if you work with many functions that return a Result<Value, 
SearchResultError>, you can define a typealias for the Result containing a SearchResultError. 
This typealias is to make sure that Result requires only a single generic instead of two by 
pinning the error generic. 

Listing 11.8. Creating a typealias 

typealias SearchResult<Value> = Result<Value, SearchResultError>     ❶ 

 

let searchResult = SearchResult("Tony Stark")                        ❷ 

print(searchResult) // success("Tony Stark") 

• ❶ A generic typealias is defined that pins the Error generic to SearchResultError. 
• ❷ Result offers a convenience initializer to create a Result from a value, if it can deduce 

the error. 

 

Partial typealias 

The typealias still has a Value generic for Result, which means that the defined SearchResult is 
pinned to SearchResultError, but its value could be anything, such as a [String: Any], Int, and 
so on. 

 

You can create this SearchResult by only passing it a value. But its true type is Result<Value, 
SearchResultError>. 

Another typealias you can introduce is for the JSON type, namely a dictionary of type [String: 
Any]. This second typealias helps you to make your code more readable, so that you work 
with SearchResult<JSON> in place of the verbose SearchResult<[String: Any]> type. 

Listing 11.9. The JSON typealias 

typealias JSON = [String: Any] 

With these two typealiases in place, you’ll be working with the SearchResult<JSON> type. 

11.2.2. The search function 

The new search function makes use of the callURL function, but it performs two extra tasks: it 
parses the data to JSON, and it translates the lower-level NetworkError to a SearchResultError, 
which makes the function a bit more high-level to use, as shown in the following listing. 

Listing 11.10. The search function implementation 

func search(term: String, completionHandler: @escaping (SearchResult<JSON>) 

     -> Void) {                                                            ❶ 



     let encodedString = term.addingPercentEncoding(withAllowedCharacters: 

     .urlHostAllowed)                                                      ❷ 

     let path = encodedString.map { "https://itunes.apple.com/search?term=" 

     + $0 }                                                                ❸ 

 

    guard let url = path.flatMap(URL.init) else {                          ❹ 

         completionHandler(SearchResult(.invalidTerm(term)))               ❺ 

         return 

    } 

 

    callURL(with: url) { result in                                         ❻ 

        switch result { 

        case .success(let data):                                           ❼ 

             if 

                let json = try? JSONSerialization.jsonObject(with: data, 

     options: []), 

                let jsonDictionary = json as? JSON { 

                let result = SearchResult<JSON>(jsonDictionary) 

                completionHandler(result)                                  ❽ 

             } else { 

                let result = SearchResult<JSON>(.invalidData) 

                completionHandler(result)                                  ❾ 

             } 

        case .failure(let error): 

             let result = SearchResult<JSON>(.underlyingError(error))      ❿ 

             completionHandler(result) 

        } 

    } 

} 

• ❶ The function makes use of the JSON and SearchResult typealiases. 
• ❷ The function transforms the search term into a URL-encoded format. Note that 

encodedString is an optional. 



• ❸ Append the encoded string to the iTunes API path. You use map for this to delay 
unwrapping. 

• ❹ Transform the complete path into a URL via a flatMap. The guard performs the 
unwrapping action. 

• ❺ You make sure that an URL is created; on failure, you short-circuit the function by 
calling the closure early. 

• ❻ The original callURL is called to get raw data. 
• ❼ On the success case, the function tries to convert the data to a JSON format [String: 

Any]. 
• ❽ If the data successfully converts to JSON, you can pass it to the completion handler. 
• ❾ If conversion to JSON format fails, you pass a SearchResultError, wrapped in a 

Result. You can omit SearchResultError because Swift can infer the error type for you. 
• ❿ On failure of callURL, you translate the lower-level NetworkError to a higher-level 

SearchResultError, passing the original NetworkError to a SearchResultError for 
troubleshooting. 

Thanks to the search function, you end up with a higher-level function to search the iTunes API. 
But, it’s still a little bit clunky because you’re manually creating multiple result types and calling 
the completionHandler in multiple places. It’s quite the boilerplate, and you could possibly 
forget to call the completionHandler in larger functions. Let’s clean that up with map, mapError, 
and flatMap so that you’ll transform and propagate a single Result type and you’ll only need to 
call completionHandler once. 

11.3. TRANSFORMING VALUES INSIDE RESULT 

Similar to how you can weave optionals through an application and map over them (which delays 
the unwrapping), you can also weave a Result through your functions and methods while 
programming the happy path of your application. In essence, after you obtained a Result, you 
can pass it around, transform it, and only switch on it when you’d like to extract its value or 
handle its error. 

One way to transform a Result is via map, similar to mapping over Optional. Remember how you 
could map over an optional and transform its inner value if present? Same with Result: you 
transform its success value if present. Via mapping, in this case, you’d turn Result<Data, 
NetworkError> into Result<JSON, NetworkError>. 

Related to how map ignores nil values on optionals, map also ignores errors on Result (see figure 

11.1). 



Figure 11.1. Mapping over a Result 

 

As a special addition, you can also map over an error instead of a value inside Result. 
Having mapError is convenient because you translate a NetworkError inside Result to 
a SearchResultError. 

With mapError, you’d therefore turn Result<JSON, NetworkError> into Result <JSON, 
SearchResultError>, which matches the type you pass to the completionHandler (see figure 

11.2). 

Figure 11.2. Mapping over an error inside Result 

 

With the power of both map and mapError combined, you can turn a Result<Data, 
NetworkError>into a Result<JSON, SearchResultError>, aka SearchResult<JSON>, without 
having to switch on a result once (see figure 11.3). The listing 11.11 gives an example of mapping 
over an error and value. 



Figure 11.3. Mapping over both the value and error 

 

Applying mapError and map help you remove some boilerplate from earlier in the searchfunction. 

Listing 11.11. Mapping over an error and value 

func search(term: String, completionHandler: @escaping (SearchResult<JSON>) 

➥ -> Void) { 

    // ... snip 

 

    callURL(with: url) { result in 

 

        let convertedResult: SearchResult<JSON> = 

            result                                                  ❶ 

                 // Transform Data to JSON 

                .map { (data: Data) -> JSON in                      ❷ 

                     guard 

                        let json = try? JSONSerialization.jsonObject(with: 

➥ data, options: []), 

                        let jsonDictionary = json as? JSON else { 

                            return [:]                              ❸ 

                     } 

 

                    return jsonDictionary 

                } 

                // Transform NetworkError to SearchResultError 

                .mapError { (networkError: NetworkError) -> 

➥ SearchResultError in                                             ❹ 



                     return SearchResultError.underlyingError(networkError) 

➥ // Handle error from lower layer 

        } 

 

        completionHandler(convertedResult)                          ❺ 

     } 

} 

• ❶ This result is of type Result<Data, NetworkError>. 
• ❷ On success, you map the data to a JSON. 
• ❸ On failure, you now end up with an empty JSON instead of an error, which you’ll solve 

with flatMap in a moment. 
• ❹ You map the error so that the error type matches SearchResultError. 
• ❺ You pass the SearchResult<JSON> type to the completionHandler after all is done. 

Now, instead of manually unwrapping result types and passing them to 
the completionHandlerin multiple flows, you transform the Result to a SearchResult, and pass 
it to the completionHandler only once. Just like with optionals, you delay any error handling 
until you want to get the value out. 

Unfortunately, mapError is not part of the Result type offered by Apple. You have to define the 
method yourself (see the upcoming exercise), but you can also look inside the relevant 
playgrounds file. 

As the next step for improvement, let’s improve failure, because currently you’re returning an 
empty dictionary instead of throwing an error. You’ll improve this with flatMap. 

11.3.1. Exercise 

1 

By looking at the map function on Result, see if you can create mapError. 

11.3.2. flatMapping over Result 

One missing piece from your search function is that when the data can’t be converted to JSON 
format, you’d need to obtain an error. You could throw, but throwing is somewhat awkward 
because you would be mixing Swift’s throwing idiom with the Result idiom. You’ll take a look at 
that in the next section. 

To stay in the Result way of thinking, let’s return another Result from inside map. But you may 
have guessed that returning a Result from a mapping operation leaves you with a nested Result, 
such as SearchResult<SearchResult<JSON>>. You can make use of flatMap—that is defined 
on Result—to get rid of one extra layer of nesting. 



Exactly like how you can use flatMap to turn Optional<Optional<JSON>> into Optional<JSON>, 
you can also turn SearchResult<SearchResult<JSON>> into SearchResult<JSON> (see figure 11.4). 

Figure 11.4. How flatMap works on Result 

 

By replacing map with flatMap when parsing Data to JSON, you can return an error Result from 
inside the flatMap operation when parsing fails, as shown in listing 11.12. 

Listing 11.12. flatMaping over Result 

func search(term: String, completionHandler: @escaping (SearchResult<JSON>) 

➥ -> Void) { 

      // ... snip 

 

    callURL(with: url) { result in 

 

        let convertedResult: SearchResult<JSON> = 

            result 

                // Transform error type to SearchResultError 

                .mapError { (networkError: NetworkError) -> 

➥ SearchResultError in                                                    ❶ 

                     return SearchResultError.underlyingError(networkError) 



                } 

                // Parse Data to JSON, or return SearchResultError 

                .flatMap { (data: Data) -> SearchResult<JSON> in           ❷ 

                     guard 

                        let json = try? JSONSerialization.jsonObject(with: 

➥ data, options: []), 

                        let jsonDictionary = json as? JSON else { 

                            return SearchResult(.invalidData)              ❸ 

                     } 

 

                     return SearchResult(jsonDictionary) 

        } 

 

        completionHandler(convertedResult) 

    } 

} 

• ❶ mapError is moved higher up the chain, so that the error type is SearchResultError 
before you flatMap over the value. This helps the flatMap so that it can also return 
SearchResultError instead of NetworkError. 

• ❷ The map operation is replaced by flatMap. 
• ❸ Now you can return a Result from inside a flatMap operation. 

 

flatMap doesn’t change the error type 

A flatMap operation on Result doesn’t change an error type from one to another. For instance, 
you can’t turn Result<Value, SearchResultError> to a Result<Value, NetworkError> via 
a flatMapoperation. This is something to keep in mind and why mapError is moved up the chain. 

 

11.3.3. Exercises 

2 

Using the techniques you’ve learned, try to connect to a real API. See if you can implement the 
FourSquare API (http://mng.bz/nxVg) and obtain the venues JSON. You can register to receive free 
developer credentials. 



Be sure to use Result to return any venues that you can get from the API. 

To allow for asynchronous calls inside playgrounds, add the following: 

import PlaygroundSupport 

PlaygroundPage.current.needsIndefiniteExecution = true 

3 

See if you can use map, mapError, and even flatMap to transform the result so that you call the 
completion handler only once. 

4 

The server can return an error, even if the call succeeds. For example, if you pass a latitude and 
longitude of 0, you get an errorType and errorDetail value in the meta key in the JSON, like so: 

{"meta":{"code":400,"errorType":"param_error","errorDetail":"Must 

➥ provide parameters (ll and radius) or (sw and ne) or (near and 

➥ radius)","requestId":"5a9c09ba9fb6b70cfe3f2e12"},"response":{}} 

Try to make sure that this error is reflected in the Result type. 

11.4. MIXING RESULT WITH THROWING FUNCTIONS 

Earlier, you avoided throwing an error inside a Result’s mapping or flatmapping operation so 
that you could focus on one idiom at a time. 

Let’s up the ante. Once you start working with returned data, you’ll most likely be using 
synchronous “regular” functions for processing data, such as parsing or storing data or 
validating values. In other words, you’ll be applying throwing functions to a value inside Result. 
In essence, you’re mixing two idioms of error handling. 

11.4.1. From throwing to a Result type 

Previously, you were parsing data to JSON from inside the flatMap operation. To mimic a real-
world scenario, let’s rewrite the flatMap operation so that this time you’ll be 
converting Data to JSON using a throwing function called parseData. To make it more 
realistic, parseData comes with an error called ParsingError, which deviates from 
the SearchResultError you’ve been using. 

Listing 11.13. The parseData function 

enum ParsingError: Error {                               ❶ 

     case couldNotParseJSON 

} 



 

func parseData(_ data: Data) throws -> JSON {            ❷ 

    guard 

        let json = try? JSONSerialization.jsonObject(with: data, options: []), 

        let jsonDictionary = json as? JSON else { 

            throw ParsingError.couldNotParseJSON 

    } 

    return jsonDictionary 

} 

• ❶ A specific error used for parsing data 
• ❷ The parseData function turns Data into JSON and can throw a ParsingError. 

You can turn this throwing function into a Result via an initializer on Result. The initializer 
accepts a closure that may throw; then the Result initializer catches any errors thrown from the 
closure and creates a Result out of it. This Result can be successful or failing (if an error has 
been thrown). 

It works as follows: you pass a throwing function to Result and, in this case, have it convert 
to Result<JSON, SearchResultError>. 

Listing 11.14. Converting a throwing function to Result 

let searchResult: Result<JSON, SearchResultError> = Result(try parseData(data)) 

You’re almost there, but one thing is missing. You try to convert parseData to a Result with 
a SearchResultError via an initializer. Yet, parseData doesn’t throw a SearchResultError. You 
can look in the body of parseData to confirm. But Swift only knows at runtime what 
error parseDatathrows. 

If during conversion any error slips out that is not SearchResultError, the initializer 
on Resultthrows the error from parseData, which means that you need to catch that error, too. 
Moreover, this is why the initializer on Result is throwing, because it throws any errors that it 
can’t convert. This awkwardness is a bit of the pain you have when turning a runtime-known 
error into a compile-time-known error. 

To complete the conversion, you need to add a do catch statement; you remain in the do block 
on success or when Result receives a SearchResultError. But as soon as parseData throws 
a ParsingError, as shown in the following example, you end up in the catch block, which is an 
opportunity to fall back to a default error. 

Listing 11.15. Passing a throwing function to Result 

do { 



  let searchResult: Result<JSON, SearchResultError> = Result(try 

parseData(data))                                                       ❶ 

 } catch { 

  print(error) // ParsingError.couldNotParseData 

  let searchResult: Result<JSON, SearchResultError> = 

     Result(.invalidData(data))                                        ❷ 

 } 

• ❶ You call parseData(); if it succeeds you have a searchResult. 
• ❷ If conversion fails, you end up in the catch statement, where you default back to 

returning a SearchResult with default error. 

11.4.2. Converting a throwing function inside flatMap 

Now that you know how to convert a throwing function to Result, you can start mixing these in 
with your pipeline via flatMap. 

Inside the flatMap method from earlier, create a Result from the throwing parseData function. 

Listing 11.16. Creating a Result from parseData 

func search(term: String, completionHandler: @escaping (SearchResult<JSON>) 

➥ -> Void) { 

    // ... snip 

 

    callURL(with: url) { result in 

        let convertedResult: SearchResult<JSON> = 

            result 

                .mapError { SearchResultError.underlyingError($0) } 

                .flatMap { (data: Data) -> SearchResult<JSON> in             ❶ 

                     do { 

                        // Catch if the parseData method throws a ParsingError. 

                        let searchResult: SearchResultError<JSON> = 

➥ Result(try parseData(data))                                               ❷ 

                         return searchResult 

                    } catch { 

                        // You ignore any errors that parseData throws and 



➥ revert to SearchResultError. 

                        return SearchResult(.invalidData(data))              ❸ 

                     } 

        } 

 

        completionHandler(convertedResult) 

    } 

} 

• ❶ You’re entering a flatMap operation. 
• ❷ The parseData function is passed to the initializer. 
• ❸ If the parseData conversion fails, you end up in the catch statement and default back 

to SearchResultError.invalidData. 

11.4.3. Weaving errors through a pipeline 

By composing Result with functions via mapping and flatmapping, you’re performing so-
called monadic error handling. Don’t let the term scare you—flatMap is based on monad laws 
from functional programming. The beauty is that you can focus on the happy path of 
transforming your data. 

As with optionals, flatMap isn’t called if Result doesn’t contain a value. You can work with the 
real value (whether Result is erroneous or not) while carrying an error context and propagate 
the Result higher—all the way to where some code can pattern match on it, such as the caller of 
a function. 

As an example, if you were to continue the data transformations, you could end up with multiple 
chained operations. In this pipeline, map would always keep you on the happy path, and 
with flatMap you could short-circuit and move to either the happy path or error path. 

For instance, let’s say you want to add more steps, such as validating data, filtering it, and 
storing it inside a database (perhaps a cache). You would have multiple steps 
where flatMapcould take you to an error path. In contrast, map always keeps you on the happy 
path (see figure 11.5). 



Figure 11.5. Happy path programming 

 

For the sake of brevity, you aren’t going to implement all these methods, but the point is that 
you can build a sophisticated pipeline, as shown in the following listing, weave the error through 
it, and only call the completion handler once. 

Listing 11.17. A longer pipeline 

func search(term: String, completionHandler: @escaping (SearchResult<JSON>) 

     -> Void) { 

      // ... snip 

 

    callURL(with: url) { result in 

 

        let convertedResult: SearchResult<JSON> = 

            result 

                // Transform error type to SearchResultError 

                .mapError { (networkError: NetworkError) -> 



     SearchResultError in 

                  // code omitted 

                } 

                // Parse Data to JSON, or return SearchResultError 

                .flatMap { (data: Data) -> SearchResult<JSON> in 

                  // code omitted 

                } 

                // validate Data 

                .flatMap { (json: JSON) -> SearchResult<JSON> in 

                  // code omitted 

                } 

                // filter values 

                .map { (json: JSON) -> [JSON] in 

                  // code omitted 

                } 

                // Save to database 

                .flatMap { (mediaItems: [JSON]) -> SearchResult<JSON> in 

                  // code omitted 

                  database.store(mediaItems) 

        } 

 

        completionHandler(convertedResult) 

    } 

} 

 

Short-circuiting a chaining operation 

Note that map and flatMap are ignored if Result contains an error. If any flatMap operation 
returns a Result containing an error, any subsequent flatMap and map operations are ignored as 
well. 

With flatMap you can short-circuit operations, just like with flatMap on Optional. 

 



11.4.4. Finishing up 

It may not look like much, but your API packs quite the punch. It handles network errors and 
parsing errors, and it’s easy to read and to extend. And still you avoid having an ugly pyramid of 
doom, and your code focuses on the happy path. On top of that, calling search means that you 
only need to switch on the Result. 

Receiving a simple Result enum looks a little underwhelming after all that work. But clean APIs 
tend to appear simple from time to time. 

11.4.5. Exercise 

5 

Given the following throwing functions, see if you can use them to transform Result in your 
FourSquare API: 

func parseData(_ data: Data) throws -> JSON { 

    guard 

        let json = try? JSONSerialization.jsonObject(with: data, 

  options: []), 

        let jsonDictionary = json as? JSON else { 

            throw FourSquareError.couldNotParseData 

    } 

    return jsonDictionary 

} 

 

func validateResponse(json: JSON) throws -> JSON { 

    if 

        let meta = json["meta"] as? JSON, 

        let errorType = meta["errorType"] as? String, 

        let errorDetail = meta["errorDetail"] as? String { 

        throw FourSquareError.serverError(errorType: errorType, 

  errorDetail: errorDetail) 

    } 

 

    return json 

} 



 

func extractVenues(json:  JSON) throws -> [JSON] { 

    guard 

        let response = json["response"] as? JSON, 

        let venues = response["venues"] as? [JSON] 

        else { 

            throw FourSquareError.couldNotParseData 

    } 

    return venues 

} 

11.5. MULTIPLE ERRORS INSIDE OF RESULT 

Working with Result may feel constricting at times when multiple actions can fail. Previously, 
you were translating each failure into a Result holding a single error type—SearchResultErrorin 
the examples. Translating errors to a single error type is a good practice to follow. But it may get 
burdensome moving forward if you’re dealing with many different errors, especially when you’re 
beginning a new project and you need to glue together all kinds of throwing methods. 
Translating every error to the correct type may slow you down. 

Not to worry; if you want to move fast and keep errors known at runtime, you can use a generic 
type called AnyError—also offered by the Swift Package Manager. 

11.5.1. Introducing AnyError 

AnyError represents any error that could be inside Result, allowing you to mix and match all 
types of errors in the same Result type. With AnyError, you avoid having to figure out each error 
at compile time. 

AnyError wraps around an Error and stores the error inside; then a Result can have AnyError as 
its error type, such as Result<String, AnyError>. You can manually create an AnyError, but you 
can also create a Result of type Result<String, AnyError> in multiple ways. 

Notice how Result has two initializers specialized to AnyError: one converts a regular error 
to AnyError, the other accepts a throwing function in which the error converts to AnyError. 

Listing 11.18. Creating a Result with AnyError 

enum PaymentError: Error { 

    case amountTooLow 

    case insufficientFunds 

} 



 

let error: AnyError = AnyError(PaymentError.amountTooLow)                  ❶ 

 

let result: Result<String, AnyError> = Result(PaymentError.amountTooLow)   ❷ 

 

let otherResult: Result<String, AnyError> = Result(anyError: { () throws -> 

     String in                                                             ❸ 

     throw PaymentError.insufficientFunds 

}) 

• ❶ You can pass an error to the AnyError type yourself. 
• ❷ You can also pass an error to Result directly, which automatically converts an error to 

AnyError because the Result is of type Result<String, AnyError>. 
• ❸ You can even pass throwing functions to Result; because AnyError represents all 

possible errors, the conversion always succeeds. 

Functions returning a Result with AnyError are similar to a throwing function where you only 
know the error type at runtime. 

Having AnyError makes sense when you’re developing an API and don’t want to focus too much 
on the proper errors yet. Imagine that you’re creating a function to transfer money, 
called processPayment. You can return different types of errors in each step, which relieves you 
of the burden of translating different errors to one specific type. Notice how you also get a 
special mapAny method. 

Listing 11.19. Returning different errors 

func processPayment(fromAccount: Account, toAccount: Account, amountInCents: 

➥ Int, completion: @escaping (Result<String, AnyError>) -> Void) { 

 

    guard amountInCents > 0 else { 

         completion(Result(PaymentError.amountTooLow))         ❶ 

         return 

    } 

 

    guard isValid(toAccount) && isValid(fromAccount) else { 

         completion(Result(AccountError.invalidAccount))       ❷ 

         return 



    } 

 

    // Process payment 

 

    moneyAPI.transfer(amountInCents, from: fromAccount, to: toAccount) { 

➥ (result: Result<Data, AnyError>) in 

         let response = result.mapAny(parseResponse)           ❸ 

         completion(response) 

    } 

 

} 

• ❶ Return a PaymentError here. 
• ❷ But you can return a different error here, of type AccountError. 
• ❸ Utilize a special mapAny method. 

An interesting thing to note is that if Result has AnyError as its type, you gain a 
special mapAnymethod for free. The mapAny method works similarly to map, except that it can 
accept any throwing function. If a function inside mapAny throws, mapAny automatically wraps 
this error inside an AnyError. This technique allows you to pass throwing functions 
to map without requiring you to catch any errors. 

Also, a big difference with flatMap is that you could not change the ErrorType from within the 
operations. With flatMap, you would have to create and return a new Result manually. 
With mapAny, you can pass a regular throwing function and let mapAny handle the catching and 
wrapping into AnyError. Applying mapAny allows you to map over the value and even change the 
error inside Result. 

 

How to choose between map or mapAny 

The difference between map and mapAny is that map works on all Result types, but it doesn’t catch 
errors from throwing functions. In contrast, mapAny works on both throwing and nonthrowing 
functions, but it’s available only on Result types containing AnyError. Try to use map when you 
can; it communicates that a function cannot throw. Also, if you ever refactor AnyError back to a 
regular Error inside Result, then map is still available. 

 

Matching with AnyError 

To get the error out when dealing with AnyError, you can use the underlyingError property 
of AnyError to match on the actual error inside of it. 



Listing 11.20. Matching on AnyError 

processPayment(fromAccount: from, toAccount: to, amountInCents: 100) { 

➥ (result: Result<String, AnyError>) in 

    switch result { 

    case .success(let value): print(value) 

    case .failure(let error) where error.underlyingError is AccountError: 

        print("Account error") 

    case .failure(let error): 

        print(error) 

    } 

} 

AnyError is a useful placeholder to let you handle “proper” error handling at a later time. When 
time permits and your code solidifies, you can start replacing the general errors with stricter 
error translations for extra compile-time benefits. 

Working with AnyError gives you a lot more flexibility. But you suffer somewhat from code 
erosion because you lose a big benefit of Result, which is being able to see which errors you can 
expect before even running your code. You may also consider NSError instead 
of AnyErrorbecause NSError is also flexible. But then you’ll be looking back to Objective-C, and 
you also lose the benefits of using Swift errors, such as strong pattern matching on enum-type 
errors. Before going the NSError route, you may want to reconsider and see if you get to keep 
using Swift errors in combination with AnyError. 

11.6. IMPOSSIBLE FAILURE AND RESULT 

Sometimes you may need to conform to a protocol that wants you to use a Result type. But the 
type that implements the protocol may never fail. Let’s see how you can improve your code in 
this scenario with a unique tidbit. This section is a bit esoteric and theoretical, but it proves 
useful when you run into a similar situation. 

11.6.1. When a protocol defines a Result 

Imagine that you have a Service protocol representing a type that loads some data for you. 
This Service protocol determines that data is to be loaded asynchronously, and it makes use of 
a Result. 

You have multiple types of errors and data that can be loaded, so Service defines them as 
associated types. 

Listing 11.21. The Service protocol 

protocol Service { 



     associatedtype Value                                           ❶ 

     associatedtype Err: Error                                      ❷ 

     func load(complete: @escaping (Result<Value, Err>) -> Void)    ❸ 

 } 

• ❶ The Value that the Service loads 
• ❷ This is the Error the Service can give. Note how your associated type is called Err, and 

it’s constrained to the Error protocol. 
• ❸ The load method returns a Result containing a Value and Err, passed by a completion 

closure. 

Now you want to implement this Service by a type called SubscriptionsLoader, which loads a 
customer’s subscriptions for magazines. This is shown in listing 11.22. Note that loading 
subscriptions always succeeds, which you can guarantee because they are loaded from memory. 
But the Service type declares that you use Result, which needs an error, so you do need to 
declare what error a SubscriptionsLoader throws. SubscriptionsLoader doesn’t have errors to 
throw. To remedy this problem, let’s create an empty enum—conforming to Error—
called BogusError so that SubscriptionsLoader can conform to Service protocol. Notice 
that BogusError has no cases, meaning that nothing can actually create this enum. 

Listing 11.22. Implementing the Service protocol 

struct Subscription {                                                      ❶ 

   // ... details omitted 

} 

 

enum BogusError: Error {}                                                  ❷ 

 

final class SubscriptionsLoader: Service { 

    func load(complete: @escaping (Result<[Subscription], BogusError>) -> 

     Void) {                                                               ❸ 

         // ... load data. Always succeeds 

        let subscriptions = [Subscription(), Subscription()] 

        complete(Result(subscriptions)) 

    } 

} 

• ❶ The Subscription is the type of data retrieved from SubscriptionsLoader. 
• ❷ You create a dummy error type so that you can define it on the Result type, in order to 

please Service. 



• ❸ The load method now returns a Result returning an array of subscriptions. Notice how 
you defined the uninhabitable BogusError type to please the protocol. 

You made an empty enum that conforms to Error merely to please the compiler. But 
because BogusError has no cases, you can’t instantiate it, and Swift knows this. Once you 
call load on SubscriptionsLoader and retrieve the Result, you can match only on 
the success case, and Swift is smart enough to understand that you can never have a failure 
case. To emphasize, a BogusError can never be created, so you don’t need to match on this, as 
the following example shows. 

Listing 11.23. Matching only on the success case 

let subscriptionsLoader = SubscriptionsLoader() 

subscriptionsLoader.load { (result: Result<[Subscription], BogusError>) in 

    switch result { 

    case .success(let subscriptions): print(subscriptions) 

        // You don't need .failure                             ❶ 

    } 

} 

• ❶ Swift lets you get away with this. Normally you’d get a compiler error! 

This technique gives you compile-time elimination of cases to match on and can clean up your 
APIs and show clearer intent. But an official solution—the Never type—lets you get rid 
of BogusError. 

The Never type 

To please the compiler, you made a bogus error type that can’t be instantiated. Actually, such a 
type already exists in Swift and is called the Never type. 

The Never type is a so-called bottom type; it tells the compiler that a certain code path can’t be 
reached. You may also find this mechanism in other programming languages, such as 
the Nothing type in Scala, or when a function in Rust returns an exclamation mark (!). 

Never is a hidden type used by Swift to indicate impossible paths. For example, when a function 
calls a fatalError, it can return a Never type, indicating that returning something is an 
impossible path. 

Listing 11.24. From the Swift source 

func crashAndBurn() -> Never {                              ❶ 

     fatalError("Something very, very bad happened") 

} 



• ❶ The Never type is returned, but the code guarantees it never returns. 

If you look inside the Swift source, you can see that Never is nothing but an empty enum. 

Listing 11.25. The Never type 

public enum Never {} 

In your situation, you can replace your BogusError with Never and get the same result. You do, 
however, need to make sure that Never implements Error. 

Listing 11.26. Implementing Never 

extension Never: Error {}                                                   ❶ 

 

final class SubscriptionsLoader: Service { 

    func load(complete: @escaping (Result<[Subscription], Never>) -> Void) {❷ 

         // ... load data. Always succeeds 

        let subscriptions = [Subscription(), Subscription()] 

        complete(Result(subscriptions)) 

    } 

} 

• ❶ You extend Never to make it conform to the Error protocol. 
• ❷ You now use the Never type to indicate that your SubscriptionsLoader never fails. 

 

Note 

From Swift 5 on, Never conforms to some protocols, like Error. 

 

Notice that Never can also indicate that a service never succeeds. For instance, you can put 
the Never as the success case of a Result. 

11.7. CLOSING THOUGHTS 

I hope that you can see the benefits of error handling with Result. You’ve seen how Result can 
give you compile-time insights into which error to expect. Along the way you took 
your mapand flatMap knowledge and wrote code that pretended to be error-free, yet was carrying 
an error-context. Now you know how to apply monadic error handling. 



Here’s a controversial thought: you can use the Result type for all the error handling in your 
project. You get more compile-time benefits, but at the price of more difficult programming. 
Error handling is more rigid with Result, but your code will be safer and stricter as a reward. 
And if you want to speed up your work a little, you can always create a Result type 
containing AnyError and take it from there. 

SUMMARY 

• Using the default way of URLSession’s data tasks is an error-prone way of error handling. 
• Result is offered by the Swift Package Manager and is a good way to handle 

asynchronous error handling. 
• Result has two generics and is a lot like Optional, but has a context of why something 

failed. 
• Result is a compile-time safe way of error handling, and you can see which error to 

expect before running a program. 
• By using map and flatMap and mapError, you can cleanly chain transformations of your 

data while carrying an error context. 
• Throwing functions can be converted to a Result via a special throwing initializer. This 

initializer allows you to mix and match two error throwing idioms. 
• You can postpone strict error handling with the use of AnyError. 
• With AnyError, multiple errors can live inside Result. 
• If you’re working with many types of errors, working with AnyError can be faster, at the 

expense of not knowing which errors to expect at compile time. 
• AnyError can be a good alternative to NSError so that you reap the benefits of Swift error 

types. 
• You can use the Never type to indicate that a Result can’t have a failure case, or 

a successcase. 

ANSWERS 

1 

By looking at the map function on Result, see if you can create mapError: 

extension Result { 

 

    public func mapError<E: Error>(_ transform: (ErrorType) throws 

➥ -> E) rethrows -> Result<Value, E> { 

        switch self { 

        case .success(let value): 

            return Result<Value, E>(value) 

        case .failure(let error): 

            return Result<Value, E>(try transform(error)) 

        } 



    } 

 

} 

The following part is the answer to exercises 2 and 3: 

2 

Using the techniques you’ve learned, try to connect to a real API. See if you can implement the 
FourSquare API (http://mng.bz/nxVg) and obtain the venues JSON. You can register to receive free 
developer credentials. 

3 

See if you can use map, mapError, and even flatMap to transform the result, so that you call the 
completion handler only once. 

4 

The server can return an error, even if the call succeeds. For example, if you pass a latitude and 
longitude of 0, you get an errorType and errorDetail value in the meta key in the JSON. Try to 
make sure that this error is reflected in the Result type: 

// You need an error 

enum FourSquareError: Error { 

    case couldNotCreateURL 

    case networkError(Error) 

    case serverError(errorType: String, errorDetail: String) 

    case couldNotParseData 

} 

 

let clientId = ENTER_YOUR_ID 

let clientSecret = ENTER_YOUR_SECRET 

let apiVersion = "20180403" 

 

// A helper function to create a URL 

func createURL(endpoint: String, parameters: [String: String]) -> URL? { 

    let baseURL = "https://api.foursquare.com/v2/" 

 



    // You convert the parameters dictionary in an array of URLQueryItems 

    var queryItems = parameters.map { pair -> URLQueryItem in 

        return URLQueryItem(name: pair.key, value: pair.value) 

    } 

 

    // Add default parameters to query 

    queryItems.append(URLQueryItem(name: "v", value: apiVersion)) 

    queryItems.append(URLQueryItem(name: "client_id", value: clientId)) 

    queryItems.append(URLQueryItem(name: "client_secret", value: 

  clientSecret)) 

 

    var components = URLComponents(string: baseURL + endpoint) 

    components?.queryItems = queryItems 

    return components?.url 

} 

 

 // The getvenues call 

func getVenues(latitude: Double, longitude: Double, completion: 

➥ @escaping (Result<[JSON], FourSquareError>) -> Void) { 

    let parameters = [ 

        "ll": "\(latitude),\(longitude)", 

        "intent": "browse", 

        "radius": "250" 

    ] 

 

    guard let url = createURL(endpoint: "venues/search", parameters: 

  parameters) 

        else { 

            completion(Result(.couldNotCreateURL)) 

            return 

    } 



 

    let task = URLSession.shared.dataTask(with: url) { data, response, 

  error in 

        let translatedError = error.map { FourSquareError.networkError( 

  $0) } 

        // Convert optional data and optional to Result 

        let result = Result<Data, FourSquareError>(value: data, error: 

  translatedError) 

            // Parsing Data to JSON 

            .flatMap { data in 

                guard 

                    let rawJson = try? 

  JSONSerialization.jsonObject(with: data, options: []), 

                    let json = rawJson as? JSON 

                    else { 

                        return Result(.couldNotParseData) 

                } 

                return Result(json) 

            } 

            // Check for server errors 

            .flatMap { (json: JSON) -> Result<JSON, FourSquareError> in 

                if 

                    let meta = json["meta"] as? JSON, 

                    let errorType = meta["errorType"] as? String, 

                    let errorDetail = meta["errorDetail"] as? String { 

                    return Result(.serverError(errorType: errorType, 

   errorDetail: errorDetail)) 

                } 

 

                return Result(json) 

            } 

            // Extract venues 



            .flatMap { (json: JSON) - 

  > Result<[JSON], FourSquareError> in 

                guard 

                    let response = json["response"] as? JSON, 

                    let venues = response["venues"] as? [JSON] 

                    else { 

                        return Result(.couldNotParseData) 

                } 

                return Result(venues) 

        } 

 

        completion(result) 

    } 

 

    task.resume() 

} 

 

// Times square 

let latitude = 40.758896 

let longitude = -73.985130 

 

// Calling getVenues 

 

getVenues(latitude: latitude, longitude: longitude) { (result: 

  Result<[JSON], FourSquareError>) in 

    switch result { 

    case .success(let categories): print(categories) 

    case .failure(let error): print(error) 

    } 

} 

5 



Given the throwing functions, see if you can use them to transform Result in your FourSquare API: 

enum FourSquareError: Error { 

    // ... snip 

    case unexpectedError(Error) // Adding new error for when conversion 

  to Result fails 

} 

 

func getVenues(latitude: Double, longitude: Double, completion: 

➥ @escaping (Result<[JSON], FourSquareError>) -> Void) { 

    // ... snip 

    let result = Result<Data, FourSquareError>(value: data, error: 

  translatedError) 

            // Parsing Data to JSON 

            .flatMap { data in 

                do { 

                    return Result(try parseData(data)) 

                } catch { 

                    return Result(.unexpectedError(error)) 

                } 

            } 

            // Check for server errors 

            .flatMap { (json: JSON) -> Result<JSON, FourSquareError> in 

                do { 

                    return Result(try validateResponse(json: json)) 

                } catch { 

                    return Result(.unexpectedError(error)) 

                } 

            } 

            // Extract venues 

            .flatMap { (json: JSON) -> Result<[JSON], FourSquareError> in 

                do { 



                    return Result(try extractVenues(json: json)) 

                } catch { 

                    return Result(.unexpectedError(error)) 

                } 

        } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 12. Protocol extensions 

This chapter covers 

• Flexibly modeling data with protocols instead of subclasses 
• Adding default behavior with protocol extensions 
• Extending regular types with protocols 
• Working with protocol inheritance and default implementations 
• Applying protocol composition for highly flexible code 
• Showing how Swift prioritizes method calls 
• Extending types containing associated types 
• Extending vital protocols, such as Sequence and Collection 

Previous chapters have shown how to work with protocols, associated types, and generics. To 
improve your abstract protocol game, this chapter sheds some light on protocol extensions. To 
some, being able to extend a protocol is the most significant feature of Swift, as you’ll see later in 
this chapter. 

Besides declaring a method signature, with protocols you can supply full implementations. 
Extending a protocol means that you can offer default implementations to a protocol so that 
types don’t have to implement certain methods. The benefits are profound. You can elegantly 
bypass rigid subclassing structures and end up with highly reusable, flexible code in your 
applications. 

In its purest form, a protocol extension sounds simple. Offer a default implementation and be 
on your merry way. Moreover, protocol extensions can be easy to grasp if you stay at the surface. 
But as you progress through this chapter, you’ll discover many different use cases, pitfalls, best 
practices, and tricks related to correctly extending protocols. 

You’ll see that it takes more than merely getting your code to compile. You also have the 
problem that code can be too decoupled, and understanding which methods you’re calling can 
be hard; even more so when you mix protocols with protocol inheritance while overriding 
methods. You’ll see how protocols are not always easy to comprehend. But when applied 
correctly, protocols enable you to create highly flexible code. At first, you’re going to see how 
protocols enable you to model your data horizontally instead of vertically, such as with 
subclassing. You’ll also take a look at how protocol extensions work and how you can override 
them. 

Then you’ll model a mailing API in two ways and consider their trade-offs. First, you’ll use 
protocol inheritance to deliver a default implementation that is more specialized. Then, you’ll 
model the same API via a signature feature called protocol composition. You’ll see the benefits 
and downsides of both approaches side by side. 

Then, it’s time for some theory for a better understanding of which methods are called when. 
You’ll look at overriding methods, inheriting from protocols, and the calling priorities of Swift. 
It’s a little theoretical if you’re into that. 



As a next step, you’ll see how you can extend types in multiple directions. You’ll discover the 
trade-offs between extending a type to conform to a protocol, and to extend a protocol 
constrained to a type. It’s a subtle but important distinction. 

Going further down the rabbit hole, you’ll see how to extend types with associated types. Then 
you’ll find out how to extend the Collection protocol and how Swift prioritizes methods that 
rely on a constrained associated type. 

As the finishing touch, you get to go lower-level and see how Swift extends Sequence. You’ll 
apply this knowledge to create highly reusable extensions. You’re going to create 
a take(while:) method that is the opposite of drop(while:). You’ll also create 
the inspectmethod, which helps you to debug iterators. A brief look at higher-order functions 
comes next, along with the esoteric ContiguousArray to write these lower-level extensions. 

After you have finished this chapter, you may catch yourself writing more highly decoupled 
code, so let’s get started. 

12.1. CLASS INHERITANCE VS. PROTOCOL INHERITANCE 

In the world of object-oriented programming, the typical way to achieve inheritance was via 
subclassing. Subclassing is a legit way to achieve polymorphism and offer sane defaults for 
subclasses. But as you’ve seen throughout this book, inheritance can be a rigid form of modeling 
data. As one alternative to class-based inheritance, Swift offers protocol-inheritance, branded 
as protocol-oriented programming, which wowed many developers watching Apple’s World 
Wide Developers Conference (WWDC) presentations. Via the power of protocol extensions, you 
can slap a method with a complete implementation on (existing) types without the need for 
subclassing hierarchies, while offering high reusability. 

In this section, you’re going to see how modeling works horizontally rather than vertically when 
you make use of protocols. 

12.1.1. Modeling data horizontally instead of vertically 

 

Join me! 

It’s more educational and fun if you can check out the code and follow along with the chapter. 
You can download the source code at http://mng.bz/vOvJ. 

 

You can think of subclassing as a vertical way to model data. You have a superclass, and you can 
subclass it and override methods and behavior to add new functionality, and then you can go 
even lower and subclass again. Imagine that you’re creating a RequestBuilder, which 
creates URLRequest types for a network call. A subclass could expand functionality by adding 
default headers, and another subclass can encrypt the data inside the request. Via subclassing, 
you end up with a type that can build encrypted network requests for you (see figure 12.1). 



Figure 12.1. Class-based inheritance 

 

Protocols, on the other hand, can be imagined as a horizontal way of modeling data. You take a 
type and add extra functionality to it by making it adhere to protocols, like adding building 
blocks to your structure. Instead of creating a superclass, you create separate protocols with a 
default implementation for building requests and headers and for encryption (see figure 12.2). 

Figure 12.2. Implementing protocols 

 

The concept of decoupling functionality from a type gives you a ton of flexibility and code reuse. 
You are not constrained to a single superclass anymore. As long as a type conforms to 
a RequestBuilder, it gets its default functionality for free. Any type could be a RequestBuilder—
an enum, a struct, a class, a subclass—it doesn’t matter. 

12.1.2. Creating a protocol extension 

Creating a protocol extension is painless. Let’s continue with the RequestBuilder example. First, 
you define a protocol, and then you extend the protocol where you can add a default 
implementation for each type that conforms to this protocol. 

Listing 12.1. A protocol extension 

protocol RequestBuilder { 

     var baseURL: URL { get }                               ❶ 

     func makeRequest(path: String) -> URLRequest           ❷ 

 } 

 

extension RequestBuilder {                                  ❸ 



     func makeRequest(path: String) -> URLRequest {         ❹ 

         let url = baseURL.appendingPathComponent(path)     ❺ 

         var request = URLRequest(url: url) 

         request.httpShouldHandleCookies = false 

         request.timeoutInterval = 30 

         return request 

    } 

} 

• ❶ Define a RequestBuilder protocol with a baseURL property. 
• ❷ Also define the makeRequest method. A method on a protocol definition can’t have a 

body. 
• ❸ Extend RequestBuilder, because methods inside extensions can have bodies. 
• ❹ Offer a default implementation of the makeRequest method. 
• ❺ The extension makes use of the baseURL property. 

 

Note 

A default implementation on a protocol is always added via an extension. 

 

To get the implementation of makeRequest for free, you merely have to conform to 
the RequestBuilder protocol. You conform to RequestBuilder by making sure to store 
the baseURLproperty. For instance, imagine having an app for a startup that lists thrilling bike 
trips. The application needs to make requests to retrieve data. For that to happen, 
the BikeRequestBuilder type conforms to the RequestBuilder protocol, and you make sure to 
implement the baseURL property. As a result, it gets makeRequest for free. 

Listing 12.2. Implementing a protocol with default implementation 

struct BikeRequestBuilder: RequestBuilder {                               ❶ 

     let baseURL: URL = URL(string: "https://www.biketriptracker.com")!   ❶ 

 } 

 

let bikeRequestBuilder = BikeRequestBuilder() 

let request = bikeRequestBuilder.makeRequest(path: "/trips/all")          ❷ 

print(request) // https://www.biketriptracker.com/trips/all               ❸ 

• ❶ A BikeRequestBuilder type conforms to the RequestBuilder protocol and implements 
the baseURL property requirement. 



• ❷ The BikeRequestBuilder type gets the makeRequest method for free because of the 
default implementation. 

• ❸ Confirm that a successful request has been made. 

12.1.3. Multiple extensions 

A type is free to conform to multiple protocols. Imagine having a BikeAPI that both builds 
requests and handles the response. It can conform to two protocols: RequestBuilder from 
before, and a new one, ResponseHandler, as in the following example. BikeAPI is now free to 
conform to both protocols and gain multiple methods for free. 

Listing 12.3. ResponseHandler 

enum ResponseError: Error { 

    case invalidResponse 

} 

protocol ResponseHandler {                              ❶ 

     func validate(response: URLResponse) throws 

} 

 

extension ResponseHandler { 

    func validate(response: URLResponse) throws { 

        guard let httpresponse = response as? HTTPURLResponse else { 

            throw ResponseError.invalidResponse 

        } 

    } 

} 

 

class BikeAPI: RequestBuilder, ResponseHandler {        ❷ 

     let baseURL: URL = URL(string: "https://www.biketriptracker.com")! 

} 

• ❶ Introduce another protocol. 
• ❷ The BikeAPI class can adhere to two protocols. 



12.2. PROTOCOL INHERITANCE VS. PROTOCOL COMPOSITION 

You’ve seen before how you can offer default implementations via a protocol extension. You can 
model data with extensions several other ways, namely via protocol inheritance and protocol 
composition. 

You’re going to build a hypothetical framework that can send emails via SMTP. You’ll focus on 
the API and omit the implementation. You’ll start by taking the protocol inheritance approach, 
and then you’ll create a more flexible approach via the use of composing protocols. This way, 
you can see the process and trade-offs in both approaches. 

12.2.1. Builder a mailer 

First, as shown in the following listing, you define an Email type, which uses a MailAddressstruct 
to define its email properties. A MailAddress shows more intent than simply using a String. You 
also define the Mailer protocol with a default implementation via a protocol extension 
(implementation omitted). 

Listing 12.4. The Email and Mailer types 

struct MailAddress {                      ❶ 

     let value: String 

} 

 

struct Email {                            ❷ 

    let subject: String 

    let body: String 

    let to: [MailAddress] 

    let from: MailAddress 

} 

 

protocol Mailer { 

    func send(email: Email)               ❸ 

 } 

 

extension Mailer { 

    func send(email: Email) {             ❹ 

        // Omitted: Connect to server 



        // Omitted: Submit email 

        print("Email is sent!") 

    } 

} 

• ❶ MailAddress represents an email address. 
• ❷ Email contains the values to send an email. 
• ❸ The Mailer protocol can send emails. 
• ❹ By default, the Mailer protocol will be able to send an email (implementation 

omitted). 

You’re off to a good start. Now, imagine that you want to add a default implementation for 
a Mailer that also validates the Email before sending. But not all mailers validate the email. 
Perhaps a mailer is based on UNIX sendmail or a different service that doesn’t validate an email 
per sé. Not all mailers validate, so you can’t assume that Mailer validates an email by default. 

12.2.2. Protocol inheritance 

If you do want to offer a default implementation that allows for sending validated emails, you 
can take at least two approaches. You’ll start with a protocol inheritance approach and then 
switch to a composition approach to see both pros and cons. 

With protocol inheritance, you can expand on a protocol to add extra requirements. You do this 
by making a subprotocol that inherits from a superprotocol, similar to how Hashableinherits 
from Equatable. 

As a next step, you start by creating a ValidatingMailer that inherits 
from Mailer. ValidatingMailer overrides the send(email:) method by making it 
throwing. ValidatingMaileralso introduces a new method called validate(email:) (see figure 

12.3). 

Figure 12.3. ValidatingMailer inheriting from Mailer 

 



To make life easier for implementers of ValidatingMailer, you extend ValidatingMailer and 
offer a default send(email:) method, which uses the validate(email:) method before sending. 
Again, to focus on the API, implementations are omitted, as shown in this listing. 

Listing 12.5. ValidatingMailer 

protocol ValidatingMailer: Mailer { 

    func send(email: Email) throws // Send is now throwing    ❶ 

    func validate(email: Email) throws 

} 

 

extension ValidatingMailer { 

    func send(email: Email) throws { 

        try validate(email: email)                            ❷ 

        // Connect to server 

        // Submit email 

        print("Email validated and sent.") 

    } 

 

    func validate(email: Email) throws { 

        // Check email address, and whether subject is missing. 

    } 

} 

• ❶ Redeclare send(email:) so that you can make it a throwing method. 
• ❷ The send(email:) method uses the validate(email:) method to validate an email before 

sending. 

Now, SMTPClient implements ValidatingMailer and automatically get’s a 
validated send(email:)method. 

Listing 12.6. SMTPClient 

struct SMTPClient: ValidatingMailer { 

    // Implementation omitted. 

} 

 

let client = SMTPClient() 



try? client.send(email: Email(subject: "Learn Swift", 

                              body: "Lorem ipsum", 

                              to: [MailAdress(value: "john@appleseed.com")], 

                              from: MailAdress(value: "stranger@somewhere.com")) 

A downside of protocol inheritance is that you don’t separate functionality and semantics. For 
instance, because of protocol inheritance, anything that validates emails automatically has to be 
a Mailer. You can loosen this restriction by applying protocol composition—let’s do that now. 

12.2.3. The composition approach 

For the composition approach, you keep the Mailer protocol. But instead of 
a ValidatingMailerthat inherits from Mailer, you offer a standalone MailValidator protocol 
that doesn’t inherit from anything. The MailValidator protocol also offers a default 
implementation via an extension, which you omit for brevity as shown here. 

Listing 12.7. The MailValidator protocol 

protocol MailValidator { 

    func validate(email: Email) throws 

} 

 

extension MailValidator { 

    func validate(email: Email) throws { 

        // Omitted: Check email address, and whether subject is missing. 

    } 

} 

Now you can compose. You make SMTPClient conform to both separate protocols. Mailer does 
not know about MailValidator, and vice versa (see figure 12.4). 

Figure 12.4. SMTPClient implementing Mailer and MailValidator 

 

With the two protocols in place, you can create an extension that only works on a protocol 
intersection. Extending on an intersection means that types adhering to 
both Mailer and MailValidator get a specific implementation or even bonus method 
implementations. Inside the intersection, send(email:) combines functionality from 
both Mailer and MailValidator (see figure 12.5). 



Figure 12.5. Intersecting extension 

 

To create an extension with an intersection, you extend one protocol that conforms to the other 
via the Self keyword. 

Listing 12.8. Intersecting Mailer and MailValidator 

extension MailValidator where Self: Mailer {       ❶ 

 

    func send(email: Email) throws {               ❷ 

        try validate(email: email) 

        // Connect to server 

        // Submit email 

        print("Email validated and sent.") 

    } 

 

} 

• ❶ You can define an intersection via a Self clause. 
• ❷ You can offer a default implementation when both the send(email:) and 

validate(email:) methods are implemented. Notice how send(email:) is throwing here. 

 



Note 

Whether you extend MailValidator or Mailer doesn’t matter—either direction is fine. 

 

Another benefit of this approach is that you can come up with new methods such 
as send(email:, at:), which allows for a mail to be validated and queued. You validate the 
email so that the queue has the confidence that the mail can be sent. You can define new 
methods on a protocol intersection. 

Listing 12.9. Adding bonus methods 

extension MailValidator where Self: Mailer { 

    // ... snip 

 

    func send(email: Email, at: Date) throws {       ❶ 

         try validate(email: email) 

        // Connect to server 

        // Add email to delayed queue. 

        print("Email validated and stored.") 

    } 

} 

• ❶ In the intersection, you can introduce new methods. 

12.2.4. Unlocking the powers of an intersection 

Now, you’re going to make SMTPClient adhere to both the Mailer and MailValidator protocols, 
which unlocks the code inside the protocol intersection. In other words, SMTPClient gets the 
validating send(email:) and send(email:, at:) methods for free. 

Listing 12.10. Implementing two protocols to get a free method 

struct SMTPClient: Mailer, MailValidator {}                            ❶ 

 

let client = SMTPClient() 

let email = Email(subject: "Learn Swift", 

      body: "Lorem ipsum", 

      to: [MailAdress(value: "john@appleseed.com")], 

      from: MailAdress(value: "stranger@somewhere.com")) 



 

try? client.send(email: email) // Email validated and sent.            ❷ 

try? client.send(email: email, at: Date(timeIntervalSinceNow: 3600)) 

➥ // Email validated and queued.                                      ❸ 

• ❶ SMTPClient conforms to both protocols, which unlocks the intersection methods. 
• ❷ The intersection send(email:) method is used. 
• ❸ A bonus method is unlocked for use, too. 

Another way to see the benefits is via a generic function, as in listing 12.11. When you constrain 
to both protocols, the intersection implementation becomes available. Notice how you define the 
generic T and constrain it to both protocols. By doing so, the delayed send(email:, at:) method 
becomes available. 

Listing 12.11. Generic with an intersection 

func submitEmail<T>(sender: T, email: Email) where T: Mailer, T: MailValidator { 

    try? sender.send(email: email, at: Date(timeIntervalSinceNow: 3600)) 

} 

Taking a composition approach decouples your code significantly. In fact, it may even 
become too decoupled. Implementers may not know precisely which method implementation is 
used under the hood; they may also be unable to decipher when bonus methods are unlocked. 
Another downside is that a type such as SMTPClient has to implement multiple protocols. But 
the benefits are profound. When used carefully, you can have elegant, highly reusable, highly 
decoupled code by using compositions. 

A second way to think of intersecting protocols is to offer free benefits, under the guise of 
“Because you conform to both A and B, you might as well offer C for free.” 

With protocol inheritance, SMTPClient has to implement only a single protocol, and it’s more 
rigid. Knowing what an implementer gets is also a little more straightforward. When you’re 
working with protocols, trying to find the best abstraction can be a tough balancing act. 

12.2.5. Exercise 

1 

Create an extension that enables the explode() function, but only on types that conform to 
the Mentos and Coke protocols: 

protocol Mentos {} 

protocol Coke {} 

 

func mix<T>(concoction: T) where T: Mentos, T: Coke { 



//    concoction.explode() // make this work, but only if T conforms 

➥ to both protocols, not just one 

} 

12.3. OVERRIDING PRIORITIES 

When implementing protocols, you need to follow a few rules. As a palate cleanser, you’ll move 
away from Mailer from the previous section and get a bit more conceptual. 

12.3.1. Overriding a default implementation 

To see how protocol inheritance works, imagine having a protocol Tree with a method 
called grow(). This protocol offers a default implementation via a protocol extension. 
Meanwhile, an Oak struct implements Tree and also implements grow() (see figure 12.6). 

Figure 12.6. Overriding a protocol 

 

Swift picks the most specific method it can find. If a type implements the same method as the 
one on a protocol extension, Swift ignores the protocol extension’s method. In other words, 
Swift calls the grow() on Oak, and not the one on Tree. This allows you to override methods that 
are defined on a protocol extension. 

Keep in mind that a protocol extension can’t override methods from actual types, such as trying 
to give an existing type a new implementation via a protocol. Also, at the time of writing, no 
special syntax exists that lets you know if a type overrides a protocol method. When a type—such 
as a class, struct, or enum—implements a protocol and implements the same method as the 
protocol extension, seeing which method Swift is calling under the hood is opaque. 

12.3.2. Overriding with protocol inheritance 

To make things a bit more challenging, you’ll introduce protocol inheritance. This time you’ll 
introduce another protocol called Plant. Tree inherits from Plant. Oak still 
implements Tree. Plant also offers a default implementation of grow(), which Tree overrides. 

Swift again calls the most specialized implementation of grow() (see figure 12.7). Swift 
calls grow() on Oak, if available; otherwise, it calls grow() on Tree, if available. If all else fails, 



Swift calls grow() on Plant. If nothing offers a grow() implementation, the compiler throws an 
error. 

Figure 12.7. Overrides with protocol inheritance 

 

You can see the overrides happening with a code example. In the next listing, you’re going to 
define a growPlant function; notice how it accepts a Plant, not a Tree or Oak. Swift picks the 
most specialized implementation either way. 

Listing 12.12. Overrides in action 

func growPlant<P: Plant>(_ plant: P) {             ❶ 

     plant.grow() 

} 

 

protocol Plant { 

    func grow() 

} 

 

extension Plant {                                  ❷ 

     func grow() { 

        print("Growing a plant") 

    } 

} 

protocol Tree: Plant {}                            ❸ 

 

extension Tree { 

    func grow() {                                  ❸ 



         print("Growing a tree") 

    } 

} 

 

struct Oak: Tree { 

    func grow() {                                  ❹ 

         print("The mighty oak is growing") 

    } 

} 

 

struct CherryTree: Tree {}                         ❺ 

 

struct KiwiPlant: Plant {}                         ❻ 

 

growPlant(Oak()) // The mighty oak is growing 

growPlant(CherryTree()) // Growing a tree          ❼ 

growPlant(KiwiPlant()) // Growing a plant 

• ❶ A growPlant function is defined. Notice how it accepts Plant. 
• ❷ The Plant protocol offers a default method for grow. 
• ❸ The Tree protocol inherits from Plant and offers its own implementation for grow(). 
• ❹ The Oak struct overrides the grow() method by implementing its own version. 
• ❺ The CherryTree struct does not override grow(). 
• ❻ The KiwiPlant also does not override grow(). 
• ❼ Despite growPlant accepting Plant types, Swift calls the most specialized version of 

the methods. 

With protocol inheritance, an interesting detail is that you get overriding behavior, similar to 
classes and subclasses. With protocols this behavior is available to not only classes but also to 
structs and enums. 

12.3.3. Exercise 

2 

What is the output of the following code? 

protocol Transaction { 

    var description: String { get } 



} 

extension Transaction { 

    var description: String { return "Transaction" } 

} 

 

protocol RefundableTransaction: Transaction {} 

 

extension RefundableTransaction { 

    var description: String { return "RefundableTransaction" } 

} 

 

struct CreditcardTransaction: RefundableTransaction {} 

func printDescription(transaction: Transaction) { 

    print(transaction.description) 

} 

 

printDescription(transaction: CreditcardTransaction()) 

  

12.4. EXTENDING IN TWO DIRECTIONS 

Generally speaking, the urge to subclass becomes less needed with these protocol extensions, 
with a few exceptions. Subclassing can be a fair approach from time to time, such as when 
bridging to Objective-C and subclassing NSObject, or dealing with specific frameworks 
like UIKit, which offer views and subviews amongst other things. Even though this book 
normally doesn’t venture into frameworks, let’s make a small exception for a real practical use 
case related to extensions, UI, and subclassing. 

A typical use of protocols in combination with subclasses involves UIKit’s UIViewController, 
which represents a (piece of) screen that is rendered on an iPhone, iPad, or 
AppleTV. UIViewController is meant to be subclassed and makes for a good use case in this 
section. 

12.4.1. Opting in to extensions 

Imagine that you have an AnalyticsProtocol protocol that helps track analytic events for user 
metrics. You could implement AnalyticsProtocol on UIViewController, which offers a default 



implementation. This adds the functionality of AnalyticsProtocol to all UIViewController types 
and its subclasses. 

But assuming that all viewcontrollers need to conform to this protocol is probably not safe. If 
you’re delivering a framework with this extension, a developer implementing this framework 
gets this extension automatically, whether they like it or not. Even worse, the extension from a 
framework could clash with an existing extension in an application if they share the same name! 

One way to avoid these issues is to flip the extension. Flipping the extension means that instead 
of extending a UIViewController with a protocol, you can extend a protocol constrained to 
a UIViewController, as follows. 

Listing 12.13. Flipping extension directions 

protocol AnalyticsProtocol { 

    func track(event: String, parameters: [String: Any]) 

} 

 

// Not like this: 

extension UIViewController: AnalyticsProtocol { 

    func track(event: String, parameters: [String: Any]) { // ... snip } 

} 

 

// But as follows: 

extension AnalyticsProtocol where Self: UIViewController { 

    func track(event: String, parameters: [String: Any]) { // ... snip } 

} 

Now if a UIViewController explicitly adheres to this protocol, it opts in for the benefits of the 
protocol—for example, a NewsViewController can explicitly adhere to AnalyticsProtocol and 
reap its free methods. This way, you prevent all viewcontrollers from adhering to a protocol by 
default. 

Listing 12.14. Opting in for benefits 

extension NewsViewController: UIViewController, AnalyticsProtocol { 

    // ... snip 

 

    override func viewDidAppear(_ animated: Bool) { 

      super.viewDidAppear(animated) 



      track("News.appear", params: [:]) 

    } 

} 

This technique becomes even more critical when you’re offering a framework. Extensions are 
not namespaced, so be careful with adding public extensions inside a framework, because 
implementers may not want their classes to adhere to a protocol by default. 

12.4.2. Exercise 

3 

What is the difference between these two extensions? 

extension UIViewController: MyProtocol {} 

 

extension MyProtocol where Self: UIViewController {} 

12.5. EXTENDING WITH ASSOCIATED TYPES 

Let’s see how Swift prioritizes method calls on protocols, especially protocols with associated 
types. 

You start by looking at Array. It implements the Collection protocol, which has an associated 
type of Element, representing an element inside a collection. If you extend Array with a special 
function—such as unique(), which removes all duplicates—you can do so by referring 
to Element as its inner value. 

Listing 12.15. Applying unique () to Array 

[3, 2, 1, 1, 2, 3].unique() // [3, 2, 1] 

Let’s extend Array. To be able to check each element for equality, you need to make sure that 
an Element is Equatable, which you can express via a constraint. 
Constraining Element to Equatable means that unique() is only available on arrays 
with Equatable elements. 

Listing 12.16. Extending Array 

extension Array where Element: Equatable {         ❶ 

     func unique() -> [Element] {                  ❷ 

        var uniqueValues = [Element]() 

        for element in self { 

            if !uniqueValues.contains(element) {   ❸ 

                 uniqueValues.append(element) 



            } 

        } 

        return uniqueValues 

    } 

} 

• ❶ You need to constrain Element so that you can compare elements. 
• ❷ The unique method returns an array without duplicate elements. 
• ❸ You can pass Equatable elements to the contains method. 

Extending Array is a good start. But it probably makes more sense to give this extension to many 
types of collections, not only Array but perhaps also the values of a dictionary or even strings. 
You can go a bit lower-level and decide to extend the Collection protocol instead, as shown 
here, so that multiple types can benefit from this method. Shortly after, you’ll discover a 
shortcoming of this approach. 

Listing 12.17. Extending Collection protocol 

// This time we're extending Collection instead of Array 

extension Collection where Element: Equatable { 

    func unique() -> [Element] { 

        var uniqueValues = [Element]() 

        for element in self { 

            if !uniqueValues.contains(element) { 

                uniqueValues.append(element) 

            } 

        } 

        return uniqueValues 

    } 

} 

Now, every type adhering to the Collection protocol inherits the unique() method. Let’s try it 
out. 

Listing 12.18. Testing out the unique() method 

// Array still has unique() 

[3, 2, 1, 1, 2, 3].unique() // [3, 2, 1] 

 

// Strings can be unique() now, too 



"aaaaaaabcdef".unique() // ["a", "b", "c", "d", "e", "f"] 

 

// Or a Dictionary's values 

let uniqueValues = [1: "Waffle", 

 2: "Banana", 

 3: "Pancake", 

 4: "Pancake", 

 5: "Pancake" 

].values.unique() 

 

print(uniqueValues) // ["Banana", "Pancake", "Waffle"] 

Extending Collection instead of Array benefits more than one type, which is the benefit of 
extending a protocol versus a concrete type. 

12.5.1. A specialized extension 

One thing remains. The unique() method is not very performant. For every value inside the 
collection, you need to check if this value already exists in a new unique array, which means that 
for each element, you need to loop through (possibly) the whole uniqueValues array. You would 
have more control if Element were Hashable instead. Then you could check for uniqueness via a 
hash value via a Set, which is much faster than an array lookup because a Setdoesn’t keep its 
elements in a specific order. 

To support lookups via a Set, you create another unique() extension on Collection where its 
elements are Hashable. Hashable is a subprotocol of Equatable, which means that Swift picks an 
extension with Hashable over an extension with Equatable, if possible (see figure 12.8). For 
instance, if an array has Hashable types inside it, Swift uses the fast unique() method; but if 
elements are Equatable instead, Swift uses the slower version. 

Figure 12.8. Specializing an associated type 

 



In your second extension—also called unique()—you can put each element in a Set for a speed 
improvement. 

Listing 12.19. Extending Collection with a Hashable constraint on Element 

// This extension is an addition, it is NOT replacing the other extension. 

extension Collection where Element: Hashable {                             ❶ 

     func unique() -> [Element] { 

        var set = Set<Element>()                                           ❷ 

        var uniqueValues = [Element]() 

        for element in self { 

            if !set.contains(element) {                                    ❸ 

                uniqueValues.append(element) 

                set.insert(element) 

            } 

        } 

        return uniqueValues 

    } 

} 

• ❶ You extend Collection only for elements that are Hashable. 
• ❷ You create a Set for very fast (unordered) lookup of elements. 
• ❸ You check if an element already exists inside the set; if it doesn’t, you can add it to the 

uniqueValues array. 

Now you have two extensions on Collection. One constrains Element to Equatable, and another 
constrains Element to Hashable. Swift picks the most specialized one. 

12.5.2. A wart in the extension 

Picking an abstraction can be tricky from time to time. In fact, there’s a wart in this API. At the 
moment, Set by its nature is unique already, and yet it gains the unique method 
because Set conforms to Collection. You can put a bandage on this wart and on Set override 
the method for a quick conversion to Array. 

Listing 12.20. unique on Set 

extension Set { 

    func unique() -> [Element] { 

        return Array(self) 

    } 



} 

The unique method on Set does not add real value, but at least you have a quick way to convert 
a Set to Array now. The point is, finding the balance between extending the lowest common 
denominator without weakening the API of concrete types is a bit of an art. 

Warts aside, what’s interesting is that Swift again picks the most concrete implementation. Swift 
picks Equatable as the lowest denominator, Hashable if elements are Hashable, and with Set, 
Swift uses use its concrete implementation, ignoring any same-name method extensions 
on Collection. 

12.6. EXTENDING WITH CONCRETE CONSTRAINTS 

You can also constrain associated types to a concrete type instead of constraining to a protocol. 
As an example, let’s say you have an Article struct with a viewCount property, which tracks the 
number of times that people viewed an Article. 

Listing 12.21. An Article struct 

struct Article: Hashable { 

    let viewCount: Int 

} 

You can extend Collection to get the total number of view counts inside a collection. But this 
time you constrain an Element to Article, as shown in the following. Since you’re constraining 
to a concrete type, you can use the == operator. 

Listing 12.22. Extending Collection 

// Not like this 

extension Collection where Element: Article { ... } 

 

// But like this 

extension Collection where Element == Article { 

    var totalViewCount: Int { 

        var count = 0 

        for article in self { 

            count += article.viewCount 

        } 

        return count 

    } 



} 

With this constraint in place, you can get the total view count whenever you have a collection 
with articles in it, whether that’s an Array, a Set, or something else altogether. 

Listing 12.23. Extension in action 

let articleOne = Article(viewCount: 30) 

let articleTwo = Article(viewCount: 200) 

 

// Getting the total count on an Array. 

let articlesArray = [articleOne, articleTwo] 

articlesArray.totalViewCount // 230 

 

// Getting the total count on a Set. 

let articlesSet: Set<Article> = [articleOne, articleTwo] 

articlesSet.totalViewCount // 230 

Whenever you make an extension, deciding how low-level you need to go can be tricky. A 
concrete extension on Array is enough for 80% of the cases, in which case you don’t need to go 
to Collection. If you notice that you need the same implementation on other types, you may 
want to strap in and go lower-level where you’ll extend Collection. In doing so, you’ll be 
working with more abstract types. If you need to go even lower-level, you can end up 
at Sequence, so that you can offer extensions to even more types. To see how you can go super 
low-level, let’s try to extend Sequence to offer useful extensions for many types. 

12.7. EXTENDING SEQUENCE 

A very interesting protocol to extend is Sequence. By extending Sequence you can power up 
many types at once, such as Set, Array, Dictionary, your collections—you name it. 

When you’re comfortable with Sequence, it lowers the barrier for creating your extensions for 
methods you’d like to see. You can wait for Swift updates, but if you’re a little impatient or have 
special requirements, you can create your own. Extending Sequence as opposed to a concrete 
type—such as Array—means that you can power up many types at once. 

Swift loves borrowing concepts from the Rust programming language; the two languages are 
quite similar in many respects. How about you shamelessly do the same and add some useful 
methods to the Sequence vocabulary? Extending Sequence won’t merely be a programming 
exercise, because these methods are helpful utilities you can use in your projects. 



12.7.1. Looking under the hood of filter 

Before extending Sequence, let’s take a closer look at a few interesting things regarding how 
Swift does it. First, filter accepts a function. This function is the closure you pass to filter. 

Listing 12.24. A small filter method 

let moreThanOne = [1,2,3].filter { (int: Int) in 

  int > 1 

} 

print(moreThanOne) // [2, 3] 

Looking at the signature of filter, you can see that it accepts a function, which makes filtera 
higher-order function. A higher-order function is a ten-dollar concept for a one-dollar name, 
indicating that a function can accept or return another function. This function is the closure you 
pass to filter. 

Also note that filter has the rethrows keyword as showing in listing 12.25. If a function or 
method rethrows, any errors thrown from a closure are propagated back to the caller. Having a 
method with rethrows is similar to regular error propagation, except rethrows is reserved for 
higher-order functions, such as filter. The benefit of this is that filter accepts both 
nonthrowing and throwing functions; it’s the caller that has to handle any errors. 

Listing 12.25. Looking at filter’s signature 

public func filter( 

    _ isIncluded: (Element) throws -> Bool    ❶ 

   ) rethrows -> [Element] {                  ❷ 

     // ... snip 

} 

• ❶ The filter method accepts another function called isIncluded, which represents the 
closure you pass. 

• ❷ The rethrows keyword is defined on filter. 

Now, let’s look at the body. You can see that filter creates a results array, which is of the 
obscure type called ContiguousArray—more on that in a minute—and iterates through each 
element via the low-level, no-overhead makeIterator method. For each element, filter calls 
the isIncluded method, which is the closure you pass to filter. If isIncluded—also known as 
the passed closure—returns true, then filter appends the element to the results array. 

Finally, filter converts the ContiguousArray back to a regular Array. 

Listing 12.26. Looking at filter 

public func filter( 



    _ isIncluded: (Element) throws -> Bool       ❶ 

   ) rethrows -> [Element] { 

    var result = ContiguousArray<Element>()      ❷ 

 

    var iterator = self.makeIterator()           ❸ 

 

    while let element = iterator.next() {        ❸ 

       if try isIncluded(element) {              ❹ 

         result.append(element)                  ❺ 

       } 

    } 

 

    return Array(result)                         ❻ 

 } 

• ❶ The filter method accepts another function to check against each element. 
• ❷ Inside the body, the filtered results are stored in a result of type ContiguousArray. 
• ❸ The method uses the low-level iterating mechanism without overhead. 
• ❹ Each element is matched against the isIncluded function. 
• ❺ If isIncluded returns true for an element, the element is added to result. 
• ❻ The result with filtered elements is converted to a regular Array and returned. 

 

Note 

In the Swift source, the filter method forwards the call to another _filter method which does 
the work. For example purposes, we kept referring to the method as filter. 

 

ContiguousArray 

Seeing ContiguousArray there instead of Array may feel out of place. The filter method 
uses ContiguousArray for extra performance, which makes sense for such a low-level, highly 
reused method. 

ContiguousArray can potentially deliver performance benefits when containing classes or an 
Objective-C protocol; otherwise, the performance is the same as a regular Array. 
But ContiguousArray does not bridge to Objective-C. 



When filter did its work, it returns a regular Array. Regular arrays can bridge to NSArray if 
needed for Objective-C, whereas ContiguousArray cannot. So using ContiguousArray can help 
squeeze out the last drops of performance, which matters on low-level methods such as filter. 

Now that you’ve seen how to create an extension on Sequence, let’s make a custom extension. 

12.7.2. Creating the take(while:) method 

Complimentary to the drop(while:) method, which drops the first number of elements, you can 
offer an opposite method called take(while:). 

As a quick refresher, drop(while:) is useful to drop the first amount of unusable data, such as 
empty lines. You pass a closure to the drop method, which keeps ignoring—or dropping—the 
lines until you find some text. At that point, drop stops dropping and returns the rest of the 
sequence, as shown here. 

Listing 12.27. drop(while:) 

let silenceLines = 

    """ 

 

    The silence is finally over. 

    """.components(separatedBy: "\n") 

 

let lastParts = silenceLines.drop(while: { (line) -> Bool in 

    line.isEmpty 

}) 

 

print(lastParts) // ["The silence is finally over."] 

For your custom take(while:) method, you have a different use case. You might want the 
strings until you run into an empty line. It’s the opposite of drop(while:) and complementary to 
it. Before you create your take(while:) method, let’s see how it works. Notice how the iteration 
keeps going until it breaks off at the empty line. 

Listing 12.28. Get the first lines 

let lines = 

    """ 

    We start with text... 

    ... and then some more 



 

    This is ignored because it came after empty space 

    and more text 

    """.components(separatedBy: "\n") 

 

let firstParts = lines.take(while: { (line) -> Bool in 

    !line.isEmpty 

}) 

 

print(firstParts) // ["We start with text...", "... and then some more"] 

In the implementation, you mimic the internals of filter where you make use 
of ContiguousArray and makeIterator. 

Listing 12.29. Extending Sequence with take(while:) 

extension Sequence { 

    public func take( 

        while predicate: (Element) throws -> Bool       ❶ 

         ) rethrows -> [Element] { 

 

        var iterator = makeIterator()                   ❷ 

 

        var result = ContiguousArray<Element>()         ❸ 

 

        while let element = iterator.next() {           ❹ 

             if try predicate(element) {                ❺ 

                 result.append(element) 

             } else { 

                break                                   ❻ 

             } 

        } 

 

        return Array(result) 



    } 

} 

• ❶ The take(while:) method also accepts a closure to check against each element. 
• ❷ You can also use makeIterator. 
• ❸ You can also use a ContiguousArray. 
• ❹ Iterate through each element. 
• ❺ If an element matches the predicate, you keep going. 
• ❻ As soon as the closure returns false, you stop iterating and return your result. 

12.7.3. Creating the Inspect method 

Another useful method you may want to add to your library is inspect. It is very similar 
to forEach, with one difference: it returns the sequence. The inspect method is especially useful 
for debugging a pipeline where you chain operations. 

You can squeeze inspect in the middle of a chained pipeline operation, do something with the 
values, such as logging them, and continue with the pipeline as if nothing happened, 
whereas forEach would end the iteration, as shown here. 

Listing 12.30. The inspect method in action 

["C", "B", "A", "D"] 

    .sorted() 

    .inspect { (string) in 

        print("Inspecting: \(string)") 

    }.filter { (string) -> Bool in 

        string < "C" 

    }.forEach { 

        print("Result: \($0)") 

} 

 

// Output: 

// Inspecting: A 

// Inspecting: B 

// Inspecting: C 

// Inspecting: D 

// Result: A 

// Result: B 



To add inspect to your codebase, you can take the following code. Notice how you don’t have to 
use makeIterator if you don’t want to. 

Listing 12.31. Extending Sequence with inspect 

extension Sequence { 

    public func inspect( 

        _ body: (Element) throws -> Void   ❶ 

         ) rethrows  -> Self { 

        for element in self { 

            try body(element)              ❷ 

        } 

        return self                        ❸ 

     } 

} 

• ❶ The inspect method also accepts a function. 
• ❷ You call the body function with each element. 
• ❸ You return the same type again so that you can keep chaining. 

Extending Sequence means that you go quite low-level. Not only does Array gain extra methods, 
but so does Set, Range, zip, String, and others. You’re only scratching the surface. Apple uses 
many optimization tricks and particular sequences for further optimizations. The approach in 
this section should cover many cases, however. 

Extending Sequence with methods you feel are missing is a good and useful exercise. What other 
extensions can you create? 

12.7.4. Exercise 

4 

Up for a challenge? Create a “scan” extension on Sequence. The scan method is like reduce, but 
besides returning the end value it also returns intermediary results, all as one array, which is very 
useful for debugging a reduce method! Be sure to use makeIterator and ContiguousArray for extra 
speed: 

let results = (0..<5).scan(initialResult: "") { (result: String, int: 

➥ Int) -> String in 

        return "\(result)\(int)" 

} 

print(results) // ["0", "01", "012", "0123", "01234"] 



 

let lowercased = ["S", "W", "I", "F", "T"].scan(initialResult: "") { 

➥ (result: String, string: String) -> String in 

    return "\(result)\(string.lowercased())" 

} 

 

print(lowercased) // ["s", "sw", "swi", "swif", "swift"] 

12.8. CLOSING THOUGHTS 

The lure of using extensions and protocols is strong. Keep in mind that sometimes a concrete 
type is the right way to go before diving into clever abstractions. Extending protocols is one of 
the most powerful—if not the most powerful—feature of Swift. It allows you to write highly 
decoupled, highly reusable code. Finding a suitable abstraction to solve a problem is a tough 
balancing act. Now that you’ve read this chapter, I hope that you know to extend horizontally 
and vertically in clever ways that will help you deliver concise and clean code. 

SUMMARY 

• Protocols can deliver a default implementation via protocol extensions. 
• With extensions, you can think of modeling data horizontally, whereas with subclassing, 

you’re modeling data in a more rigid vertical way. 
• You can override a default implementation by delivering an implementation on a 

concrete type. 
• Protocol extensions cannot override a concrete type. 
• Via protocol inheritance, you can override a protocol’s default implementation. 
• Swift always picks the most concrete implementation. 
• You can create a protocol extension that only unlocks when a type implements two 

protocols, called a protocol intersection. 
• A protocol intersection is more flexible than protocol inheritance, but it’s also more 

abstract to understand. 
• When mixing subclasses with protocol extensions, extending a protocol and constraining 

it to a class is a good heuristic (as opposed to extending a class to adhere to a protocol). 
This way, an implementer can pick and choose a protocol implementation. 

• For associated types, such as Element on the Collection protocol, Swift picks the most 
specialized abstraction, such as Hashable over Equatable elements. 

• Extending a low-level protocol—such as Sequence—means you offer new methods to 
many types at once. 

• Swift uses a special ContiguousArray when extending Sequence for extra performance. 

ANSWERS 

1 



Create an extension that enables the explode() function, but only on types that conform 
to Mentos and Coke protocols: 

extension Mentos where Self: Coke { 

    func explode() { 

        print("BOOM!") 

    } 

} 

2 

What is the output of the following code? 

"RefundableTransaction" 

3 

What is the difference between these two extensions? 

extension UIViewController: MyProtocol {} 

 

extension MyProtocol where Self: UIViewController {} 

The first line makes all viewcontrollers and their subclasses conform to MyProtocol. The second 
line makes a viewcontroller only adhere to a protocol on an as-needed basis. 

4 

Create a “scan” extension on Sequence. Be sure to use makeIterator and ContiguousArray for extra 
speed: 

extension Sequence { 

    func scan<Result>( 

        initialResult: Result, 

        _ nextPartialResult: (Result, Element) throws -> Result 

        ) rethrows -> [Result] { 

        var iterator = makeIterator() 

 

        var results = ContiguousArray<Result>() 

        var accumulated: Result = initialResult 

        while let element = iterator.next() { 



            accumulated = try nextPartialResult(accumulated, element) 

            results.append(accumulated) 

        } 

 

        return Array(results) 

    } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 13. Swift patterns 

This chapter covers 

• Mocking types with protocols and associated types 
• Understanding conditional conformance and its benefits 
• Applying conditional conformance with custom protocols and types 
• Discovering shortcomings that come with protocols 
• Understanding type erasure 
• Using alternatives to protocols 

In this chapter, you’re going to see some useful patterns that you can apply in your Swift 
programming. I made sure that these patterns were more Swift-focused, as opposed to a more-
traditional OOP focus. We’re focusing on Swift patterns, so protocols and generics take center 
stage. 

First, you’re going to mock existing types with protocols. You’ll see how to replace a networking 
API with a fake offline one, and also replace this networking API with one that’s focused on 
testing. I throw in a little trick related to associated types that will help you mock types, 
including ones from other frameworks. 

Conditional conformance is a powerful feature that allows you to extend types with a protocol, 
but only under certain conditions. You’ll see how to extend existing types with conditional 
conformance, even if these types have associated types. Then, you’ll go a bit further and create a 
generic type, which you’ll power up as well by using conditional conformance. 

Then the chapter takes a look at the shortcomings that come with protocols with associated 
types and Self requirements, which you can unofficially consider compile-time protocols. You’ll 
see how to best deal with these shortcomings. You’ll first consider an approach involving enums, 
and then a more complex, but also more flexible, approach involving type erasure. 

As an alternative to protocols, you’ll see how to create a generic struct that can replace a 
protocol with associated types. This type will be highly flexible and an excellent tool to have. 

This chapter aims to give you new approaches to existing problems and to help you understand 
protocols and generics on a deeper level. Let’s get started by seeing how to mock types, which is 
a technique you can apply across numerous projects. 

13.1. DEPENDENCY INJECTION 

In chapter 8, you saw how protocols are used as an interface or type, where you could pass 
different types to a method, as long as these types adhere to the same protocol. 

You can take this mechanic a bit further and perform inversion of control, or dependency 
injection, which are fancy words to say that you pass an implementation to a type. Think of 
supplying an engine to a motorcycle. 



The goal of this exercise is to end up with an interchangeable implementation where you can 
switch between three network layers: a real network layer, an offline network layer, and a testing 
layer. 

The real network layer is for when you ship an application for production. The fake network 
layer loads prepared files, which is useful for working with fixed responses where you control all 
the data, such as when the backend server is not finished yet, or when you need to demo your 
application without a network connection. The testing layer makes writing unit tests easier. 

 

Join me! 

It’s more educational and fun if you can check out the code and follow along with the chapter. 
You can download the source code at http://mng.bz/4vPa. 

 

13.1.1. Swapping an implementation 

You’re going to create a class called WeatherAPI that retrieves the latest weather status. To create 
network calls, WeatherAPI would use a URLSession from the Foundation framework. But you’re 
going to do it differently. WeatherAPI accepts a type conforming to a Session protocol, because a 
protocol allows you to pass a custom implementation. This way, WeatherAPI calls network 
methods on the protocol without knowing about which concrete implementation it received. 
You’re mocking URLSession as a challenge because if you know how to mock a type you don’t 
own, it will be even easier for types that you do own. 

First, let’s define a protocol called Session representing URLSession but also other sessions, such 
as an offline session. This way you’re able to run an app in demo mode without a network 
connection, but also a testing session that enables you to verify that your API calls the methods 
when expected (see figure 13.1). 

Figure 13.1. Mocking 

 

WeatherAPI calls methods on Session. Let’s mirror a common method on URLSession: creating 
a dataTask that can be run to fetch data. 



In the dataTask method of URLSession, you would normally receive a URLSessionDataTask type. 
But you’ll apply a little trick. 

Instead of returning URLSessionDataTask or another protocol, you return an associated type. 
The reason is that an associated type resolves to a concrete type at compile time. It can 
represent a URLSessionDataTask, but also other types that each implementer can choose to 
return. Let’s call this associated type Task. 

Listing 13.1. A Session protocol 

protocol Session { 

    associatedtype Task                                                 ❶ 

 

    func dataTask(with url: URL, completionHandler: @escaping (Data?, 

➥ URLResponse?, Error?) -> Void) -> Task                               ❷ 

 } 

• ❶ Define a Task that the dataTask method returns. 
• ❷ The dataTask method mirrors the method on URLSession. 

Because Session mirrors URLSession, you merely have to 
conform URLSession to Session without writing any implementation code. Let’s 
extend URLSession now and make it conform to Session. 

Listing 13.2. Conforming URLSession to Session 

extension URLSession: Session {} 

13.1.2. Passing a custom Session 

Now you can create the WeatherAPI class and define a generic called Session to allow for a 
swappable implementation. You’re almost there, but you can’t call resume yet on Session.Task. 

Listing 13.3. The WeatherAPI class 

final class WeatherAPI<S: Session> {                                        ❶ 

     let session: S                                                         ❷ 

 

     init(session: S) {                                                     ❸ 

         self.session = session 

     } 

 

     func run() { 



        guard let url = URL(string: "https://www.someweatherstartup.com") 

➥ else { 

            fatalError("Could not create url") 

        } 

        let task = session.dataTask(with: url) { (data, response, error) in ❹ 

             // Work with retrieved data. 

        } 

 

        task.resume() // Doesn't work, task is of type S.Task               ❺ 

     } 

 

} 

 

let weatherAPI = WeatherAPI(session: URLSession.shared)                     ❻ 

weatherAPI.run() 

• ❶ The WeatherAPI class accepts a Session generic. 
• ❷ You store the Session in a property. 
• ❸ In the initializer, you pass and store the Session. 
• ❹ You can call the dataTask method on session. 
• ❺ Unfortunately, you can’t call the resume() method yet on Task. 
• ❻ You pass URLSession to WeatherAPI via the initializer. 

You try to run a task, but you can’t. The associated type Task that dataTask(with: 
completionHandler:) returns is of type Session.Task, which doesn’t have any methods. Let’s fix 
that now. 

13.1.3. Constraining an associated type 

URLSessionDataTask has a resume() method, but Session.Task does not. To fix this, you 
introduce a new protocol called DataTask, which contains the resume() method. Then you 
constrain Session.Task to DataTask. 

To finalize the implementation, you’ll make URLSessionDataTask conform to 
the DataTaskprotocol as well (see figure 13.2). 



Figure 13.2. Mirroring URLSession 

 

In code, let’s create the DataTask protocol and constrain Session.Task to it. 

Listing 13.4. Creating a DataTask protocol 

protocol DataTask {                          ❶ 

     func resume()                           ❷ 

 } 

 

protocol Session { 

    associatedtype Task: DataTask            ❸ 

 

    func dataTask(with url: URL, completionHandler: @escaping (Data?, 

➥ URLResponse?, Error?) -> Void) -> Task 

} 

• ❶ Introduce a new protocol called DataTask. 
• ❷ The DataTask can now resume(), just like URLSession. 
• ❸ The associated type is now conforming to DataTask, so that 

dataTask(with:completionHandler:) returns a task you can resume. 

To complete your adjustment, you make URLSessionDataTask conform to your DataTask protocol 
so that everything compiles again. 

Listing 13.5. Implementing DataTask 

extension URLSessionDataTask: DataTask {}       ❶ 

• ❶ URLSessionDataTask now conforms to DataTask. 



All is well again. Now, URLSession returns a type conforming to DataTask. At this stage, all the 
code compiles. You can call your API with a real URLSession to perform a request. 

13.1.4. Swapping an implementation 

You can pass URLSession to your WeatherAPI, but the real power lies in the capability to swap out 
an implementation. Here’s a fake URLSession that you’ll name OfflineURLSession, which loads 
local files instead of making a real network connection. This way, you’re not dependent on a 
backend to play around with the WeatherAPI class. Every time that the dataTask(with 
url:)method is called, the OfflineURLSession creates an OfflineTask that loads the local file, as 
shown in the following listing. 

Listing 13.6. An offline task 

final class OfflineURLSession: Session {                                 ❶ 

 

    var tasks = [URL: OfflineTask]()                                     ❷ 

 

    func dataTask(with url: URL, completionHandler: @escaping (Data?, 

➥ URLResponse?, Error?) -> Void) -> OfflineTask { 

        let task = OfflineTask(completionHandler: completionHandler)     ❸ 

        tasks[url] = task 

        return task 

    } 

} 

 

enum ApiError: Error {                                                   ❹ 

     case couldNotLoadData 

} 

 

struct OfflineTask: DataTask { 

 

    typealias Completion = (Data?, URLResponse?, Error?) -> Void         ❺ 

    let completionHandler: Completion 

 

    init(completionHandler: @escaping Completion) {                      ❻ 

         self.completionHandler = completionHandler 



    } 

 

    func resume() {                                                      ❼ 

         let url = URL(fileURLWithPath: "prepared_response.json")        ❼ 

         let data = try! Data(contentsOf: url)                           ❼ 

         completionHandler(data, nil, nil)                               ❼ 

    } 

} 

• ❶ The OfflineURLSession adheres to Session and mimics URLSession. 
• ❷ Retain the tasks to make sure that they doesn’t get deallocated directly. 
• ❸ The OfflineURLSession creates and returns OfflineTask types. 
• ❹ You need an error to return. You could also choose to mimic URLSession’s error 

completely. 
• ❺ For convenience, you define a typealias to mimic the Completion closure. 
• ❻ The completion closure from OfflineURLSession is passed and stored by the 

OfflineTask. 
• ❼ Once OfflineTask runs, it loads local JSON data and calls the completionHandler that 

was originally passed to OfflineURLSession. 

 

Note 

A more mature implementation would also deallocate tasks and allow for more configuration of 
loading files. 

 

Now that you have multiple implementations adhering to Session, you can start swapping them 
without having to touch the rest of your code. You can choose to create a 
production WeatherAPI or an offline WeatherAPI. 

Listing 13.7. Swapping out implementations 

let productionAPI = WeatherAPI(session: URLSession.shared) 

let offlineApi = Weath+rAPI(session: OfflineURLSession()) 

With protocols you can swap out an implementation, such as feeding different sessions 
to WeatherAPI. If you use an associated type, you can make it represent another type inside the 
protocol, which can make it easier to mimic a concrete type. You don’t always have to use 
associated types, but it helps when you can’t instantiate certain types, such as when you want to 
mock code from third-party frameworks. 



That’s all it took. Now WeatherAPI works with a production layer or a fake offline layer, which 
gives you much flexibility. With this setup, testing can be made easy as well. Let’s move on to 
creating the testing layer so that you can properly test WeatherAPI. 

13.1.5. Unit testing and Mocking with associated types 

With a swappable implementation in place, you can pass an implementation that helps you with 
testing. You can create a particular type conforming to Session, loaded up with testing 
expectations. As an example, you can create a MockSession and MockTask that see if specific 
URLs are called. 

Listing 13.8. Creating a MockTask and MockSession 

class MockSession: Session {                                               ❶ 

 

    let expectedURLs: [URL] 

    let expectation: XCTestExpectation 

 

    init(expectation: XCTestExpectation, expectedURLs: [URL]) { 

        self.expectation = expectation 

        self.expectedURLs = expectedURLs 

    } 

 

    func dataTask(with url: URL, completionHandler: @escaping (Data?, 

➥ URLResponse?, Error?) -> Void) -> MockTask { 

        return MockTask(expectedURLs: expectedURLs, url: url, expectation: 

➥ expectation)                                                            ❷ 

     } 

} 

 

struct MockTask: DataTask { 

    let expectedURLs: [URL] 

    let url: URL 

    let expectation: XCTestExpectation                                     ❸ 

 

    func resume() { 



        guard expectedURLs.contains(url) else { 

            return 

        } 

 

        self.expectation.fulfill() 

    } 

} 

• ❶ The MockSession also adheres to Session. 
• ❷ The MockSession returns a MockTask. 
• ❸ The MockTask holds a testing expectation that should be fulfilled with your test. 

Now, if you want to test your API, you can test that the expected URLs are called. 

Listing 13.9. Testing the API 

class APITestCase: XCTestCase { 

 

    var api: API<MockSession>!                                             ❶ 

 

    func testAPI() { 

        let expectation = XCTestExpectation(description: "Expected 

➥ someweatherstartup.com")                                                ❷ 

        let session = MockSession(expectation: expectation, expectedURLs: 

➥ [URL(string: "www.someweatherstartup.com")!])                           ❸ 

        api = API(session: session) 

        api.run()                                                          ❹ 

        wait(for: [expectation], timeout: 1)                               ❺ 

    } 

} 

 

let testcase = APITestCase() 

testcase.testAPI() 

• ❶ You create an API and define it as having a MockSession. 
• ❷ You create an expectation that needs to be fulfilled. 
• ❸ The session is created containing the expectation. 



• ❹ Once the API runs, the expectation is hopefully fulfilled. 
• ❺ You check if the expectation is fulfilled, with a waiting time of one second. 

13.1.6. Using the Result type 

Because you’re using a protocol, you can offer a default implementation to all sessions via the 
use of a protocol extension. You may have noticed how you used Session’s regular way of 
handling errors. But you have the powerful Result type available to you from the Swift Package 
Manager, as covered in chapter 11. You can extend Session and offer a variant that 
uses Result instead, as shown in the following listing. This way, all types adhering 
to Sessionwill be able to return a Result. 

Listing 13.10. Extending Session with a Result type 

protocol Session { 

    associatedtype Task: DataTask 

 

    func dataTask(with url: URL, completionHandler: @escaping (Data?, 

➥ URLResponse?, Error?) -> Void) -> Task 

    func dataTask(with url: URL, completionHandler: @escaping (Result<Data, 

➥ AnyError>) -> Void) -> Task                                             ❶ 

 } 

 

extension Session { 

    func dataTask(with url: URL, completionHandler: @escaping (Result<Data, 

➥ AnyError>) -> Void) -> Task {                                           ❷ 

         return dataTask(with: url, completionHandler: { (data, response, 

           error) in                                                       ❸ 

             if let error = error { 

                let anyError = AnyError(error) 

                completionHandler(Result.failure(anyError)) 

            } else if let data = data { 

                completionHandler(Result.success(data)) 

            } else { 

                fatalError() 

            } 



        }) 

    } 

} 

• ❶ Add a new method to the Session protocol. 
• ❷ You can give a default implementation to Session that uses Result. 
• ❸ The implementation still calls the regular dataTask method for you, but it converts the 

response to a Result type. 

Now, implementers of Session, including Apple’s URLSession, can return a Result type. 

Listing 13.11. Multiple sessions retrieving a Result 

URLSession.shared.dataTask(with: url) { (result: Result<Data, AnyError>) in 

    // ... 

} 

 

OfflineURLSession().dataTask(with: url) { (result: Result<Data, AnyError>) in 

    // ... 

} 

With the power of protocols, you have the ability to swap between multiple implementations 
between production, debugging, and testing use. With the help of extensions, you can 
use Result as well. 

13.1.7. Exercise 

1 

Given these types, see if you can make WaffleHouse testable to verify that a Waffle has been 
served: 

struct Waffle {} 

 

class Chef { 

    func serve() -> Waffle { 

        return Waffle() 

    } 

} 

 

struct WaffleHouse { 



 

    let chef = Chef() 

 

    func serve() -> Waffle { 

        return chef.serve() 

    } 

 

} 

 

let waffleHouse = WaffleHouse() 

let waffle = waffleHouse.serve() 

13.2. CONDITIONAL CONFORMANCE 

Conditional conformance is a compelling feature introduced in Swift 4.1. With conditional 
conformance, you can make a type adhere to a protocol but only under certain 
conditions. Chapter 7 covered conditional conformance briefly, but let’s take this opportunity to 
become more comfortable with it and see more-advanced use cases. After this section, you’ll 
know precisely when and how to apply conditional conformance—let’s get to it! 

13.2.1. Free functionality 

The easiest way to see conditional conformance in action is to create a struct, 
implement Equatable or Hashable, and without implementing any of the protocol’s method, you 
get equatability or hashability for free. 

The following is a Movie struct. Notice how you can already compare movies by merely 
making Movie adhere to the Equatable protocol, without implementing the required == function; 
this is the same technique you applied to Pair in chapter 7. 

Listing 13.12. Auto Equatable 

struct Movie: Equatable { 

    let title: String 

    let rating: Float 

} 

 

let movie = Movie(title: "The princess bride", rating: 9.7) 

 

movie == movie // true. You can already compare without implementing Equatable 



 

Manually overriding 

You can still implement the == function from Equatable if you want to supply your own logic. 

 

Automatically having an Equatable type is possible because all the properties are Equatable. 
Swift synthesizes this for free on some protocols, such as Equatable and Hashable, but not every 
protocol. For instance, you don’t get Comparable for free, or the ones that you introduce yourself. 

 

Warning 

Unfortunately, Swift doesn’t synthesize methods on classes. 

 

13.2.2. Conditional conformance on associated types 

Another approachable way to see conditional conformance in action is by looking at Array and 
its Element type, representing an element inside the array. Element is an associated type 
from Sequence, which Array uses, as covered in chapter 9. 

Imagine that you have a Track protocol, representing a track used in audio software, such as a 
wave sample or a distortion effect. You can have an AudioTrack implement this protocol; it could 
play audio files at a specific URL. 

Listing 13.13. The Track protocol 

protocol Track { 

    func play() 

} 

 

struct AudioTrack: Track { 

    let file: URL 

 

    func play() { 

        print("playing audio at \(file)") 

    } 

} 



If you have an array of tracks and want to play these tracks at the same time for a musical 
composition, you could naively extend Array only where Element conforms to Track, and then 
introduce a play() method here. This way, you can trigger play() for all Track elements inside 
an array. This approach has a shortcoming, however, which you’ll solve in a bit. 

Listing 13.14. Extending Array (with a shortcoming) 

extension Array where Element: Track { 

    func play() { 

        for element in self { 

            element.play() 

        } 

    } 

} 

 

let tracks = [ 

    AudioTrack(file: URL(fileURLWithPath: "1.mp3")), 

    AudioTrack(file: URL(fileURLWithPath: "2.mp3")) 

] 

tracks.play() // You use the play() method 

But this approach has a shortcoming. Array itself does not conform to Track; it merely 
implements a method with the same name as the one inside Track, namely the play() method. 

Because Array doesn’t conform to Track, you can’t call play() anymore on a nested array. 
Alternatively, if you have a function accepting a Track, you also can’t pass 
an Array with Tracktypes. 

Listing 13.15. Can’t use Array as a Track type 

let tracks = [ 

    AudioTrack(file: URL(fileURLWithPath: "1.mp3")), 

    AudioTrack(file: URL(fileURLWithPath: "2.mp3")) 

] 

 

// If an Array is nested, you can't call play() any more. 

[tracks, tracks].play() // error: type of expression is ambiguous without 

     more context 



 

// Or you can't pass an array if anything expects the Track protocol. 

func playDelayed<T: Track>(_ track: T, delay: Double) { 

  // ... snip 

} 

 

playDelayed(tracks, delay: 2.0) // argument type '[AudioTrack]' does not 

     conform to expected type 'Track' 

13.2.3. Making Array conditionally conform to a custom protocol 

Since Swift 4.1, you can solve this problem where Array will conform to a custom protocol. You 
can make Array conform to Track, but only if its elements conform to Track. The only difference 
from before is that you add : Track after Array. 

Listing 13.16. Making Array conform 

// Before. Not conditionally conforming. 

extension Array where Element: Track { 

    // ... snip 

} 

 

// After. You have conditional conformance. 

extension Array: Track where Element: Track { 

    func play() { 

        for element in self { 

            element.play() 

        } 

    } 

} 

 

Warning 

If you’re making a type conditionally conformant to a protocol with a constraint—such as where 
Element: Track—you need to supply the implementation yourself. Swift won’t synthesize this 
for you. 

 



Now Array is a true Track type. You can pass it to functions expecting a Track, or nest arrays 
with other data and you can still call play() on it, as shown here. 

Listing 13.17. Conditional conformance in action 

let nestedTracks = [ 

    [ 

        AudioTrack(file: URL(fileURLWithPath: "1.mp3")), 

        AudioTrack(file: URL(fileURLWithPath: "2.mp3")) 

    ], 

    [ 

        AudioTrack(file: URL(fileURLWithPath: "3.mp3")), 

        AudioTrack(file: URL(fileURLWithPath: "4.mp3")) 

    ] 

] 

 

// Nesting works. 

nestedTracks.play() 

 

// And, you can pass this array to a function expecting a Track! 

playDelayed(tracks, delay: 2.0) 

13.2.4. Conditional conformance and generics 

You’ve seen how you extend Array with a constraint on an associated type. What’s pretty nifty is 
that you can also constrain on generic type parameters. 

As an example, let’s take Optional, because Optional only has a generic type called Wrapped and 
no associated types. You can make Optional implement Track with conditional conformance on 
its generic as follows. 

Listing 13.18. Extending Optional 

extension Optional: Track where Wrapped: Track { 

    func play() { 

        switch self { 

        case .some(let track):           ❶ 

            track.play()                 ❶ 



        case nil: 

            break // do nothing 

        } 

    } 

} 

• ❶ If there is a Track value inside the Optional, you can call play on it. 

Now Optional conforms to Track, but only if its inner value conforms to Track. Without 
conditional conformance you could already call play() on optionals conforming to Track. 

Listing 13.19. Calling play() on an optional 

let audio: AudioTrack? = AudioTrack(file: URL(fileURLWithPath: "1.mp3")) 

audio?.play()                                                              ❶ 

• ❶ Calling a method on an optional 

But now Optional officially is a Track as well, allowing us to pass it to types and functions 
expecting a Track. In other words, with conditional conformance, you can pass an 
optional AudioTrack? to a method expecting a non-optional Track. 

Listing 13.20. Passing an optional to playDelayed 

let audio: AudioTrack? = AudioTrack(file: URL(fileURLWithPath: "1.mp3")) 

playDelayed(audio, delay: 2.0)                                             ❶ 

• ❶ playDelayed expects a Track. Now accepts an optional. 

13.2.5. Conditional conformance on your types 

Conditional conformance shines when you work with generic types, such as Array, Optional, or 
your own. Conditional conformance becomes powerful when you have a generic type storing an 
inner type, and you want the generic type to mimic the behavior of the inner type inside 
(see figure 13.3). Earlier, you saw how an Array becomes a Track if its elements are a Track. 

Figure 13.3. A type mimicking an inner type 

 



Let’s see how this works when creating a generic type yourself. One such type could be 
a CachedValue type. CachedValue is a class storing a value. Once a certain time limit has passed, 
the value is refreshed by a closure that CachedValue stores. 

The benefit of CachedValue is that it can cache expensive calculations for a while before 
refreshing. It can help limit repeatedly loading large files or repetition of expensive 
computations. 

You can, for instance, store a value with a time-to-live value of two seconds. If you were to ask 
for the value after three seconds or more, the stored closure would be called again to refresh the 
value, as shown here. 

Listing 13.21. CachedValue in action 

let simplecache = CachedValue(timeToLive: 2, load: { () -> String in   ❶ 

     print("I am being refreshed!")                                    ❷ 

     return "I am the value inside CachedValue" 

}) 

 

// Prints: "I am being refreshed!" 

simplecache.value // "I am the value inside CachedValue"               ❸ 

simplecache.value // "I am the value inside CachedValue" 

 

sleep(3) // wait 3 seconds                                             ❹ 

 

// Prints: "I am being refreshed!"                                     ❹ 

simplecache.value // "I am the value inside CachedValue" 

• ❶ You create a CachedValue and pass it a custom closure in the initializer. Notice how 
you set the timeToLive to two seconds. 

• ❷ If the value is retrieved, you print a string for debugging. 
• ❸ The value is cached, you can ask for it, and you receive the string. 
• ❹ After two seconds, the closure is called again and gives a new string for CachedValue 

to store. 

Let’s look at the internals of CachedValue and see how it works; then you’ll move on to 
conditional conformance. 

Listing 13.22. Inside CachedValue 

final class CachedValue<T> {                                                 ❶ 

    private let load: () -> T                                                ❷ 



    private var lastLoaded: Date 

 

    private var timeToLive: Double 

    private var currentValue: T 

 

    public var value: T { 

        let needsRefresh = abs(lastLoaded.timeIntervalSinceNow) > timeToLive ❸ 

        if needsRefresh { 

            currentValue = load()                                            ❹ 

            lastLoaded = Date() 

        } 

        return currentValue                                                  ❺ 

    } 

 

    init(timeToLive: Double, load: @escaping (() -> T)) { 

        self.timeToLive = timeToLive 

        self.load = load 

        self.currentValue = load() 

        self.lastLoaded = Date() 

    } 

} 

• ❶ CachedValue can store anything, represented as type T. 
• ❷ A load closure is stored, which is used to refresh the value inside. 
• ❸ Every time value is accessed, you check if a refresh is needed. 
• ❹ If you need to refresh, you refresh the value and set the lastLoaded date. 
• ❺ You return the value. 

Making your type conditionally conformant 

Here comes the fun part. Now that you have a generic type, you can get in your starting 
positions and start adding conditional conformance. This way, CachedValue reflects the 
capabilities of its value inside. For instance, you can make CachedValue Equatable if its value 
inside is Equatable. You can make CachedValue Hashable if its value inside is Hashable, and you 
can make CachedValue Comparable if its value inside is Comparable (see figure 13.4). 



Figure 13.4. Making CachedValue conditionally conform to Equatable, Hashable, and Comparable. 

 

You can add extensions for all the protocols you can imagine (if they make sense). Ready? Set? 
Go! 

Listing 13.23. Conditional conformance on CachedValue 

// Conforming to Equatable 

extension CachedValue: Equatable where T: Equatable { 

    static func == (lhs: CachedValue, rhs: CachedValue) -> Bool { 

        return lhs.value == rhs.value 

    } 

} 

 

// Conforming to Hashable 

extension CachedValue: Hashable where T: Hashable { 

    func hash(into hasher: inout Hasher) { 

        hasher.combine(value) 

    } 

} 

 

// Conforming to Comparable 

extension CachedValue: Comparable where T: Comparable { 

    static func <(lhs: CachedValue, rhs: CachedValue) -> Bool { 

        return lhs.value < rhs.value 

    } 

 

    static func ==(lhs: CachedValue, rhs: CachedValue) -> Bool { 

        return lhs.value == rhs.value 

    } 



} 

This is just the beginning; you can use your custom protocols and many others that Swift offers. 

Now with conditional conformance in place, CachedValue takes on the properties of its inner 
type. Let’s try it out and see if CachedValue is properly Equatable, Hashable, and Comparable. 

Listing 13.24. CachedValue is now Equatable, Comparable, and Hashable 

let cachedValueOne = CachedValue(timeToLive: 60) { 

    // Perform expensive operation 

    // E.g. Calculate the purpose of life 

    return 42 

} 

 

let cachedValueTwo = CachedValue(timeToLive: 120) { 

    // Perform another expensive operation 

    return 1000 

} 

 

cachedValueOne == cachedValueTwo // Equatable: You can check for equality. 

cachedValueOne > cachedValueTwo // Comparable: You can compare two cached values. 

 

let set = Set(arrayLiteral: cachedValueOne, cachedValueTwo) // Hashable: 

➥ You can store CachedValue in a set 

You could keep going. For instance, you can make CachedValue implement Track or any other 
custom implementations. 

Conditional conformance works best when storing the lowest common denominator inside the 
generic, meaning that you should aim to not add too many constraints on T in this case. 

If a generic type by default is not constrained too much, then extending the type with 
conditional conformance is easier. In CachedValue’s case, T is unconstrained, so all types fit, and 
then you add functionality with conditional conformance. This way, both simple and advanced 
types fit inside CachedValue. As an exaggeration, if you were to constrain T to 10 protocols, very 
few types would fit inside CachedValue, and then there would be little benefit to adding 
functionality with conditional conformance. 



13.2.6. Exercise 

2 

What is the benefit of a generic having few constraints, when applying conditional conformance? 

3 

Make CachedValue conform to the custom Track protocol from this chapter. 

13.3. DEALING WITH PROTOCOL SHORTCOMINGS 

Protocols are a recipe for a love-hate relationship. They’re a fantastic tool, but then once in a 
while things that “should just work” simply aren’t possible. 

For instance, a common problem for Swift developers is wanting to store Hashable types. You’ll 
quickly find out that it isn’t as easy as it seems. 

Imagine that you’re modeling a game server for poker games. You have a PokerGame protocol, 
and StudPoker and TexasHoldem adhere to this protocol. Notice in the following listing 
how PokerGame is Hashable so that you can store poker games inside sets and use them as 
dictionary keys. 

Listing 13.25. PokerGame 

protocol PokerGame: Hashable { 

    func start() 

} 

 

struct StudPoker: PokerGame { 

    func start() { 

        print("Starting StudPoker") 

    } 

} 

struct TexasHoldem: PokerGame { 

    func start() { 

        print("Starting Texas Holdem") 

    } 

} 



You can store StudPoker and TexasHoldem types into arrays, sets, and dictionaries. But if you 
want to mix and match different types of PokerGame as keys in a dictionary or inside an array, 
you stumble upon a shortcoming. 

For instance, let’s say you want to store the number of active players for each game inside a 
dictionary, where PokerGame is the key. 

Listing 13.26. PokerGame as a key throws an error 

// This won't work! 

var numberOfPlayers = [PokerGame: Int]() 

 

// The error that the Swift compiler throws is: 

error: using 'PokerGame' as a concrete type conforming to protocol 'Hashable' 

     is not supported 

var numberOfPlayers = [PokerGame: Int]() 

It sounds plausible to store Hashable as a dictionary key. But the compiler throws this error 
because you can’t use this protocol as a concrete type. Hashable is a subprotocol 
of Equatableand therefore has Self requirements, which prevents you from storing 
a Hashable at runtime. Swift wants Hashable resolved at compile time into a concrete type; a 
protocol, however, is not a concrete type. 

You could store one type of PokerGame as a dictionary key, such as [TexasHoldem: Int], but then 
you can’t mix them. 

You could also try generics, which resolve to a concrete type. But this also won’t work. 

Listing 13.27. Trying to mix games 

func storeGames<T: PokerGame>(games: [T]) -> [T: Int] { 

 /// ... snip 

} 

Unfortunately, this generic would resolve to a single type per function, such as the following. 

Listing 13.28. A resolved generic 

func storeGames(games: [TexasHoldem]) -> [TexasHoldem: Int] { 

 /// ... snip 

} 

 

func storeGames(games: [StudPoker]) -> [StudPoker: Int] { 



 /// ... snip 

} 

Again, you can’t easily mix and match PokerGame types into a single container, such as a 
dictionary. 

Let’s take two different approaches to solve this problem. The first one involves an enum and 
the second one involves something called type erasure. 

13.3.1. Avoiding a protocol using an enum 

Instead of using a PokerGame protocol, consider using a concrete type. Creating 
a PokerGamesuperclass is tempting, but you’ve explored the downsides of class-based inheritance 
already. Let’s use an enum instead. 

As shown in listing 13.29, first, PokerGame becomes an enum, and 
stores StudPoker and TexasHoldem in each case as an associated value. Then, you 
make StudPoker and TexasHoldemconform to Hashable because PokerGame is not a protocol 
anymore. You also make PokerGameconform to Hashable so that you can store it inside a 
dictionary. This way, you have concrete types, and you can store poker games inside a 
dictionary. 

Listing 13.29. PokerGame 

enum PokerGame: Hashable { 

    case studPoker(StudPoker) 

    case texasHoldem(TexasHoldem) 

} 

 

struct StudPoker: Hashable { 

    // ... Implementation omitted 

} 

struct TexasHoldem: Hashable { 

    // ... Implementation omitted 

} 

 

// This now works 

var numberOfPlayers = [PokerGame: Int]() 

 



Note 

Notice how Swift generates the Hashable implementation for you, saving you from writing the 
boilerplate. 

 

13.3.2. Type erasing a protocol 

Enums are a quick and painless solution to the problem where you can’t use some protocols as a 
type. But enums don’t scale well; maintaining a large number of cases is a hassle. Moreover, at 
the time of writing, you can’t let others extend enums with new cases if you were to build a 
public API. On top of that, protocols are the way to achieve dependency injection, which is 
fantastic for testing. 

If you want to stick to a protocol, you can also consider using a technique called type erasure, 
sometimes referred to as boxing. With type erasure, you can move a compile-time protocol to 
runtime by wrapping a type in a container type. This way, you can have protocols 
with Selfrequirements—such as Hashable or Equatable types—or protocols with associated 
types as dictionary keys. 

Before you begin, I must warn you. Erasing a type in Swift is as fun as driving in Los Angeles 
rush hour. Type erasure is a display of how Swift’s protocols aren’t fully matured yet, so don’t 
feel bad if it seems complicated. Type erasure is a workaround until the Swift engineers offer a 
native solution. 

 

Note 

Inside the Swift source, type erasure is also used. You’re not the only ones running into this 
problem! 

 

You’ll introduce a new struct, called AnyPokerGame. This concrete type wraps a type conforming 
to PokerGame and hides the inner type. Then AnyPokerGame conforms to PokerGame and forwards 
the methods to the stored type (see figure 13.5). 



Figure 13.5. Type-erasing PokerGame 

 

Because AnyPokerGame is a concrete type—namely, a struct—you can use AnyPokerGame to store 
different poker games inside a single array, set, or dictionaries, and other places (see figure 13.6). 

Figure 13.6. Storing AnyPokerGame inside a Set 

 

In code, you can see how AnyPokerGame wraps the PokerGame. Notice how you wrap both 
a StudPoker and TexasHoldem game in a single Array and Set, and also as Dictionary keys. 
Problem solved! 

Listing 13.30. AnyPokerGame in action 

let studPoker = StudPoker() 

let holdEm = TexasHoldem() 

 



// You can mix multiple poker games inside an array. 

let games: [AnyPokerGame] = [ 

    AnyPokerGame(studPoker), 

    AnyPokerGame(holdEm) 

] 

 

games.forEach { (pokerGame: AnyPokerGame) in 

    pokerGame.start() 

} 

 

// You can store them inside a Set, too 

let setOfGames: Set<AnyPokerGame> = [ 

    AnyPokerGame(studPoker), 

    AnyPokerGame(holdEm) 

] 

 

// You can even use poker games as keys! 

var numberOfPlayers = [ 

    AnyPokerGame(studPoker): 300, 

    AnyPokerGame(holdEm): 400 

] 

 

Note 

Remember AnyError from chapter 11? It also type-erases Error so that you can mix error types. 
Also, AnyIterator is a type-erased iterator, which you saw in chapter 9. 

 

Creating AnyPokerGame 

Now that you’ve seen AnyPokerGame in action, it’s time to create it. You start by 
introducing AnyPokerGame, which adheres to PokerGame. In the initializer, you pass 
a PokerGame type constrained by a generic. Then, you store the start method from the 
passed PokerGame inside a private property called _start. Once start() is called 
on AnyPokerGame, you forward it to the stored _start() method. 



Listing 13.31. Introducing AnyPokerGame 

struct AnyPokerGame: PokerGame {                   ❶ 

 

    init<Game: PokerGame>(_ pokerGame: Game)  {    ❷ 

         _start = pokerGame.start                  ❸ 

    } 

 

    private let _start: () -> Void                 ❹ 

 

    func start() { 

        _start()                                   ❺ 

    } 

} 

• ❶ You introduce AnyPokerGame, conforming to the PokerGame protocol. 
• ❷ You accept a PokerGame generic. 
• ❸ You store the start method into the _start property. 
• ❹ The _start property is defined here. 
• ❺ Whenever start() is called, you call the internal _start() property. 

To erase a type, you tediously have to mirror every method from the protocol and store them in 
their functions as properties. But you’re in luck, because PokerGame only has a single method. 

You’re almost done. Because PokerGame is also Hashable, you need to make AnyPokerGame adhere 
to Hashable. In this case, Swift can’t synthesize the Hashable implementation for you because 
you’re storing a closure. Like a class, a closure is a reference type, which Swift won’t synthesize; 
so you have to implement Hashable yourself. Luckily, Swift offers the AnyHashabletype, which is 
a type-erased Hashable type. You can store the poker game inside AnyHashableand forward 
the Hashable methods to the AnyHashable type. 

Let’s take a look at the complete implementation of AnyPokerGame. 

Listing 13.32. Implementing Hashable 

struct AnyPokerGame: PokerGame { 

 

    private let _start: () -> Void 

    private let _hashable: AnyHashable                      ❶ 

 



    init<Game: PokerGame>(_ pokerGame: Game)  { 

        _start = pokerGame.start 

        _hashable = AnyHashable(pokerGame)                  ❷ 

    } 

 

    func start() { 

        _start() 

    } 

} 

extension AnyPokerGame: Hashable {                          ❸ 

 

    func hash(into hasher: inout Hasher) { 

        _hashable.hash(into: &hasher)                       ❹ 

     } 

 

    static func ==(lhs: AnyPokerGame, rhs: AnyPokerGame) -> Bool { 

        return lhs._hashable == rhs._hashable 

     } 

} 

• ❶ The hashable property stores the AnyHashable type. 
• ❷ You store the poker game inside _hashable. 
• ❸ AnyPokerGame adheres to Hashable. 
• ❹ You forward the required methods to the AnyHashable methods. 

 

Note 

AnyPokerGame is extended as a style choice to separate the code to conform to Hashable. 

 

Congratulations, you’ve erased a type! AnyPokerGame wraps any PokerGame type, and now you’re 
now free to use AnyPokerGame inside collections. With this technique, you can use protocols 
with Self requirements—or associated types—and work with them at runtime! 



Unfortunately, the solution covered here is just the tip of the iceberg. The more complex your 
protocol is, the more complicated your type-erased protocol turns out. But it could be worth the 
trade-off; the consumers of your code benefit if you hide these internal complexities from them. 

13.3.3. Exercise 

4 

Are you up for an advanced challenge? You’re building a small Publisher/Subscriber (also known as 
Pub/Sub) framework, where a publisher can notify all its listed subscribers of an event: 

// First, you introduce the PublisherProtocol. 

protocol PublisherProtocol { 

    // Message defaults to String, but can be something else too. 

    // This saves you a typealias declaration. 

    associatedtype Message = String 

 

    // PublisherProtocol has a Subscriber, constrained to the 

➥ SubscriberProtocol. 

    // They share the same message type. 

    associatedtype Subscriber: SubscriberProtocol 

        where Subscriber.Message == Message 

    func subscribe(subscriber: Subscriber) 

} 

 

// Second, you introduce the SubscriberProtocol, resembling a 

➥ subscriber that reacts to events from a publisher. 

protocol SubscriberProtocol { 

    // Message defaults to String, but can be something else too. 

    // This saves you a typealias declaration. 

    associatedtype Message = String 

    func update(message: Message) 

} 

 

// You create a Publisher that stores a single type of Subscriber. But 



➥ it can't mix and match subscribers. 

final class Publisher<S: SubscriberProtocol>: PublisherProtocol where 

➥ S.Message == String { 

 

    var subscribers = [S]() 

    func subscribe(subscriber: S) { 

        subscribers.append(subscriber) 

    } 

 

    func sendEventToSubscribers() { 

        subscribers.forEach { subscriber in 

            subscriber.update(message: "Here's an event!") 

        } 

    } 

} 

Currently, Publisher can maintain an array of a single type of subscriber. Can you type-
erase SubscriberProtocol so that Publisher can store different types of subscribers? 

Hint: because SubscriberProtocol has an associated type, you can make a 
generic AnySubscriber<Msg> where Msg represents the Message associated type. 

13.4. AN ALTERNATIVE TO PROTOCOLS 

You have seen many use-cases when dealing with protocols. With protocols, you may be 
tempted to make most of the code protocol-based. Protocols are compelling if you have a 
complex API; then your consumers only need to adhere to a protocol to reap the benefits, while 
you as a producer can hide the underlying complexities of a system. 

However, a common trap is starting with a protocol before knowing that you need one. Once you 
hold a hammer—and a shiny one at that—things can start looking like nails. Apple advocates 
starting with a protocol in their WWDC videos. But protocols can be a pitfall, too. If you 
religiously follow the protocol-first paradigm, but aren’t sure yet if you need them, you may end 
up with unneeded complexity. You’ve also seen in the previous section how protocols have 
shortcomings that can make coming up with a fitting solution difficult. 

Let’s use this section to consider another alternative. 



13.4.1. With great power comes great unreadability 

First, consider if you truly need a protocol. Sometimes a little duplication is not that bad. With 
protocols, you pay the price of abstraction. Walking the line between over-abstractions and rigid 
code is a fine art. 

A straightforward approach is sticking with concrete types when you’re not sure if you need a 
protocol; for instance, it’s easier to reason about a String than a complex generic constraint 
with three where clauses. 

Let’s consider another alternative for when you think you need a protocol, but perhaps you can 
avoid it. 

One protocol that is a common occurrence in one shape or another is a Validator protocol, 
representing some piece of data that can be validated, such as in forms. Before being shown an 
alternative, you’ll model the Validator with a protocol, as follows. 

Listing 13.33. Validator 

protocol Validator { 

     associatedtype Value                      ❶ 

     func validate(_ value: Value) -> Bool     ❷ 

 } 

• ❶ A type of value that can be validated 
• ❷ A Boolean indicating if validation succeeded or failed 

Then, you can use this Validator, for instance, to check whether a String has a minimal amount 
of characters. 

Listing 13.34. Implementing the Validator protocol 

struct MinimalCountValidator: Validator { 

    let minimalChars: Int 

 

    func validate(_ value: String) -> Bool { 

        guard minimalChars > 0 else { return true } 

        guard !value.isEmpty else { return false } // isEmpty is faster than 

     count check 

        return value.count >= minimalChars 

    } 

} 



 

let validator = MinimalCountValidator(minimalChars: 5) 

validator.validate("1234567890") // true 

Now, for each different implementation, you have to introduce a new type conforming 
to Validator type, which is a fine approach but requires more boilerplate. Let’s consider an 
alternative to prove that you don’t always need protocols. 

13.4.2. Creating a generic struct 

With generics, you make a type—such as a struct—work with many other types, but the 
implementation stays the same. If you add a higher-order function into the mix, you can swap 
out implementations, too. Instead of creating a Validator protocol and many Validatortypes, 
you can offer a generic Validator struct instead. Now, instead of having a protocol and multiple 
implementations, you can have one generic struct. 

Let’s start by creating the generic Validator struct. Notice how it stores a closure, which allows 
you to swap out an implementation. 

Listing 13.35. Introducing Validator 

struct Validator<T> { 

 

    let validate: (T) -> Bool 

 

    init(validate: @escaping (T) -> Bool) { 

        self.validate = validate 

    } 

} 

 

let notEmpty = Validator<String>(validate: { string -> Bool in 

    return !string.isEmpty 

}) 

 

notEmpty.validate("") // false 

notEmpty.validate("Still reading this book huh? That's cool!") // true 

You end up with a type that can have different implementations and that works on many types. 
With minimal effort, you can seriously power up Validator. You can compose little validators 
into a smart validator via a combine method. 



Listing 13.36. Combining validators 

extension Validator { 

    func combine(_ other: Validator<T>) -> Validator<T> {                  ❶ 

         let combinedValidator = Validator<T>(validate: { (value: T) -> 

     Bool in                                                               ❷ 

             let ownResult = self.validate(value)                          ❸ 

             let otherResult = other.validate(value) 

             return ownResult && otherResult 

         }) 

 

        return combinedValidator                                           ❹ 

     } 

} 

 

let notEmpty = Validator<String>(validate: { string -> Bool in 

    return !string.isEmpty 

}) 

 

let maxTenChars = Validator<String>(validate: { string -> Bool in          ❺ 

     return string.count <= 10 

}) 

 

let combinedValidator: Validator<String> = notEmpty.combine(maxTenChars)   ❻ 

combinedValidator.validate("") // false 

combinedValidator.validate("Hi") // true 

combinedValidator.validate("This one is way too long") // false 

• ❶ On Validator, you declare a method that accepts two validators and returns a new one. 
Notice how you don’t define a generic; the T from Validator<T> in the type definition is 
reused. 

• ❷ You pass a closure to a new combinedValidator. 
• ❸ Inside the validation closure of the combinedValidator, you run both validations and 

return the result. 
• ❹ You return the new combined validator. 



• ❺ To showcase your new functionality, you create a new validator that wants maximally 
ten characters for string. 

• ❻ You can now easily combine two validators into one. 

You combined two validators. Because combine returns a new Validator, you can keep chaining, 
such as by combining a regular expression validator with a not-empty-string validator and so 
on. Also, because Validator is generic, it works on any type, such as Intvalidators and others. 
It’s one example of how you get flexibility without using protocols. 

13.4.3. Rules of thumb for polymorphism 

Here are some heuristics to keep in mind when reasoning about polymorphism in Swift. 

Requirements Suggested approach 

Light-weight polymorphism Use enums. 

A type that needs to work with multiple types Make a generic type. 

A type that needs a single configurable implementation Store a closure. 

A type that works on multiple types and has a single configurable 

implementation 

Use a generic struct or class that 

stores a closure. 

When you need advanced polymorphism, default extensions, and 

other advanced use cases 

Use protocols. 

13.5. CLOSING THOUGHTS 

You’re armed and ready to make code testable, apply Swift’s conditional conformance, type-
erase generic types, and know when to use enums versus generic structs versus protocols! 

This chapter laid out some tough sections, but you’re persistent and reached the end. It’s time to 
pat yourself on the back! The hardest part is over, and you’ve earned your Swift badge for 
covering the tough theory in this book. 

SUMMARY 

• You can use protocols as an interface to swap out implementations, for testing, or for 
other use cases. 

• An associated type can resolve to a type that you don’t own. 
• With conditional conformance, a type can adhere to a protocol, as long as its generic type 

or associated type adheres to this protocol. 
• Conditional conformance works well when you have a generic type with very few 

constraints. 
• A protocol with associated types or Self requirements can’t be used as a concrete type. 
• Sometimes, you can replace a protocol with an enum, and use that as a concrete type. 



• You can use a protocol with associated types or Self requirements at runtime via type 
erasure. 

• Often a generic struct is an excellent alternative to a protocol. 
• Combining a higher-order function with a generic struct enables you to create highly 

flexible types. 

ANSWERS 

1 

Make WaffleHouse testable to verify that a Waffle has been served. 

One way is to make Chef a protocol, and then you can swap out the implementation 
of Chef inside WaffleHouse. Then you can pass a testing chef to WaffleHouse: 

struct Waffle {} 

 

protocol Chef { 

    func serve() -> Waffle 

} 

 

class TestingChef: Chef { 

    var servedCounter: Int = 0 

    func serve() -> Waffle { 

        servedCounter += 1 

        return Waffle() 

    } 

} 

 

struct WaffleHouse<C: Chef> { 

 

    let chef: C 

    init(chef: C) { 

        self.chef = chef 

    } 

 

    func serve() -> Waffle { 



        return chef.serve() 

    } 

 

} 

 

let testingChef = TestingChef() 

let waffleHouse = WaffleHouse(chef: testingChef) 

waffleHouse.serve() 

testingChef.servedCounter == 1 // true 

2 

What is the benefit of a generic having few constraints when applying conditional conformance? 

You have more flexibility in having a base working with many types, and you still have the option to 
get benefits when a type does conform to a protocol. 

3 

Make CachedValue conform to the custom Track protocol from this chapter: 

extension CachedValue: Track where T: Track { 

    func play() { 

        currentValue.play() 

    } 

} 

4 

Build a small Publisher/Subscriber (also known as Pub/Sub) framework, where a publisher can 
notify all its listed subscribers of an event. 

You solve it by creating AnySubscriber. Notice how you need to make AnySubscribergeneric, 
because of the Message associated type from Subscriber. In this 
case, Publisherstores AnySubscriber of type AnySubscriber<String>: 

struct AnySubscriber<Msg>: SubscriberProtocol { 

 

    private let _update: (_ message: Msg) -> Void 

 



    typealias Message = Msg 

 

    init<S: SubscriberProtocol>(_ subscriber: S) where S.Message == Msg { 

        _update = subscriber.update 

    } 

 

    func update(message: Msg) { 

        _update(message) 

    } 

} 

Publisher isn’t generic anymore. Now it can mix and match subscribers: 

final class Publisher: PublisherProtocol { 

 

    // Publisher makes use of AnySubscriber<String> types. Basically, 

➥ it pins down the Message associated type to String. 

    var subscribers = [AnySubscriber<String>]() 

    func subscribe(subscriber: AnySubscriber<String>) { 

        subscribers.append(subscriber) 

    } 

 

    func sendEventToSubscribers() { 

        subscribers.forEach { subscriber in 

            subscriber.update(message: "Here's an event!") 

        } 

    } 

} 

 

 

 

 

 



Chapter 14. Delivering quality Swift code 

This chapter covers 

• Documenting code via Quick Help 
• Writing good comments that don’t distract 
• How style isn’t too important 
• Getting consistency and fewer bugs with SwiftLint 
• Splitting up large classes in a Swifty way 
• Reasoning about making types generic 

Writing Swift code is fun, but in larger projects the ratio between writing and maintaining code 
shifts toward maintenance. Mature projects are where proper naming, code reusability, and 
documentation play an essential role. This chapter addresses these points to make 
programmers’ lives more comfortable when looking at code from a maintenance perspective. 

This is the least code-centric chapter in this book, but one of the more important ones when 
working on projects in teams or when trying to pass a code assignment for a new job. It also 
covers some refactoring approaches to make your code more generic and reusable. 

It starts with documentation—who doesn’t love to write it? I know I don’t. But you can really 
help other programmers get up to speed when you supply them with good examples, 
descriptions, reasoning, and requirements. You’ll see how to add documentation to code via the 
use of Quick Help. 

Next, you’re going to handle when and how to add comments to your code and see how you can 
add, not distract, by surgically placing valuable comments. Comments aren’t Swift-centric, but 
they’re still an influential part of daily (Swift) programming. 

Swift offers a lot of different ways to write your code. But you’ll see how style isn’t too important 
and how consistency is more valuable to teams. You’ll see how to install and configure SwiftLint 
to keep consistency in a codebase so that everyone, beginner or expert, can write code as if a 
single developer is writing it. 

Then you’ll discover how you can think differently about oversized classes. Generally, these tend 
to be “Manager” classes. Apple’s source and examples include plenty of these manager classes, 
and following suit can be tempting. But more often than not, manager classes have many 
responsibilities that can harm maintainability. You’ll discover how you can split up large classes 
and pave the road to making generic types. 

Finding a fitting name is hard. You’ll find out how types can get overspecified names and how 
suitable names are more future-proof and can prepare you for making types generic. 



14.1. API DOCUMENTATION 

Writing documentation can be tedious; you know it, I know it, we all know it. But even adding a 
little documentation to your properties and types can help a coworker get up to speed quickly. 

Documentation is handy for internal types across a project. But it becomes especially important 
when offering elements that are marked as public, such as public functions, variables, and 
classes. Code marked as public is accessible when provided via a framework that can be reused 
across projects, which is all the more reason to provide complete documentation. 

In this section, you’ll see how you can add useful notations to accompany your code and to guide 
your readers via the use of doc comments, which are presented in Xcode via Quick Help. 

Then, at the end, you’ll see how to generate a documentation website based on Quick Help, via 
the help of a tool called Jazzy. 

14.1.1. How Quick Help works 

Quick Help documentation is a short markdown notation that accompanies types, properties, 
functions, enum cases, and others. Xcode can show tooltips after Quick Help documentation is 
added. 

Imagine you’re creating a turn-based, online game. You’ll use a small enum to represent each 
turn a player can take, such as skipping a turn, attacking a location, or healing. 

Xcode can display Quick Help tips in two ways. The pop-up, shown in figure 14.1, is activated by 
hovering over a word and pressing the Option key (Mac). 

Figure 14.1. Quick Help pop-up 

 

Quick Help is also available in Xcode’s sidebar (see figure 14.2). 



Figure 14.2. Quick Help in the sidebar 

 

The enum in the Quick Help notation is formatted as follows. 

Listing 14.1. The turn with Quick Help notations 

/// A player's turn in a turn-based online game. 

enum Turn { 

    /// Player skips turn, will receive gold. 

    case skip 

    /// Player uses turn to attack location. 

    /// - x: Coordinate of x location in 2D space. 

    /// - y: Coordinate of y location in 2D space. 

    case attack(x: Int, y: Int) 

    /// Player uses round to heal, will not receive gold. 

    case heal 

} 

By using a /// notation, you can add Quick Help notations to your types. By adding Quick Help 
documentation, you can add more information to the code you write. 



14.1.2. Adding callouts to Quick Help 

Quick Help offers many markup options—called callouts—that you can add to Quick Help. 
Callouts give your Quick Help tips a little boost, such as the types of errors a function can throw 
or showing an example usage of your code. 

Let’s go over how to add example code and error-throwing code by introducing a new function. 
This new function will accept multiple Turn enums and returns a string of the actions happening 
inside of it. 

Figure 14.3 shows how Quick Help example code is represented. 

Figure 14.3. Quick Help with callouts 

 

To create an example inside Quick Help, you need to tab text inside a Quick Help notation, as 
shown here. 

Listing 14.2. Adding callouts 

/// Takes an array of turns and plays them in a row. 

/// 

/// - Parameter turns: One or multiple turns to play in a round. 



/// - Returns: A description of what happened in the turn. 

/// - Throws: TurnError 

/// - Example: Passing turns to `playTurn`. 

/// 

///         let turns = [Turn.heal, Turn.heal] 

///         try print(playTurns(turns)) "Player healed twice." 

func playTurns(_ turns: [Turn]) throws -> String { 

Swift can tell you at compile time that a function can throw, but the thrown errors are only 
known at runtime. Adding a Throws callout can at least give the reader more information about 
which errors to expect. 

You can even include more callouts, such 
as Attention, Author, Authors, Bug, Complexity, Copyright, Date, Note, Precondition, Requires,
 See AlsoVersion, Warning, and a few others. 

For a full list of all the callout options, see Xcode’s markup guidelines (http://mng.bz/Qgow). 

14.1.3. Documentation as HTML with Jazzy 

When you accompany your code with Quick Help documentation, you can get a rich 
documentation website that accompanies your project. 

Jazzy (https://github.com/realm/jazzy) is a great tool to convert your Quick Help notations into an 
Apple-like documentation website. For instance, imagine that you’re offering an Analytics 
framework. You can have Jazzy generate documentation for you, based on the public types and 
quick help information that’s available (see figure 14.4). 



Figure 14.4. Jazzy documentation 

 

Jazzy is a command-line tool and is installed as a Ruby gem. To install and run Jazzy, use these 
commands from the terminal: 

gem install jazzy 

jazzy 

You’ll see the following output: 

Running xcodebuild 

building site 

building search index 

downloading coverage badge 

jam out to your fresh new docs in `docs` 



Now you’ll find a docs folder with your source code nicely documented. You can apply Jazzy to 
any project where you’d like to generate a website with documentation. 

14.2. COMMENTS 

Even though comments aren’t related to Swift only, delivering code that is pleasing to read and 
quick to understand is still valuable. 

Comments, or explicitly knowing when to add value with comments, are a vital component of 
day-to-day programming. Unfortunately, comments can muddy up your code if you’re not 
careful. This section will show you how to write helpful comments. 

14.2.1. Explain the “why” 

A simple rule to follow is that a comment tells the reader “why” this element is there. In 
contrast, code tells the reader “what” it’s doing. 

Imagine a Message struct that allows a user to message another user privately. You can see in 
this example that when comments are focused on the “what,” comments don’t add much. 

Listing 14.3. A struct with “what” comments 

struct Message { 

  // The id of the message 

  let id: String 

 

  // The date of the message 

  let date: Date 

 

  // The contents of the message 

  let contents: String 

} 

These comments are redundant and muddy up the code. You can infer the meaning of these 
variables from the property names and, on top of that, they don’t add anything to Quick Help. 

Instead, try to explain the “why” with a comment, as shown here. 

Listing 14.4. Message with a “why” comment 

struct Message { 

  let id: String 

  let date: Date 



  let contents: String 

 

  // Messages can get silently cut off by the server at 280 characters. 

  let maxLength = 280 

} 

Here you explain why maxLength is there and why 280 isn’t just an arbitrary number, which isn’t 
something you can infer from the property name. 

14.2.2. Only explain obscure elements 

Not all “whys” need to be explained. 

Readers of your code tend only to be interested in obscure deviations from standard code, such 
as why you’re storing data in two places instead of one (perhaps for performance benefits), or 
why you’re reversing names in a list before you search in it (maybe so you can search 
on lastname instead). 

You don’t need to add comments to code your peers already know. Still, feel free to use them at 
significant deviations. As a rule of thumb, though, stay stingy with comments. 

14.2.3. Code has the truth 

No matter how many comments you write, the code has the truth. So when you refactor code, 
you’ll have to refactor the comments that go with it. Out-of-date comments are garbage and 
noise in an otherwise pure environment. 

14.2.4. Comments are no bandage for bad names 

Comments can wrongfully be used as a bandage to compensate for bad function or variable 
names. Instead, explain yourself in code so that you won’t need comments. 

The next example shows comments added as a bandage, which you could omit by giving a 
Boolean check more context via code: 

// Make sure user can access content. 

if user.age > 18 && (user.isLoggedIn || user.registering) { ... } 

Instead, give context via code so that a comment isn’t needed: 

let canUserAccessContent = user.age > 18 && (user.isLoggedIn || 

     user.registering) 

 

if canUserAccessContent { 



  ... 

} 

The code now gives context, and a comment isn’t needed anymore. 

14.2.5. Zombie code 

Zombie code is commented-out code that doesn’t do anything. It’s dead but still haunts your 
workspace. 

Zombie code is easily recognizable by commented-out chunks: 

// func someThingUsefulButNotAnymore() { 

//     user.save() 

// } 

Sometimes zombie code can linger inside codebases, probably because it’s forgotten or because 
of a hunch that it may be needed again at some point. 

Attachment issues aside, at some point you’ll have to let go of old code. It will still live on in your 
memories, except those memories are called version control, such as git. If you need an old 
function again, you can use the version control of your choice to get it back while keeping your 
codebase clean. 

14.3. SETTLING ON A STYLE 

In this section, you’ll see how to enforce style rules via a tool called SwiftLint. 

It’s rare to find a developer who doesn’t have a strong preference for a style. John loves to 
use forEach wherever possible, whereas Carl wants to solve everything with for loops. Mary 
prefers her curly braces on the same line, and Geoff loves putting each function parameter on a 
new line so that git diffs are easier to read. 

These style preferences can run deep, and they can cause plenty of debates inside teams. 

But ultimately style isn’t too important. If code looks sparkly-clean but is full of bugs, or no one 
uses it, then what is the point of good style? The goal of software isn’t to look readable; it’s to fill 
a need or solve a problem. 

Of course, sometimes style does matter for making a codebase more pleasant to read and easier 
to understand. In the end, style is a means to an end and not the goal itself. 



14.3.1. Consistency is key 

When working in a team, more valuable than a style itself is style consistency. You save time 
when code is predictable and seemingly written by a single developer. 

Having a general idea of what a Swift file looks like—before you even open it—is beneficial. You 
don’t want to spend much time deciphering the code you’re looking at, which lowers the 
cognitive load of you and your team members. Newcomers to a project are up to speed quicker 
and adopt stylistic choices when they recognize a clear style to conform to. 

By removing style debates from the equation, you can focus on the important parts, which is 
making software that solves problems or fills needs. 

14.3.2. Enforcing rules with a linter 

You can increase codebase consistency and minimize style discussions by adding a linter to a 
project. A linter tries to detect problems, suspicious code, and style deviations before you 
compile or run your program. Using a linter to analyze your code ensures that you keep a 
consistent codebase across teams and projects. 

With the help of a linter, both newcomers and veterans to a project can work on new and old 
code and maintain a consistent style enforced by the linter. A linter even helps you check for bad 
practices that may occur from time to time. 

Realm offers a great tool called SwiftLint (https://github.com/realm/SwiftLint) to fulfill this linting 
role. You can use SwiftLint to enforce style guidelines that you configure. By default, it uses 
guidelines determined by the Swift community (https://github.com/github/swift-style-guide). 

For example, the code in figure 14.5 violates some rules, such as force unwrapping and empty 
whitespace. SwiftLint lets you know via warnings and errors. You can consider SwiftLint to be a 
compiler extension. 

Figure 14.5. SwiftLint in action 

 



It’s not all about style, either. The empty count violation depicted in figure 14.5 alerts you to 
use isEmpty instead of .count == 0, because isEmpty performs better on large arrays. 

Don’t worry if you find some rules too strict; you can configure each rule to your liking. After a 
team settles on rules, everybody can move forward, and you can take style discussions out of the 
equation while reviewing code. 

Read on to see how to install SwiftLint and configure its rules. 

14.3.3. Installing SwiftLint 

You can install SwiftLint using HomeBrew (https://brew.sh). In your command line, type the 
following: 

brew install swiftlint 

Alternatively, you can directly install the SwiftLint package from the Github repository 
(https://github.com/realm/Swiftlint/releases). 

SwiftLint is a command-line tool you can run with swiftlint. But chances are you’re using 
Xcode. You’ll configure it so that SwiftLint works there, too. 

In Xcode, locate the Build Phases tab (see figure 14.6). Click the plus button, and choose New 
Run Script Phase. Then add a new script and add the code shown in figure 14.7. 

Figure 14.6. Xcode build phases 

 



Figure 14.7. Xcode script 

 

That’s it! The next time you build your project, SwiftLint throws warnings and errors where 
applicable, based on a default configuration. 

14.3.4. Configuring SwiftLint 

Next, you’d probably like to configure SwiftLint to your liking. The configuration file is a yml—or 
yaml—file called .swiftlint.yml. This yaml file contains the rules you can enable and disable for 
your project. 

Listing 14.5. SwiftLint configuration file 

disabled_rules: # rule identifiers to exclude from running 

  - variable_name 

  - nesting 

  - function_parameter_count 

opt_in_rules: # some rules are only opt-in 

  - control_statement 

  - empty_count 

  - trailing_newline 

  - colon 

  - comma 

included: # paths to include during linting. `--path` is ignored if present. 

  - Project 

  - ProjectTests 

  - ProjectUITests 



excluded: # paths to ignore during linting. Takes precedence over `included`. 

  - Pods 

  - Project/R.generated.swift 

 

# configurable rules can be customized from this configuration file 

# binary rules can set their severity level 

force_cast: warning # implicitly. Give warning only for force casting 

 

force_try: 

  severity: warning # explicitly. Give warning only for force try 

 

type_body_length: 

  - 300 # warning 

  - 400 # error 

 

# or they can set both explicitly 

file_length: 

  warning: 500 

  error: 800 

 

large_tuple: # warn user when using 3 values in tuple, give error if there 

➥ are 4 

   - 3 

   - 4 

 

# naming rules can set warnings/errors for min_length and max_length 

# additionally they can set excluded names 

type_name: 

  min_length: 4 # only warning 

 

    error: 35 



  excluded: iPhone # excluded via string 

reporter: "xcode" 

Alternatively, you can check all the rules that SwiftLint offers via the swiftlint rulescommand. 

Move this .swiftlint.yml file to the root directory of your source code—such as where you can 
find the main.swift or AppDelegate.swift file. Now a whole team shares the same rules, and you 
can enable and disable them as your heart desires. 

14.3.5. Temporarily disabling SwiftLint rules 

Some rules are meant to be broken. For example, you may have force unwrapping set as a 
violation, but sometimes you might want it enabled. You can use SwiftLint modifiers to turn off 
specific rules for several lines in your code. 

By applying specific comments in your code, you can disable SwiftLint rules at their respective 
lines. For example, you can disable and enable a rule in your code with the following: 

// swiftlint:disable <rule1> [<rule> <rule>...] 

// .. violating code here 

// swiftlint:enable <rule1> [<rule> <rule>...] 

You can modify these rules with the :previous, :this, or :next keywords. 

For example, you can turn off the violating rules you had at the beginning of this section: 

if list.count == 0 { // swiftlint:disable:this empty_count 

      // swiftlint:disable:next force_unwrapping 

      print(lastLogin!) 

} 

14.3.6. Autocorrecting SwiftLint rules 

As soon as you add SwiftLint to an existing project, it will likely start raining SwiftLint warnings. 
Luckily, SwiftLint can fix warnings automatically via the following command you can run from 
the terminal: 

swiftlint autocorrect 

The autocorrect command adjusts the files for you and fixes warnings where it feels confident 
enough to do so. 

Of course, it doesn’t hurt to check the version control’s diff file to see whether your code has 
been corrected properly. 



14.3.7. Keeping SwiftLint in sync 

If you use SwiftLint with multiple team members, chances are that one team member could have 
a different version of SwiftLint installed, especially when SwiftLint gets upgraded over time. You 
can add a small check so that Xcode gives a warning when you’re on the wrong version. 

This is another build phase you can add to Xcode. For example, the following command raises 
an Xcode warning when your SwiftLint isn’t version 0.23.1: 

EXPECTED_SWIFTLINT_VERSION="0.23.1" 

if swiftlint version | grep -q ${EXPECTED_SWIFTLINT_VERSION}; then 

echo "Correct version" 

else 

echo "warning: SwiftLint is not the right version 

➥ ${EXPECTED_SWIFTLINT_VERSION}. Download from 

➥ https://github.com/realm/SwiftLint" 

Now, whenever a team member is falling behind with updates, Xcode throws a warning. 

This section provided more than enough to get you started on SwiftLint. SwiftLint offers many 
more customizations and is regularly updated with new rules. Be sure to keep an eye on the 
project! 

14.4. KILL THE MANAGERS 

 

Manager classes—recognized by the -Manager suffix—tend to pop up fairly often in the iOS and 
Swift community, most likely because Apple’s code as an example offers manager types. But 
manager classes tend to have many (or too many) responsibilities. Challenge the “you’ve always 
done it this way” approach and see if you can improve code readability by tackling large 
manager classes. 



You’re going to see how you can reconsider a large class with many responsibilities by cutting it 
up into smaller reusable types. Working in a more modular way paves the road to a more 
modular and Swifty approach to architecture, including generic types. 

Because manager classes tend to hold the crown of being oversized classes, they serve as a prime 
example in this section. 

14.4.1. The value of managers 

Managers tend to be classes with many responsibilities, such as the following examples: 

• BluetoothManager—Checking connections, holding a list of devices, helping to reconnect, 
and offering a discovery service 

• ApiRequestManager—Performing network calls, storing responses inside a cache, having a 
queue mechanism, and offering WebSocket support 

Avoiding manager-like classes in the real world is easier said than done; it isn’t 100% 
preventable. Also, manager types make sense when you compose them out of smaller types, 
versus classes containing many responsibilities. 

If you have a large manager class, however, you can drop the Manager suffix, and the type’s name 
tells the reader exactly as much as before. For example, 
rename BluetoothManager as Bluetooth and expose the same responsibilities. Alternatively, 
rename PhotosManager as Photosor Stack. Again, without the -Manager suffix, a type exposes the 
same amount of information of its tasks. 

14.4.2. Attacking managers 

Usually, when a type gains the -Manager suffix, it’s an indicator that this class has a lot of 
essential responsibilities. Let’s see how you can cut it up. 

First, name these responsibilities explicitly so that a manager doesn’t hide them. For example, 
an ApiRequestManager might be called ApiRequestNetworkCacheQueueWebsockets. That’s a 
mouthful, but the truth has come out! Explicitly labeling responsibilities means that you 
uncovered all that the type does; it’s now clear just how much responsibility 
the ApiRequestManager has. 

As a next step, consider splitting up the responsibilities into smaller types, such 
as ResponseCache, RequestQueue, Network, and Websockets types (see figure 14.8). Also, you could 
now rename the ApiRequestManager to something more precise, such as Network. 



Figure 14.8. Refactoring ApiRequestManager 

 

The ApiRequestManager is divided into precise pieces and is composed of these separated types 
you just extracted. 

You can now reason about each type individually. Also, if a bug exists, such as in the caching 
mechanism, you don’t need to look inside a giant ApiRequestManager class. You can most likely 
find the bug inside the ResponseCache type. 

Not only are fewer managers great for getting work done faster—did I say that out loud?—you 
also gain clarity when writing software in smaller components. 

14.4.3. Paving the road for generics 

Now that the big ApiRequestManager has been cut up into smaller types, you can more easily 
decide which of these new types you can repurpose, so that they aren’t limited to the network 
domain. 

For example, the ResponseCache and RequestQueue types are focused explicitly on network-
related functionality. But it’s not a big leap to imagine that a cache and queue work on other 
types, too. If queueing and caching mechanisms are required in multiple parts of an application, 
you can decide to spend some effort to make ResponseCache and ResponseQueuegeneric, 
indicated with a <T> (see figure 14.9). 



Figure 14.9. Making types generic 

 

You drop the Response and Request names to gain a Queue and Cache type for elements outside 
of the network domain, and you would also refactor these types to make them generic in 
functionality (see figure 14.10). 

Figure 14.10. Reusing generic types 

 

This time you can use the generic Queue and Cache types to queue and cache network requests 
and responses. But in some other part of your application, thanks to generics, you can use a 
queue and cache for storing and uploading image data, for example. 

Having smaller types with a clear responsibility makes building larger types easier. Add generics 
on top of that and you have a Swifty approach to deal with core functionality inside an 
application. 

As a counterpoint to generics, creating a generic type from the start isn’t always fruitful. You 
might look at a chair and a couch and think “I only need a generic Seat type.” It’s okay to 
resist DRY (Don’t Repeat Yourself) once in a while. Sometimes duplication is a fine choice when 
you’re not sure which direction your project is going. 



14.5. NAMING ABSTRACTIONS 

Naming your classes, variables, and files in programming can be harder than naming a firstborn 
baby or your pets, especially when you’re giving names to things that are intricate and 
encompass several different behaviors. 

This section shows how you can name types closer to the abstract while considering some as 
generic candidates as well. 

14.5.1. Generic versus specific 

If you give a programmer the task of creating a button to submit a registration form inside a 
program, I think it would be fair to assume that you don’t want them to create an 
abstract Something class to represent this button. Neither would an oddly overspecific name 
such as CommonRegistrationButtonUsedInFourthScreen be favorable. 

Given this example, I hope you can agree that the fitting name is most likely somewhere 
between the abstract and specific examples. 

14.5.2. Good names don’t change 

What can happen in software development is a mismatch between what a type can do versus 
how it’s used. 

Imagine that you’re creating an app that displays the top five coffee places. The app reads a 
user’s past locations and figures out where the user visited most often. 

A first thought may be to create a FavoritePlaces type. You feed this type a large number of 
locations, and it returns the five most-visited places. Then you can filter on the coffee types, as 
shown in this example. 

Listing 14.6. Getting important places 

let locations = ... // extracted locations. 

let favoritePlaces = FavoritePlaces(locations: locations) 

let topFiveFavoritePlaces = favoritePlaces.calculateMostCommonPlaces() 

 

let coffeePlaces = topFiveFavoritePlaces.filter { place in place.type == 

     "Coffee" } 

But now the client calls and wants to add new functionality to the application. They also want 
the app to show which coffee places the user has visited the least, so that they can encourage the 
user to revisit these places. 



Unfortunately, you can’t use the FavoritePlaces type again. The type does have all the inner 
workings to group locations and fulfill this new requirement, but the name specifically mentions 
that it uses favorite places only, not the least-visited places. 

What happened is that the type’s name is overspecified. The type is named after how it is used, 
which is to find the favorite places. But the type’s name would be better if you can name it after 
what it does, which is find and group occurrences of places (see figure 14.11). 

Figure 14.11. Naming a type after what it does 

 

The point is that good names don’t change. If you started with a LocationGrouper type, you 
could use it directly for both scenarios by adding a leastVisitedPlaces property; this would 
have prevented a naming refactor or a new type. 

Ending up with a bad name is a small point, but it can happen effortlessly and subtly. Before you 
know it, you might have too many brittle names in a codebase. For example, don’t use 
something like redColor as a button’s property for a warning state; a warning property might be 
better because the warning’s design might change, but a warning’s purpose won’t. Alternatively, 
when creating a UserheaderView—which is nothing more than an image and label you can reuse 
as something else—perhaps ImageDescriptionView would be more fitting as well as reusable. 

14.5.3. Generic naming 

The more abstract you make your types, the easier it is to make them generic. For example, 
a LocationGrouper is not too far removed from a Grouper<T> type, in which T could 
represent CLLocation such as Grouper<CLLocation>. But Grouper as a generic type can also be 
used to group something else, perhaps ratings for places, in which case you’d be reusing the type 
as Grouper<Rating>. 



Making a type generic should not be the goal. The more specific you can make a type, the easier 
it is to understand. The more generic a type is, the more reusable (but harder to grasp) it can be. 
But as long as the type’s name fits a type’s purpose, you’ve hit the sweet spot. 

14.6. CHECKLIST 

Next time you create a project, see if you can follow a short checklist to bump the quality of your 
deliverables: 

• Quick Help documentation 
• Sparse but useful comments explaining the why 
• Adding SwiftLint to your project 
• Cutting classes with too many responsibilities 
• Naming types after what they do, not how they are used 

14.7. CLOSING THOUGHTS 

Even though this wasn’t a code-centric chapter, its ideas are still valuable. When you keep a 
consistent, clean codebase, you may make lives more comfortable for yourself and developers 
around you. 

If you liked this chapter, I recommend reading Swift’s API design guidelines 
(http://mng.bz/XAMG). It’s jam-packed with useful naming conventions. 

You’re almost finished; in the next chapter I have some suggestions for you on what you can do 
next. 

SUMMARY 

• Quick Help documentation is a fruitful way to add small snippets of documentation to 
your codebase. 

• Quick Help documentation is especially valuable to public and internal elements offered 
inside a project and framework. 

• Quick Help supports many useful callouts that enrich documentation. 
• You can use Jazzy to generate Quick Help documentation. 
• Comments explain the “why,” not the “what”. 
• Be stingy with comments. 
• Comments are no bandage for bad naming. 
• There’s no need to let commented-out code, aka Zombie Code, linger around. 
• Code consistency is more important than code style. 
• Consistency can be enforced by installing SwiftLint. 
• SwiftLint supports configurations that you can let your team decide, which helps 

eliminate style discussions and disagreements. 
• Manager classes can drop the -Manager suffix and still convey the same meaning. 
• A large type can be composed of smaller types with focused responsibilities. 
• Smaller components are good candidates to make generic. 
• Name your types after what they do, not how they are used. 
• The more abstract a type is, the more easily you can make it generic and reusable. 



Chapter 15. Where to Swift from here 

You’ve made it to the end; it’s time to give yourself a big pat on the back! You’ve touched upon 
many language-specific points and best practices, and you’ve expanded your technical arsenal to 
attack many different problems in a Swifty way. Even better, you have seen how Swift is a 
collection of modern and not-so-modern concepts wearing a modern coat. These concepts will 
stay with you in your programming career. Next time you see an exciting new framework or 
even a new language you want to learn, you may recognize generics, map, flatMap, sum types, and 
optionals and apply the concepts straight away. Understanding these core concepts carries more 
weight than a neat Swift trick or a shiny framework. 

I hope that you embraced these concepts and that your day-to-day work has gotten a big quality 
bump. And I hope that helps you get that interesting job or exciting promotion, or it allows you 
to get those pull requests merged quicker while teaching others powerful ways to write Swift 
code. 

But what should you do next? Read on for some ideas. 

15.1. BUILD FRAMEWORKS THAT BUILD ON LINUX 

At the time of writing, Swift has a strong focus on Apple’s OS frameworks, such as iOS, tvOS, 
and MacOS. These platforms already have tons of frameworks. But the Swift community could 
use some help in making sure that frameworks also build on Linux. Having Swift code compile 
for Linux projects will help the community on the server side of things, such as command-line 
tools, web frameworks, and others. If you’re an iOS developer, creating Linux tools will open up 
a new world of programming and you’ll touch different concepts. A good start is to make your 
code work with the Swift Package Manager. 

15.2. EXPLORE THE SWIFT PACKAGE MANAGER 

The Swift Package Manager helps you get up and running and building quickly. First, take a look 
at the Getting Started guide (http://mng.bz/XAMG). 

I also recommend exploring the Package Manager source (https://github.com/apple/swift-package-

manager). The Utility and Basic folders especially have some useful extensions and types you 
may want to use to speed up your development. One of them is Result, which we’ve covered 
already. Other interesting types are OrderedSet, Version, or helpers to write command-line 
tools, such as ArgumentParser or ProgressBar. 

You may also find useful extensions (http://mng.bz/MWP7), such as flatMapValue on Dictionary, 
which transforms a value if it’s not nil. 

Unfortunately, the Swift Package Manager is not without its problems. At the time of writing, it 
doesn’t support iOS for dependency management, and it doesn’t play too well with Xcode. Over 
time, creating systems applications will get easier and more appealing with the evolution of 
Package Manager and more frameworks being offered by the community. 



15.3. EXPLORE FRAMEWORKS 

Another learning exercise is to play with or look inside specific frameworks: 

• Kitura—(https://github.com/IBM-Swift/Kitura) 
• Vapor—(https://github.com/vapor/vapor) 
• SwiftNIO — For low-level networking (https://github.com/apple/swift-nio) 
• TensorFlow for Swift—For machine learning (https://github.com/tensorflow/swift) 

If you’re more interested in metaprogramming, I suggest taking a look at Sourcery 
(https://github.com/krzysztofzablocki/Sourcery), which is a powerful tool to get rid of boilerplate in 
your codebase, amongst other things. 

15.4. CHALLENGE YOURSELF 

If you’ve always approached a new application a certain way, perhaps it’s a good time to 
challenge yourself to try a completely different approach. 

For instance, try out true protocol-oriented programming, where you model your applications 
by starting with protocols. See how far you can get without creating concrete types. You’ll enter 
the world of abstracts and tricky generic constraints. In the end, you will need a concrete type—
such as a class or struct—but perhaps you can make the most of the default implementations on 
a protocol. 

See if you can challenge yourself by using protocols, but at compile time only, which means 
you’ll be using generics and associated types. It will be harder to work with, but seeing your code 
compile and watching everything work is very rewarding. Taking a protocol-oriented approach 
may feel like you’re programming with handcuffs on, but it’ll stretch your thinking and be a 
fruitful exercise. 

Another idea is to avoid protocols altogether. See how far you can get with nothing but enums, 
structs, and higher-order functions. 

15.4.1. Join the Swift evolution 

It’s great to see Swift progress every few months with fancy new updates. But you don’t have to 
watch from the sidelines. You can be part of the conversation of Swift’s evolution and even 
submit your own proposals for change. It all starts at the Swift evolution Github page 
(https://github.com/apple/swift-evolution). 

15.4.2. Final words 

Thank you so much for purchasing and reading this book. I hope your Swift skills have gotten a 
good boost. Feel free to contact me on Twitter at @tjeerdintveen. See you there! 

 

 


	Swift in Depth
	Tjeerd in 't Veen
	Copyright
	Preface
	Acknowledgements
	About this book
	WHY THIS BOOK?
	IS THIS BOOK FOR YOU?
	WHAT THIS BOOK IS NOT
	A BIG EMPHASIS ON PRACTICAL SCENARIOS
	ROADMAP
	Chapter 1: Introducing Swift in depth
	Chapter 2: Modeling data with enums
	Chapter 3: Writing cleaner properties
	Chapter 4: Making optionals second nature
	Chapter 5: Demystifying initializers
	Chapter 6: Effortless error handling
	Chapter 7: Generics
	Chapter 8: Putting the pro in protocol-oriented programming
	Chapter 9: Iterators, sequences, and collections
	Chapter 10: Understanding map, flatMap, and compactMap
	Chapter 11: Asynchronous error handling with Result
	Chapter 12: Protocol extensions
	Chapter 13: Swift patterns
	Chapter 14: Delivering quality Swift code
	Chapter 15: Where to Swift from here

	ABOUT THE CODE
	BOOK FORUM
	ABOUT THE AUTHOR
	ABOUT THE COVER ILLUSTRATION

	Chapter 1. Introducing Swift in depth
	1.1. THE SWEET SPOT OF SWIFT
	Figure 1.1. The sweet spot of Swift

	1.2. BELOW THE SURFACE
	Figure 1.2. The tip of Swift’s iceberg

	1.3. SWIFT’S DOWNSIDES
	1.3.1. ABI stability
	1.3.2. Strictness
	1.3.3. Protocols are tricky
	Listing 1.1. Trying to equate to types
	Listing 1.2. Protocols can surprise us

	1.3.4. Concurrency
	Listing 1.3. A pyramid of doom

	1.3.5. Venturing away from Apple’s platforms
	1.3.6. Compile times

	1.4. WHAT YOU WILL LEARN IN THIS BOOK
	1.5. HOW TO MAKE THE MOST OF THIS BOOK
	1.6. MINIMUM QUALIFICATIONS
	1.7. SWIFT VERSION
	SUMMARY

	Chapter 2. Modeling data with enums
	2.1. OR VS. AND
	Join me!
	2.1.1. Modeling data with a struct
	Figure 2.1. A chat application
	Listing 2.1. A join chatroom message
	Listing 2.2. A text message
	Listing 2.3. The Message struct
	Listing 2.4. An invalid message with conflicting properties

	2.1.2. Turning a struct into an enum
	Listing 2.5. Message as an enum (lacking values)
	Listing 2.6. Message as an enum (with values)
	Listing 2.7. Creating enum messages
	Listing 2.8. Logging messages
	Listing 2.9. Matching on a single case
	Listing 2.10. Matching on a single case with the “I don’t care” underscore

	2.1.3. Deciding between structs and enums

	2.2. ENUMS FOR POLYMORPHISM
	Listing 2.11. Filling an array with multiple values
	Listing 2.12. Matching on Any values at runtime
	2.2.1. Compile-time polymorphism
	What are these <Date> brackets?
	Listing 2.13. Adding multiple types to an array via an enum
	Listing 2.14. Introducing a DateType enum
	Figure 2.2. Array enums
	Listing 2.15. Matching on the dateType enum
	Listing 2.16. Adding a year case to DateType
	Listing 2.17. Compiler notifies you of an error


	2.3. ENUMS INSTEAD OF SUBCLASSING
	2.3.1. Forming a model for a workout app
	Listing 2.18. The Run struct
	Listing 2.19. The Cycle struct

	2.3.2. Creating a superclass
	Figure 2.3. A subclassing hierarchy

	2.3.3. The downsides of subclassing
	Listing 2.20. The Pushups class
	Figure 2.4. A refactored subclassing hierarchy

	2.3.4. Refactoring a data model with enums
	Listing 2.21. Workout as an enum
	Listing 2.22. Creating a workout
	Listing 2.23. Pattern matching on a workout
	Listing 2.24. Adding a new workout to the Workout enum

	2.3.5. Deciding on subclassing or enums
	2.3.6. Exercises

	2.4. ALGEBRAIC DATA TYPES
	2.4.1. Sum types
	Listing 2.25. The Day enum
	Listing 2.26. The Age enum

	2.4.2. Product types
	Listing 2.27. A struct containing two Booleans
	Listing 2.28. BooleanContainer has four possible variations

	2.4.3. Distributing a sum over an enum
	Listing 2.29. Introducing PaymentType
	Listing 2.30. A PaymentStatus struct
	Figure 2.5. Turning a struct into an enum
	Listing 2.31. PaymentStatus containing cases

	2.4.4. Exercise

	2.5. A SAFER USE OF STRINGS
	Listing 2.32. Enums with raw values and string values
	Listing 2.33. Enum with raw values, with string values omitted
	2.5.1. Dangers of raw values
	Listing 2.34. Setting a raw value inside parameters
	Listing 2.35. Renaming a string
	Listing 2.36. Unexpected parameters
	Listing 2.37. Explicit raw values

	2.5.2. Matching on strings
	Listing 2.38. Matching on strings
	Listing 2.39. Unknown icon
	Listing 2.40. Creating an enum with a String raw value
	Listing 2.41. iconName creates an enum
	Listing 2.42. Adding a custom initializer to ImageType
	Optional init?
	Listing 2.43. Passing different strings

	2.5.3. Exercises

	2.6. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 3. Writing cleaner properties
	3.1. COMPUTED PROPERTIES
	Listing 3.1. A countdown timer
	Listing 3.2. Value changes over time with computed properties
	3.1.1. Modeling an exercise
	Join me!
	Listing 3.3. The lifecycle of a running exercise

	3.1.2. Converting functions to computed properties
	Listing 3.4. The Run struct
	Listing 3.5. Candidates for computed properties
	Listing 3.6. Run with computed properties
	Listing 3.7. Calling computed properties

	3.1.3. Rounding up

	3.2. LAZY PROPERTIES
	3.2.1. Creating a learning plan
	3.2.2. When computed properties don’t cut it
	Listing 3.8. Creating a LearningPlan
	Listing 3.9. A LearningPlan struct
	Pattern matching
	Listing 3.10. Calling contents five times
	Listing 3.11. Taking ten seconds

	3.2.3. Using lazy properties
	Listing 3.12. LearningPlan with a lazy property
	Referring to properties
	Listing 3.13. Adding a custom initializer
	Listing 3.14. Contents loaded only once

	3.2.4. Making a lazy property robust
	Listing 3.15. Overriding the contents of LearningPlan
	Listing 3.16. Making contents a private(set) property
	Listing 3.17. contents property can’t be set

	3.2.5. Mutable properties and lazy properties
	Listing 3.18. LearningPlan level now mutable
	Listing 3.19. Copying a struct
	Figure 3.1. Copying after initializing a lazy description
	Figure 3.2. Copying before initializing a lazy description
	Listing 3.20. Copying before lazy loading

	3.2.6. Exercises

	3.3. PROPERTY OBSERVERS
	3.3.1. Trimming whitespace
	Listing 3.21. Trimming whitespace
	Listing 3.22. The Player class
	didSet willSet

	3.3.2. Trigger property observers from initializers
	Listing 3.23. Property observer isn’t triggered from initializer
	Listing 3.24. Adding a defer closure to the initializer
	Listing 3.25. Trimming whitespace

	3.3.3. Exercises

	3.4. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 4. Making optionals second nature
	4.1. THE PURPOSE OF OPTIONALS
	4.2. CLEAN OPTIONAL UNWRAPPING
	Join me!
	Listing 4.1. The Customer struct
	Listing 4.2. Optionals are an enum
	Listing 4.3. Optionals without syntactic sugar
	Note
	4.2.1. Matching on optionals
	Listing 4.4. Unwrapping via if let
	Figure 4.1. Matching on an optional
	Listing 4.5. Matching on optional with syntactic sugar

	4.2.2. Unwrapping techniques
	Listing 4.6. Combining optional unwrapping
	Listing 4.7. Combining a Boolean with an optional
	Listing 4.8. Combining pattern matching with optional unwrapping

	4.2.3. When you’re not interested in a value
	Listing 4.9. Underscore use
	Listing 4.10. Nil checking optionals
	Listing 4.11. When an optional is nil


	4.3. VARIABLE SHADOWING
	4.3.1. Implementing CustomStringConvertible
	Listing 4.12. Conforming to the CustomStringConvertible protocol


	4.4. WHEN OPTIONALS ARE PROHIBITED
	Listing 4.13. Confirmation message
	Listing 4.14. An order confirmation message
	4.4.1. Adding a computed property
	Listing 4.15. The Customer struct
	Guards and indentation
	Listing 4.16. displayName in action


	4.5. RETURNING OPTIONAL STRINGS
	Listing 4.17. Making displayName return an optional String
	Listing 4.18. Unwrapping the optional displayName

	4.6. GRANULAR CONTROL OVER OPTIONALS
	Listing 4.19. displayName works with a partially filled-in name
	4.6.1. Exercises

	4.7. FALLING BACK WHEN AN OPTIONAL IS NIL
	Listing 4.20. Defaulting back on a value with the nil-coalescing operator

	4.8. SIMPLIFYING OPTIONAL ENUMS
	Listing 4.21. The Membership enum
	Listing 4.22. Adding a membership property to Customer
	Listing 4.23. Unwrapping an optional before pattern matching
	Listing 4.24. Pattern matching on an optional
	Note
	4.8.1. Exercise

	4.9. CHAINING OPTIONALS
	Listing 4.25. Introducing Product
	Listing 4.26. Adding an optional favoriteProduct to Customer
	Listing 4.27. Applying optional chaining
	Listing 4.28. Unwrapping a chained optional
	Listing 4.29. Combining nil coalescing with optional chaining

	4.10. CONSTRAINING OPTIONAL BOOLEANS
	4.10.1. Reducing a Boolean to two states
	Listing 4.30. Receiving an optional Boolean
	Listing 4.31. Falling back with the nil-coalescing operator

	4.10.2. Falling back on true
	Listing 4.32. Falling back on true

	4.10.3. A Boolean with three states
	Listing 4.33. Converting a Boolean to an enum

	4.10.4. Implementing RawRepresentable
	Listing 4.34. The UserPreference enum

	4.10.5. Exercise

	4.11. FORCE UNWRAPPING GUIDELINES
	Listing 4.35. Creating an optional URL
	Listing 4.36. Force unwrapping an optional URL
	Listing 4.37. A crashing optional URL
	4.11.1. When force unwrapping is “acceptable”
	Postponing error handling
	When you know better than the compiler
	Listing 4.38. Force unwrapping a valid URL

	4.11.2. Crashing with style
	Listing 4.39. Crashing manually


	4.12. TAMING IMPLICITLY UNWRAPPED OPTIONALS
	4.12.1. Recognizing IUOs
	Listing 4.40. Introducing an IUO

	4.12.2. IUOs in practice
	Figure 4.2. Starting the process monitor
	Creating an IUO
	Listing 4.41. Introducing ChatService and ProcessMonitor
	Listing 4.42. The initialization process
	Listing 4.43. A crash from an IUO

	4.12.3. Exercise

	4.13. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 5. Demystifying initializers
	5.1. STRUCT INITIALIZER RULES
	Join me!
	Listing 5.1. Creating a player
	Listing 5.2. Introducing the Player struct
	5.1.1. Custom initializers
	Listing 5.3. Omitting a property
	Note
	Listing 5.4. Creating your initializer
	Note

	5.1.2. Struct initializer quirk
	Listing 5.5. Initializing a player with a custom initializer
	Listing 5.6. Restoring the Player struct
	Listing 5.7. Initializing a player with both initializers

	5.1.3. Exercises

	5.2. INITIALIZERS AND SUBCLASSING
	5.2.1. Creating a board game superclass
	5.2.2. The initializers of BoardGame
	Figure 5.1. BoardGame initializers
	Listing 5.8. The BoardGame superclass
	Note
	Listing 5.9. Initializing BoardGame
	Lack of memberwise initializers

	5.2.3. Creating a subclass
	Figure 5.2. Subclassing BoardGame
	Listing 5.10. MutabilityLand inherits all the BoardGame initializers
	Listing 5.11. The MutabilityLand class

	5.2.4. Losing convenience initializers
	Figure 5.3. Disappearing initializers
	Listing 5.12. Creating a designated initializer for MutabilityLand
	Listing 5.13. Inherited initializers don’t work any more
	Listing 5.14. Losing superclass initializers

	5.2.5. Getting the superclass initializers back
	Figure 5.4. MutabilityLand regains the free initializers from BoardGame.
	Designated initializer funnels
	Listing 5.15. MutabilityLand overrides the designated initializer
	Listing 5.16. All available initializers for MutabilityLand

	5.2.6. Exercise

	5.3. MINIMIZING CLASS INITIALIZERS
	5.3.1. Convenience overrides
	Figure 5.5. MutabilityLand performs a convenience override on a designated initializer.
	Listing 5.17. A convenience override

	5.3.2. Subclassing a subclass
	Figure 5.6. MutabilityLandJunior only needs to override one initializer.
	Listing 5.18. MutabilityLandJunior
	Listing 5.19. Initializing MutabilityLandJunior with all initializers

	5.3.3. Exercise

	5.4. REQUIRED INITIALIZERS
	5.4.1. Factory methods
	Listing 5.20. Factory methods in action
	Listing 5.21. Introducing the makeGame factory method
	Listing 5.22. required error
	Listing 5.23. Adding the required keyword to initializers
	Listing 5.24. Subclass required

	5.4.2. Protocols
	Protocols
	Listing 5.25. Introducing the BoardGameType protocol
	Listing 5.26. Implementing the BoardGameType protocol

	5.4.3. When classes are final
	Listing 5.27. BoardGame is now a final class

	5.4.4. Exercises

	5.5. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 6. Effortless error handling
	6.1. ERRORS IN SWIFT
	6.1.1. The Error protocol
	Join me!
	Listing 6.1. An enum Error
	Listing 6.2. A struct Error

	6.1.2. Throwing errors
	Listing 6.3. Parsing location strings

	6.1.3. Swift doesn’t reveal errors
	Figure 6.1. A Quick Help informing about errors
	Listing 6.4. Adding error information to a function

	6.1.4. Keeping the environment in a predictable state
	Tip
	Mutating temporary values
	Listing 6.5. The TodoList that mutates state on errors
	Listing 6.6. TodoList works with temporary values
	Recovery code with defer
	Listing 6.7. Recovering writing to files with defer

	6.1.5. Exercises

	6.2. ERROR PROPAGATION AND CATCHING
	6.2.1. Propagating errors
	Figure 6.2. Propagating an error
	Listing 6.8. The RecipeExtractor

	6.2.2. Adding technical details for troubleshooting
	Listing 6.9. Adding more information to the ParseRecipeError
	Listing 6.10. Matching on a specific error
	Adding user-readable information
	Listing 6.11. Implementing LocalizedError
	Bridging to NSError
	Listing 6.12. Implementing NSError

	6.2.3. Centralizing error handling
	Listing 6.13. An ErrorHandler with function overloads
	Implementing the centralized error handler
	Listing 6.14. RecipeExtractor becomes throwing

	6.2.4. Exercises

	6.3. DELIVERING PLEASANT APIS
	6.3.1. Capturing validity within a type
	Listing 6.15. Validating a phone number
	Listing 6.16. The PhoneNumber type

	6.3.2. try?
	Listing 6.17. Applying the try? keyword

	6.3.3. try!
	Listing 6.18. Applying the try! keyword.

	6.3.4. Returning optionals
	Listing 6.19. Returning an optional

	6.3.5. Exercise

	6.4. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 7. Generics
	7.1. THE BENEFITS OF GENERICS
	Join me!
	Listing 7.1. First and last
	Listing 7.2. firstLast with an array of strings
	7.1.1. Creating a generic function
	Listing 7.3. Comparing a generic versus nongeneric function signature
	A cup of T?
	Listing 7.4. Referencing a generic from the body
	Listing 7.5. The generic function in action
	Listing 7.6. Custom types
	Why not write generics straight away?

	7.1.2. Reasoning about generics
	Listing 7.7. Wrapping a value inside an array
	Listing 7.8. A faulty generic function
	Figure 7.1. Generic code is turned to specialized code at compile time.
	Listing 7.9. The wrapValue function

	7.1.3. Exercise

	7.2. CONSTRAINING GENERICS
	7.2.1. Needing a constrained function
	Listing 7.10. Running the lowest function
	Listing 7.11. The lowest function (will compile soon, but not yet)
	lhs and rhs

	7.2.2. The Equatable and Comparable protocols
	Listing 7.12. Equatable
	Note
	Listing 7.13. Comparable

	7.2.3. Constraining means specializing
	Listing 7.14. Constraining a generic
	Listing 7.15. The lowest function
	Listing 7.16. The lowest function (shortened)

	7.2.4. Implementing Comparable
	Listing 7.17. The RoyalRank enum, adhering to Comparable
	Listing 7.18. Comparable in action

	7.2.5. Constraining vs. flexibility

	7.3. MULTIPLE CONSTRAINTS
	7.3.1. The Hashable protocol
	Figure 7.2. In Swift, a hashing function turns a value into an integer.
	Note
	Listing 7.19. A String as a dictionary key
	Taking a closer look at the Hashable protocol
	Listing 7.20. The Hashable protocol
	Note

	7.3.2. Combining constraints
	Figure 7.3. A generic that conforms to two protocols.
	Listing 7.21. Combining constraints
	Listing 7.22. where clause

	7.3.3. Exercises

	7.4. CREATING A GENERIC TYPE
	Listing 7.23. The generic type Wrapped
	7.4.1. Wanting to combine two Hashable types
	Listing 7.24. Using a tuple as a key for a dictionary
	Listing 7.25. Error when using a tuple as a key

	7.4.2. Creating a Pair type
	Listing 7.26. Pair type in action
	Listing 7.27. Introducing Pair

	7.4.3. Multiple generics
	Listing 7.28. Pair is specialized: the left and right properties are of the same type
	Pop quiz
	Listing 7.29. Pair accepts two generics
	Listing 7.30. Pair accepts mixed types

	7.4.4. Conforming to Hashable
	Listing 7.31. Pair accepts two generics
	Listing 7.32. Adding a Pair to a Set
	Being explicit
	Listing 7.33. Passing a hasher to Pair
	Manually implementing Hashable
	Listing 7.34. Implementing Hashable manually

	7.4.5. Exercise

	7.5. GENERICS AND SUBTYPES
	7.5.1. Subtyping and invariance
	Listing 7.35. Two classes
	Listing 7.36. Assigning a subclass to superclass

	7.5.2. Invariance in Swift
	Figure 7.4. Subtyping doesn’t apply to Container
	Listing 7.37. Container
	Listing 7.38. Cache
	Listing 7.39. Invariance in action

	7.5.3. Swift’s generic types get special privileges
	Listing 7.40. Swift’s types are covariant


	7.6. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 8. Putting the pro in protocol-oriented programming
	8.1. RUNTIME VERSUS COMPILE TIME
	8.1.1. Creating a protocol
	Join me!
	Listing 8.1. A CryptoCurrency protocol
	Listing 8.2. Declaring coins
	var or let

	8.1.2. Generics versus protocols
	Listing 8.3. Introducing a portfolio (won’t fully work yet!)
	Pop quiz

	8.1.3. A trade-off with generics
	Listing 8.4. Trying to add different coins to the Portfolio
	Listing 8.5. Can’t mix protocols with generics
	Listing 8.6. Checking the type of coins
	type(of: )

	8.1.4. Moving to runtime
	Listing 8.7. A dynamic Portfolio
	Listing 8.8. Mixing and match coins

	8.1.5. Choosing between compile time and runtime
	Listing 8.9. Checking an array

	8.1.6. When a generic is the better choice
	Listing 8.10. A generic protocol vs. a runtime protocol

	8.1.7. Exercises

	8.2. THE WHY OF ASSOCIATED TYPES
	8.2.1. Running into a shortcoming with protocols
	Listing 8.11. The Worker protocol
	Note
	Figure 8.1. Trying to conform to Worker

	8.2.2. Trying to make everything a protocol
	Listing 8.12. Worker without associated types

	8.2.3. Designing a generic protocol
	Listing 8.13. A Worker protocol (won’t compile yet!)
	Listing 8.14. Not supported: a MailJob implementing Worker multiple times

	8.2.4. Modeling a protocol with associated types
	Listing 8.15. Worker with associated types

	8.2.5. Implementing a PAT
	Figure 8.2. Worker implemented
	Listing 8.16. Mailjob (implementation omitted)
	Note
	Listing 8.17. The FileRemover
	Tip

	8.2.6. PATs in the standard library
	Self requirements
	Listing 8.18. Equatable

	8.2.7. Other uses for associated types
	8.2.8. Exercise

	8.3. PASSING PROTOCOLS WITH ASSOCIATED TYPES
	Note
	Figure 8.3. Passing the same input to multiple workers
	Listing 8.19. Passing multiple workers
	Note
	8.3.1. Where clauses with associated types
	Listing 8.20. Constraining the Input associated type

	8.3.2. Types constraining associated types
	Figure 8.4. ImageProcessor
	Listing 8.21. Calling the ImageProcessor
	Listing 8.22. ImageCropper
	Listing 8.23. The ImageProcessor type

	8.3.3. Cleaning up your API with protocol inheritance
	Listing 8.24. The ImageWorker
	Protocol extension
	Listing 8.25. No need to constrain anymore

	8.3.4. Exercises

	8.4. CLOSING THOUGHTS
	SUMMARY
	ANSWERS
	Note


	Chapter 9. Iterators, sequences, and collections
	9.1. ITERATING
	Join me!
	9.1.1. IteratorProtocol
	Listing 9.1. Using for in
	Listing 9.2. Using makeIterator()

	9.1.2. The IteratorProtocol
	Figure 9.1. IteratorProtocol produces elements
	Listing 9.3. IteratorProtocol in Swift
	Note
	Listing 9.4. Going through an iterator
	Note

	9.1.3. The Sequence protocol
	9.1.4. Taking a closer look at Sequence
	Figure 9.2. Sequence produces iterators
	Listing 9.5. Sequence protocol (not complete)
	No ‘SequenceProtocol’?


	9.2. THE POWERS OF SEQUENCE
	9.2.1. filter
	Listing 9.6. filter is a higher-order function

	9.2.2. forEach
	Listing 9.7. Using forEach
	Listing 9.8. Using forEach by passing a function

	9.2.3. enumerated
	Listing 9.9. enumerated

	9.2.4. Lazy iteration
	Listing 9.10. Using lazy

	9.2.5. reduce
	reduce in action
	Listing 9.11. Preparing for a reduce
	Figure 9.3. How reduce passes values

	9.2.6. reduce into
	Listing 9.12. reduce with less performance
	Listing 9.13. reduce(into:)
	Note

	9.2.7. zip
	Listing 9.14. zip
	Note

	9.2.8. Exercises

	9.3. CREATING A GENERIC DATA STRUCTURE WITH SEQUENCE
	9.3.1. Seeing bags in action
	Figure 9.4. How Bag stores data
	Listing 9.15. Using Bag
	Note
	Listing 9.16. Looking inside Bag
	Listing 9.17. Making Bag conform to CustomStringConvertible

	9.3.2. Creating a BagIterator
	Listing 9.18. Creating a BagIterator
	Listing 9.19. Implementing Sequence
	Listing 9.20. Wielding the power of Sequence

	9.3.3. Implementing AnyIterator
	Listing 9.21. Using AnyIterator

	9.3.4. Implementing ExpressibleByArrayLiteral
	Listing 9.22. Implementing ExpressibleByArrayLiteral

	9.3.5. Exercise

	9.4. THE COLLECTION PROTOCOL
	Listing 9.23. Resuming iteration on a Sequence
	9.4.1. The Collection landscape
	Listing 9.24. Indexing a String
	Figure 9.5. An overview of the Collection protocols

	9.4.2. MutableCollection
	Listing 9.25. Partitioning
	String doesn’t conform to MutableCollection

	9.4.3. RangeReplaceableCollection
	Listing 9.26. Mutating length of an array
	Listing 9.27. Mutating String
	removeAll
	Listing 9.28. removeAll in action
	Note

	9.4.4. BidirectionalCollection
	Listing 9.29. Iterating backwards
	Listing 9.30. Using reversed() instead

	9.4.5. RandomAccessCollection
	Listing 9.31. Repeated type
	Listing 9.32. Using zip


	9.5. CREATING A COLLECTION
	9.5.1. Creating a travel plan
	Listing 9.33. Activity
	Listing 9.34. Day
	Listing 9.35. TravelPlan

	9.5.2. Implementing Collection
	Listing 9.36. Implementing Collection
	Listing 9.37. TravelPlan iteration
	Listing 9.38. A default iterator

	9.5.3. Custom subscripts
	Listing 9.39. Implementing subscripts

	9.5.4. ExpressibleByDictionaryLiteral
	Listing 9.40. Implementing ExpressibleByArrayLiteral
	Listing 9.41. Implementing ExpressibleByDictionaryLiteral

	9.5.5. Exercise

	9.6. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 10. Understanding map, flatMap, and compactMap
	10.1. BECOMING FAMILIAR WITH MAP
	Join me!
	Listing 10.1. Transforming an array
	Figure 10.1. A map operation on an array
	Listing 10.2. Refactoring a for loop with map
	10.1.1. Creating a pipeline with map
	Listing 10.3. Transforming data with a for loop
	Listing 10.4. Transforming data with a pipeline

	10.1.2. Mapping over a dictionary
	Listing 10.5. Turning tuples into a dictionary
	Unique keys
	Listing 10.6. Mapping over a dictionary
	From dictionary to array
	Listing 10.7. Mapping over a dictionary’s values

	10.1.3. Exercises

	10.2. MAPPING OVER SEQUENCES
	Listing 10.8. Mapping over a Range sequence
	10.2.1. Exercise

	10.3. MAPPING OVER OPTIONALS
	10.3.1. When to use map on optionals
	Stripping emojis
	Listing 10.9. The removeEmojis function
	Listing 10.10. Detect if Unicode is in emoji range

	10.3.2. Creating a cover
	Figure 10.2. Removing emojis from a cover title
	Listing 10.11. The Cover class
	Figure 10.3. A map operation on two optionals
	Listing 10.12. Mapping over a title
	Inside map

	10.3.3. A shorter map notation
	Note
	Listing 10.13. Clean mapping
	Benefits of mapping over optionals
	Listing 10.14. Chaining map operations

	10.3.4. Exercise

	10.4. MAP IS AN ABSTRACTION
	Figure 10.4. Removing emojis on multiple types

	10.5. GROKKING FLATMAP
	10.5.1. What are the benefits of flatMap?
	10.5.2. When map doesn’t cut it
	Listing 10.15. Transforming a String to URL
	Listing 10.16. Removing double nesting with a force unwrap
	Listing 10.17. Using flatMap to remove double-nested optional

	10.5.3. Fighting the pyramid of doom
	Listing 10.18. Safe halving function
	Listing 10.19. A pyramid of doom
	Listing 10.20. Combining if let statements

	10.5.4. flatMapping over an optional
	Figure 10.5. A successful flatMap operation
	Listing 10.21. Halving with flatMap
	Listing 10.22. Multiple halving operations on flatMap
	Shortcircuiting with flatMap
	Figure 10.6. flatMap and nil values
	Listing 10.23. Short-circuiting
	Listing 10.24. A shorter notation
	Listing 10.25. Finding related products


	10.6. FLATMAPPING OVER COLLECTIONS
	Figure 10.7. Flattening a collection with flatMap
	Listing 10.26. Repeating values
	Listing 10.27. Flattening a nested array
	10.6.1. flatMapping over strings
	Listing 10.28. interspersed
	Listing 10.29. Shorthanded interspersed method

	10.6.2. Combining flatMap with map
	Listing 10.30. Generating a deck of cards
	Tip

	10.6.3. Using compactMap
	Listing 10.31. Creating optional URLs
	Listing 10.32. Mapping over an array
	Listing 10.33. Flattening an optional array
	Listing 10.34. Using a for loop to filter an optional array

	10.6.4. Nesting or chaining
	Listing 10.35. Combining characters from a string

	10.6.5. Exercises

	10.7. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 11. Asynchronous error handling with Result
	11.1. WHY USE THE RESULT TYPE?
	Join me!
	11.1.1. Getting your hands on Result
	11.1.2. Result is like Optional, with a twist
	Listing 11.1. The Result type

	11.1.3. Understanding the benefits of Result
	Listing 11.2. Performing a network call

	11.1.4. Creating an API using Result
	Listing 11.3. A response with Result
	Avoiding error handling
	Listing 11.4. Dematerializing Result

	11.1.5. Bridging from Cocoa Touch to Result
	Listing 11.5. The URLSession’s response
	Listing 11.6. Converting a response and error into a Result
	If an API doesn’t return a value


	11.2. PROPAGATING RESULT
	Listing 11.7. Calling the search API
	11.2.1. Typealiasing for convenience
	Listing 11.8. Creating a typealias
	Partial typealias
	Listing 11.9. The JSON typealias

	11.2.2. The search function
	Listing 11.10. The search function implementation


	11.3. TRANSFORMING VALUES INSIDE RESULT
	Figure 11.1. Mapping over a Result
	Figure 11.2. Mapping over an error inside Result
	Figure 11.3. Mapping over both the value and error
	Listing 11.11. Mapping over an error and value
	11.3.1. Exercise
	11.3.2. flatMapping over Result
	Figure 11.4. How flatMap works on Result
	Listing 11.12. flatMaping over Result
	flatMap doesn’t change the error type

	11.3.3. Exercises

	11.4. MIXING RESULT WITH THROWING FUNCTIONS
	11.4.1. From throwing to a Result type
	Listing 11.13. The parseData function
	Listing 11.14. Converting a throwing function to Result
	Listing 11.15. Passing a throwing function to Result

	11.4.2. Converting a throwing function inside flatMap
	Listing 11.16. Creating a Result from parseData

	11.4.3. Weaving errors through a pipeline
	Figure 11.5. Happy path programming
	Listing 11.17. A longer pipeline
	Short-circuiting a chaining operation

	11.4.4. Finishing up
	11.4.5. Exercise

	11.5. MULTIPLE ERRORS INSIDE OF RESULT
	11.5.1. Introducing AnyError
	Listing 11.18. Creating a Result with AnyError
	Listing 11.19. Returning different errors
	How to choose between map or mapAny
	Matching with AnyError
	Listing 11.20. Matching on AnyError


	11.6. IMPOSSIBLE FAILURE AND RESULT
	11.6.1. When a protocol defines a Result
	Listing 11.21. The Service protocol
	Listing 11.22. Implementing the Service protocol
	Listing 11.23. Matching only on the success case
	The Never type
	Listing 11.24. From the Swift source
	Listing 11.25. The Never type
	Listing 11.26. Implementing Never
	Note


	11.7. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 12. Protocol extensions
	12.1. CLASS INHERITANCE VS. PROTOCOL INHERITANCE
	12.1.1. Modeling data horizontally instead of vertically
	Join me!
	Figure 12.1. Class-based inheritance
	Figure 12.2. Implementing protocols

	12.1.2. Creating a protocol extension
	Listing 12.1. A protocol extension
	Note
	Listing 12.2. Implementing a protocol with default implementation

	12.1.3. Multiple extensions
	Listing 12.3. ResponseHandler


	12.2. PROTOCOL INHERITANCE VS. PROTOCOL COMPOSITION
	12.2.1. Builder a mailer
	Listing 12.4. The Email and Mailer types

	12.2.2. Protocol inheritance
	Figure 12.3. ValidatingMailer inheriting from Mailer
	Listing 12.5. ValidatingMailer
	Listing 12.6. SMTPClient

	12.2.3. The composition approach
	Listing 12.7. The MailValidator protocol
	Figure 12.4. SMTPClient implementing Mailer and MailValidator
	Figure 12.5. Intersecting extension
	Listing 12.8. Intersecting Mailer and MailValidator
	Note
	Listing 12.9. Adding bonus methods

	12.2.4. Unlocking the powers of an intersection
	Listing 12.10. Implementing two protocols to get a free method
	Listing 12.11. Generic with an intersection

	12.2.5. Exercise

	12.3. OVERRIDING PRIORITIES
	12.3.1. Overriding a default implementation
	Figure 12.6. Overriding a protocol

	12.3.2. Overriding with protocol inheritance
	Figure 12.7. Overrides with protocol inheritance
	Listing 12.12. Overrides in action

	12.3.3. Exercise

	12.4. EXTENDING IN TWO DIRECTIONS
	12.4.1. Opting in to extensions
	Listing 12.13. Flipping extension directions
	Listing 12.14. Opting in for benefits

	12.4.2. Exercise

	12.5. EXTENDING WITH ASSOCIATED TYPES
	Listing 12.15. Applying unique () to Array
	Listing 12.16. Extending Array
	Listing 12.17. Extending Collection protocol
	Listing 12.18. Testing out the unique() method
	12.5.1. A specialized extension
	Figure 12.8. Specializing an associated type
	Listing 12.19. Extending Collection with a Hashable constraint on Element

	12.5.2. A wart in the extension
	Listing 12.20. unique on Set


	12.6. EXTENDING WITH CONCRETE CONSTRAINTS
	Listing 12.21. An Article struct
	Listing 12.22. Extending Collection
	Listing 12.23. Extension in action

	12.7. EXTENDING SEQUENCE
	12.7.1. Looking under the hood of filter
	Listing 12.24. A small filter method
	Listing 12.25. Looking at filter’s signature
	Listing 12.26. Looking at filter
	Note
	ContiguousArray

	12.7.2. Creating the take(while:) method
	Listing 12.27. drop(while:)
	Listing 12.28. Get the first lines
	Listing 12.29. Extending Sequence with take(while:)

	12.7.3. Creating the Inspect method
	Listing 12.30. The inspect method in action
	Listing 12.31. Extending Sequence with inspect

	12.7.4. Exercise

	12.8. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 13. Swift patterns
	13.1. DEPENDENCY INJECTION
	Join me!
	13.1.1. Swapping an implementation
	Figure 13.1. Mocking
	Listing 13.1. A Session protocol
	Listing 13.2. Conforming URLSession to Session

	13.1.2. Passing a custom Session
	Listing 13.3. The WeatherAPI class

	13.1.3. Constraining an associated type
	Figure 13.2. Mirroring URLSession
	Listing 13.4. Creating a DataTask protocol
	Listing 13.5. Implementing DataTask

	13.1.4. Swapping an implementation
	Listing 13.6. An offline task
	Note
	Listing 13.7. Swapping out implementations

	13.1.5. Unit testing and Mocking with associated types
	Listing 13.8. Creating a MockTask and MockSession
	Listing 13.9. Testing the API

	13.1.6. Using the Result type
	Listing 13.10. Extending Session with a Result type
	Listing 13.11. Multiple sessions retrieving a Result

	13.1.7. Exercise

	13.2. CONDITIONAL CONFORMANCE
	13.2.1. Free functionality
	Listing 13.12. Auto Equatable
	Manually overriding
	Warning

	13.2.2. Conditional conformance on associated types
	Listing 13.13. The Track protocol
	Listing 13.14. Extending Array (with a shortcoming)
	Listing 13.15. Can’t use Array as a Track type

	13.2.3. Making Array conditionally conform to a custom protocol
	Listing 13.16. Making Array conform
	Warning
	Listing 13.17. Conditional conformance in action

	13.2.4. Conditional conformance and generics
	Listing 13.18. Extending Optional
	Listing 13.19. Calling play() on an optional
	Listing 13.20. Passing an optional to playDelayed

	13.2.5. Conditional conformance on your types
	Figure 13.3. A type mimicking an inner type
	Listing 13.21. CachedValue in action
	Listing 13.22. Inside CachedValue
	Making your type conditionally conformant
	Figure 13.4. Making CachedValue conditionally conform to Equatable, Hashable, and Comparable.
	Listing 13.23. Conditional conformance on CachedValue
	Listing 13.24. CachedValue is now Equatable, Comparable, and Hashable

	13.2.6. Exercise

	13.3. DEALING WITH PROTOCOL SHORTCOMINGS
	Listing 13.25. PokerGame
	Listing 13.26. PokerGame as a key throws an error
	Listing 13.27. Trying to mix games
	Listing 13.28. A resolved generic
	13.3.1. Avoiding a protocol using an enum
	Listing 13.29. PokerGame
	Note

	13.3.2. Type erasing a protocol
	Note
	Figure 13.5. Type-erasing PokerGame
	Figure 13.6. Storing AnyPokerGame inside a Set
	Listing 13.30. AnyPokerGame in action
	Note
	Creating AnyPokerGame
	Listing 13.31. Introducing AnyPokerGame
	Listing 13.32. Implementing Hashable
	Note

	13.3.3. Exercise

	13.4. AN ALTERNATIVE TO PROTOCOLS
	13.4.1. With great power comes great unreadability
	Listing 13.33. Validator
	Listing 13.34. Implementing the Validator protocol

	13.4.2. Creating a generic struct
	Listing 13.35. Introducing Validator
	Listing 13.36. Combining validators

	13.4.3. Rules of thumb for polymorphism

	13.5. CLOSING THOUGHTS
	SUMMARY
	ANSWERS

	Chapter 14. Delivering quality Swift code
	14.1. API DOCUMENTATION
	14.1.1. How Quick Help works
	Figure 14.1. Quick Help pop-up
	Figure 14.2. Quick Help in the sidebar
	Listing 14.1. The turn with Quick Help notations

	14.1.2. Adding callouts to Quick Help
	Figure 14.3. Quick Help with callouts
	Listing 14.2. Adding callouts

	14.1.3. Documentation as HTML with Jazzy
	Figure 14.4. Jazzy documentation


	14.2. COMMENTS
	14.2.1. Explain the “why”
	Listing 14.3. A struct with “what” comments
	Listing 14.4. Message with a “why” comment

	14.2.2. Only explain obscure elements
	14.2.3. Code has the truth
	14.2.4. Comments are no bandage for bad names
	14.2.5. Zombie code

	14.3. SETTLING ON A STYLE
	14.3.1. Consistency is key
	14.3.2. Enforcing rules with a linter
	Figure 14.5. SwiftLint in action

	14.3.3. Installing SwiftLint
	Figure 14.6. Xcode build phases
	Figure 14.7. Xcode script

	14.3.4. Configuring SwiftLint
	Listing 14.5. SwiftLint configuration file

	14.3.5. Temporarily disabling SwiftLint rules
	14.3.6. Autocorrecting SwiftLint rules
	14.3.7. Keeping SwiftLint in sync

	14.4. KILL THE MANAGERS
	14.4.1. The value of managers
	14.4.2. Attacking managers
	Figure 14.8. Refactoring ApiRequestManager

	14.4.3. Paving the road for generics
	Figure 14.9. Making types generic
	Figure 14.10. Reusing generic types


	14.5. NAMING ABSTRACTIONS
	14.5.1. Generic versus specific
	14.5.2. Good names don’t change
	Listing 14.6. Getting important places
	Figure 14.11. Naming a type after what it does

	14.5.3. Generic naming

	14.6. CHECKLIST
	14.7. CLOSING THOUGHTS
	SUMMARY

	Chapter 15. Where to Swift from here
	15.1. BUILD FRAMEWORKS THAT BUILD ON LINUX
	15.2. EXPLORE THE SWIFT PACKAGE MANAGER
	15.3. EXPLORE FRAMEWORKS
	15.4. CHALLENGE YOURSELF
	15.4.1. Join the Swift evolution
	15.4.2. Final words






